Осесимметричный кориолисовый вибрационный гироскоп (варианты)

Изобретение относится к гироскопическому приборостроению. Осесимметричный кориолисовый вибрационный гироскоп включает в себя тонкостенный резонатор полусферической, или цилиндрической, или тороидальной формы, закрепленный по центру на ножке и выполненный с отверстиями в дне резонатора, расположенном вокруг указанной ножки, количество которых определено по формуле "4nk", где "k" - целое число, "n" - порядок мод колебаний, а угол между двумя соседними отверстиями равен . Ножка вьшолнена вдоль своей продольной оси симметричной и закреплена на основании, а основание выполнено с посадочным местом для ножки резонатора и электроизолированными гермовыводами, выведенными через основание наружу и пропущенными через упомянутые отверстия и отвертсия в стенке резонатора для присоединения к элементам электронной платы. Изобретение позволяет уменьшить габаритные размеры гироскопа без уменьшения размера резонатора. 3 н. и 8 з.п. ф-лы, 10 ил.

 

Изобретение относится к гироскопическому приборостроению и может быть использовано для измерения угловых скоростей и углов поворота относительно инерциального пространства в составе систем ориентации, навигации и управления движением. Изобретение относится к кориолисовым вибрационным гироскопам и в частности к осесимметричным гироскопам на основе цилиндрических или полусферических резонаторов.

Гироскоп - прибор для измерения или удержания ориентации. Гироскопы применяются в том числе в инерциальной навигации (INS), стабилизации наземных транспортных средств, летательных аппаратов, кораблей, оптических осей наведения, определения местоположения и др. Стандартные вибрационные гироскопы описаны в следующих американских патентах: US №№6698271, 7120548, 7240533, 7216525, 7281425, 5597955. Так или иначе технология CVG предпочтительна для использования в инерциальных системах благодаря своей низкой цене, простому изготовлению, надежностью по сравнению с гироскопами других типов, таких как кольцевые лазерные гироскопы (RLG) и волоконно-оптические гироскопы (FOG). CVG с низкими и средними точностями - это в основном гироскопы MEMS (Микро-Электро-Механические Датчики). Некоторые из них уже применяются в промышленных и гражданских целях, а также серийно производятся для автомобильного рынка. Гироскопы MEMS в основном делаются на основе кварцевых резонаторов, выгравированных в соответствии со стандартами и развитием микроэлектроники. Они широко используются благодаря своей низкой стоимости и компактности, однако по нескольким причинам их точность недостаточна (или же нелегко достижима) для некоторых тактических и навигационных целей.

Высокие точности достигаются гироскопами с резонаторами высокой добротности (Q>10000, , где ω - собственная частота резонатора, Q - добротность резонатора, τ - постоянная времени), согласно стандарта IEEE 1431) со строгой симметрией по оси. Типичными формами являются кольцо, полусфера и цилиндр, а используемыми модами колебаний обычно являются колебания второго порядка (т.е. эллиптическая форма). Добиться требуемых результатов, основываясь на этих кольцеобразных резонаторах, значительно легче при вибрации второго порядка, впрочем, могут появиться и другие порядки колебаний. Одним из наиболее известных гироскопов, которые относятся к категории высоких точностей, является HRG (полусферический гироскоп с кварцевым резонатором). HRG показывают точность, сравнимую или даже превышающую точности RLG и FOG благодаря использованию кварцевого стекла с высокой добротностью в качестве материала резонатора.

В осесимметричных резонаторах, таких как кольцевые, цилиндрические или полусферические, упругую волну лучше возбуждать по второй моде колебаний резонатора с заданной амплитудой, которая стабилизируется с помощью системы автоматической регулировки усиления (АРУ). У этой стоячей волны есть четыре пучности и узла колебаний, где амплитуда колебаний максимальна и минимальна соответственно. Вращение вокруг измерительной оси вибрирующей конструкции создает силы Кориолиса: Fc=2m[Ω×V], где Fc - вектор силы Кориолиса, m - модальная масса резонатора, Ω - вектор угловой скорости по измерительной оси резонатора, а V - вектор линейной скорости элементов конструкции (при вибрации). Знак × обозначает векторное произведение (умножение). Силы Кориолиса активируют измеряемую моду колебаний (ее амплитуда пропорциональна угловой скорости вращения). Измеряемая мода расположена под углом 45° к возбуждаемой моде таким образом, что ее узлы находятся на пучностях возбуждаемой моды. Пропорциональные угловой скорости вращения сигналы считываются с электродов, расположенных на узлах возбуждаемой моды. Для увеличения диапазона частот гироскопа необходимо обеспечить быстрое демпфирование (гашение) измеряемой моды. Демпфирование измеряемой моды почти всегда выполняется с помощью электроники силового уравновешивания волны, т.е. сигнал измеряемой моды снимается с электродов, расположенных на узлах возбуждаемой моды и через отрицательную обратную связь подается на другой электрод, расположенный на узле возбуждаемой моды. Это приводит к демпфированию колебаний, т.е. снижению добротности измеряемой моды и соответственно к увеличению диапазона частот гироскопа. При этом сигнал обратной связи пропорционален угловой скорости вращения по оси измерения.

Теперь рассмотрим кориолисовы вибрационные гироскопы с высокими точностями. Как упоминалось ранее, в таких гироскопах в основном используются осесимметричные резонаторы цилиндрической или полусферической формы, сделанные из материала с высокой добротностью. Что касается размеров этих гироскопов, нужно отметить, что общие размеры значительно превышают фактический размер самого резонатора. Это показано в следующих патентах: US №72814252, 3656354, 2005/0126257. На практике такие гироскопы значительно больше по размеру, чем гироскопы MEMS, вне зависимости от их конфигураций, «стакан» (ножка снаружи) или «гриб» (ножка внутри).

В устройстве по патенту US №4644793 (принято за прототип) резонатор состоит из цилиндрического стакана, выступающего из плоской гибкой пластины, мембраны, на которой он крепится. При возбуждении этой пластины она деформирует стакан и возбуждает в нем радиальные колебания. При вращении такого резонатора вокруг своей оси узлы колебаний перемещаются по цилиндрической оболочке стакана из-за действия сил Кориолиса. Эти перемещения волновой картины передаются мембране, на которой закреплен цилиндрический стакан. Датчики съема, в данном прототипе емкостные, регистрируют эти перемещения, и определяется угловая скорость по изменению амплитуды колебаний в узле.

Принимая во внимание тот факт, что гироскопы MEMS не могут достичь высокой точности или же это проблематично, возникает необходимость в уменьшении размера CVG с осесимметричным резонатором цилиндрической или полусферической формы. Если уменьшать размер гироскопа путем уменьшения размера резонатора, то будет уменьшаться добротность резонатора, и соответственно точность гироскопа. Основание, на котором закреплена ножка, практически всегда является металлической деталью с герметичным стеклоспаем. При уменьшении размера резонатора необходимо также уменьшать и размер основания. Но при большом количестве контактов (гермовыводов) появляется еще одно ограничение. Также следует отметить, что чем больше количество металлических гермовыводов, тем больше увеличивается стоимость гироскопа, и снижается его надежность (из-за просачивания газа).

Настоящее изобретение направлено на достижение технического результата, заключающегося в уменьшении габаритных размеров осесимметричного кориолисового вибрационного гироскопа, такого как цилиндрический или полусферический CVG, не используя принцип уменьшения размера резонатора. Кроме того, технический результат также заключается в улучшении технологичности конструкции, в частности за счет уменьшения количества гермовыводов в основании, что также повышает надежность гироскопа и позволяет уменьшить его размер.

Указанный технический результат в первом примере исполнения достигается тем, что осесимметричный кориолисовый вибрационный гироскоп включает в себя тонкостенный резонатор полусферической, или цилиндрической, или тороидальной формы, закрепленный по центру на ножке и выполненный с отверстиями в стенке резонатора, расположенной вокруг указанной ножки, количество которых определено по формуле "4nk", где "k" - целое число, "n" - порядок мод колебаний, а угол между двумя соседними отверстиями равен , при этом указанная ножка выполнена вдоль своей продольной оси симметричной и закреплена на основании, соленоиды и электроды, расположенные на стенке резонатора или рядом с ним для возбуждения и измерения двух мод колебаний, постоянная амплитуда одной из мод которых предназначена для контроля чувствительной к силам Кориолиса вторичной моды колебаний, а основание выполнено с посадочным местом для ножки резонатора и электроизолированными гермовыводами, выведенными через основание наружу и пропущенные через отверстия в стенке резонатора для присоединения к элементам электронной платы.

Указанный технический результат во втором примере исполнения достигается тем, что осесимметричный кориолисовый вибрационный гироскоп включает в себя тонкостенный резонатор полусферической, или цилиндрической, или тороидальной формы, закрепленный по центру на ножке и выполненный с отверстиями в стенке резонатора, расположенной вокруг указанной ножки, количество которых определено по формуле "4nk", где "k" - целое число, "n" - порядок мод колебаний, а угол между двумя соседними отверстиями равен при этом указанная ножка выполнена вдоль своей продольной оси симметричной и закреплена на основании, соленоиды и электроды, расположенные на стенке резонатора или рядом с ним для возбуждения и измерения двух мод колебаний, постоянная амплитуда одной из мод которых предназначена для контроля чувствительной к силам Кориолиса вторичной моды колебаний, а основание выполнено с посадочным местом для ножки резонатора и электроизолированными гермовыводами, выведенными через основание наружу и предназначенные для присоединения к элементам электронной платы, которая размещена в полости внутри резонатора и укреплена на подсоединенных к ней электроизолированных гермовыводах, которые закреплены в основании через металлизированные отверстия.

Указанный технический результат в третьем примере исполнения достигается тем, что осесимметричный кориолисовый вибрационный гироскоп включает в себя тонкостенный резонатор полусферической, или цилиндрической, или тороидальной формы, закрепленный по центру на ножке и выполненный с отверстиями в стенке резонатора, расположенной вокруг указанной ножки, количество которых определено по формуле "4nk", где "k" - целое число, "n" - порядок мод колебаний, а угол между двумя соседними отверстиями равен , при этом указанная ножка выполнена вдоль своей продольной оси симметричной и закреплена на основании, соленоиды и электроды, расположенные на стенке резонатора или рядом с ним для возбуждения и измерения двух мод колебаний, постоянная амплитуда одной из мод которых предназначена для контроля чувствительной к силам Кориолиса вторичной моды колебаний, а основание выполнено с посадочным местом для ножки резонатора и электроизолированными гермовыводами, выведенными через основание наружу и пропущенные через отверстия в стенке резонатора для присоединения к элементам электронной платы, которая размещена снаружи резонатора и укреплена на подсоединенных к ней электроизолированных гермовыводах, которые закреплены в основании через металлизированные отверстия.

Суть изобретения иллюстрируется на фигурах 1-11, где:

на фиг.1 - горизонтальная проекция цилиндрического или полусферического резонатора с электродами измерения и возбуждения, с 8 отверстиями. Размер и положение электродов выбираются так, чтобы получить сигналы, необходимые для электроники управления;

фиг.2 - вариант конструкции гироскопа с соединительной электронной платой внутри цилиндрического резонатора;

фиг.3 - вариант конструкций гироскопа с соединительной электронной платой внутри полусферического резонатора;

фиг.4 - вариант конструкций гироскопа с соединительной электронной платой внутри тороидального (полусферический с плоским дном) резонатора;

фиг.5 - горизонтальная проекция основания с четырьмя гермовыводами;

фиг.6 - вариант конструкции гироскопа с соединительной электронной платой снаружи цилиндрического резонатора;

фиг.7 - вариант конструкций гироскопа с соединительной электронной платой снаружи полусферического резонатора;

фиг.8 - вариант конструкций гироскопа с соединительной электронной платой снаружи тороидального (полусферический с плоским дном) резонатора;

фиг.9 - вариант конструкции гироскопа без внутренней соединительной электронной платы и цилиндрический резонатор;

фиг.10 - вариант конструкций гироскопа без внутренней соединительной электронной платы и полусферический резонатор;

фиг.11 - вариант конструкций гироскопа без внутренней соединительной электронной платы и тороидальный (полусферический с плоским дном) резонатор.

Согласно настоящему изобретению рассматривается конструкция малогабаритного осесимметричного кориолисового вибрационного гироскопа, который включает в себя тонкостенный резонатор полусферической, или цилиндрической, или тороидальной формы, закрепленный по центру на ножке и выполненный с отверстиями в стенке резонатора, расположенной вокруг указанной ножки, количество которых определено по формуле "4nk", где "k" - целое число, "n" - порядок мод колебаний, а угол между двумя соседними отверстиями равен , при этом указанная ножка выполнена вдоль своей продольной оси симметричной и закреплена на основании, соленоиды и электроды, расположенные на стенке резонатора или рядом с ним для возбуждения и измерения двух мод колебаний, постоянная амплитуда одной из мод которых предназначена для контроля чувствительной к силам Кориолиса вторичной моды колебаний, а основание выполнено с посадочным местом для ножки резонатора и электроизолированными гермовыводами, выведенными через основание наружу и пропущенные через отверстия в стенке резонатора для присоединения к элементам электронной платы.

В одном варианте исполнения электронная плата размещена вне датчика, в другом варианте исполнения электронная плата размещена в полости внутри резонатора и укреплена на подсоединенных к ней электроизолированных гермовыводах, которые закреплены в основании через металлизированные отверстия. А в третьем варианте исполнения электронная плата размещена снаружи резонатора и укреплена на подсоединенных к ней электроизолированных гермовыводах, которые закреплены в основании через металлизированные отверстия. При этом рассматриваются варианты исполнения резонатора в виде тонкостенной полусферической, или цилиндрической, или тороидальной формы конструкции.

Ниже рассматриваются конкретные реализации этого датчика-гироскопа.

На фиг.1 показаны отверстия в дне резонатора, расположенные по кругу по оси измерения цилиндрического или полусферического резонатора. В данном случае имеем 8 отверстий и 8 электродов, расположенных симметрично между отверстиями. Электроды размещены на внешней стороне резонатора. Угол между каждой соседней парой отверстий равняется 45°. Электроды сделаны предпочтительно из пьезокерамических пластин, но в полусферическом резонаторе из кварца этими электродами могут быть конденсаторы, которые подают электростатические силы. На фиг.2 и 5 показан пример CVG с цилиндрическим резонатором.

Элементы, показанные на фиг.2: цилиндрический резонатор 1, выполненный в виде тонкостенного стакана с цилиндрической боковой стенкой, закрепленный на ножке 2 в форме гриба (или иной цилиндрообразной формы), основание 3 с деталью 4 внутри резонатора 1, которая представляет собой стаканообразный выступ, внутрь которого вставляется ножка резонатора, электроды 4 сделаны из пьезокерамики, чтобы возбуждать и измерять необходимые колебания, а также измерять их параметры, штыревые электроды 5 (далее - электроизолированные гермовыводы 5) для ввода/вывода сигналов через основание 3, соединительная электронная плата 6 с токопроводящими дорожками обеспечивает соединение между электродами и гермовыводами (плата 6 подсоединена к электродам с помощью проводов), цилиндрическая (цилиндрообразная или грибообразная) ножка 2, расположенная внутри резонатора (прикреплена к нему или выполнена за одно с ним), служит крепежом резонатора 1 к основанию 3, колпак 7 накрывает резонатор и поддерживает заданное давление внутри (впрочем, предпочтительно должен быть вакуум), отверстия 8 используются для фиксации гироскопа в блоке (например, IMU - т.е. инерциальный измерительный блок). Ножка желательно должна быть выполнена в форме сплошного или частично полого цилиндра. В детали 4 выполнены отверстия для пропуска штыревых электродов 5.

На фиг.3 и 4 показаны примеры исполнения кориолисового вибрационного гироскопа с полусферическим 9 и тороидальным 10 резонатором соответственно. Габаритные размеры этих гироскопов такие же, как и гироскопа, показанного на фиг.2. При таком исполнении, как показано на фиг.2-4, можно обеспечить получение следующих габаритных размеров: высота 25 мм, диаметр 30 мм (включая колпак). Впрочем, можно получить и меньший размер с высотой менее 10 мм, что сопоставимо с корпусом MEMS.

Минимизация размеров гироскопа достигается путем использования отверстий в дне и пространства внутри резонатора. Это пространство заполняется основанием для фиксации резонатора с помощью гермовыводов, а также соединительной электронной платой 6. В результате становится возможным минимизировать не только высоту гироскопа, но и его диаметр, приближая к соответствующим размерам резонатора.

На фиг.6-8 показаны виды в разрезе цилиндрического, полусферического и тороидального гироскопов с соединительной электронной платой 6, расположенной над резонатором 1, или 9, или 10. Сходные элементы, показанные на фиг.6-8, такие же, как на фиг.2-4. В данных случаях в основании 3 гермовыводы 5 выполнены удлиненными с выступами 11, которые проходят через отверстия 12 резонатора, что позволяет расположить плату 6 над резонатором 1, или 9, или 10 и закрепить ее на основании.

На фиг.9-11 показан вид в разрезе без соединительной электроники гироскопических датчиков по новому варианту исполнения. В этой конструкции гермовыводы 5 ввода/вывода проходят через отверстия 12 резонатора. Проводное соединение обеспечивает прямую электрическую связь электродов с гермовыводами. Этот вариант конструкции более дешевый, нежели две изложенные выше. Высота гироскопа остается такой же, как и в предыдущих вариантах. Однако уменьшение размера ограничено количеством гермовыводов в основании.

Рассмотренные примеры позволяют задать алгоритм построения конструкции для малогабаритных кориолисовых вибрационных гироскопов высокой точности с кольцеобразными резонаторами в форме цилиндра или полусферы: отверстия в дне, расположенные по окружности, предпочтительно 8 штук, с интервалом 45°, ножка внутри резонатора (форма гриба); резонатор устанавливается с помощью ножки на основании, расположенном внутри стаканообразного выступа; соединение между электродами резонатора и гермовыводами обеспечивается проводным соединением напрямую к гермовыводам сквозь отверстия или же с помощью соединительной электронной платы. Соединительная электронная плата позволяет уменьшить количество гермовыводов.

В данном изобретении технический результат в кориолисовом вибрационном гироскопе (CVG), а в частности в осесимметричном гироскопе достигается за счет следующих конструктивных особенностей исполнения:

- В одном из вариантов данного изобретения в дне резонатора сделаны отверстия, а ножка находится внутри (форма «гриба»).

- Желательное количество отверстий - 8, при втором порядке возбуждающей моды. Впрочем, отверстий может быть значительно больше. Допустим, "n" - это порядок мод, а количество отверстий задается уравнением "4nk", где "k" - целое число. При "n=2" и "k=1", количество отверстий равняется 8.

- Что касается условий симметричности, то угол между двумя соседними отверстиями будет . Этот угол также определяет положение осей симметрии резонатора (в плоскости, перпендикулярной оси измерения резонатора). При "n=2", угол равняется 45°.

- Ножку лучше делать в форме сплошного или частично полого цилиндра, но она не обязательно должна быть прямым цилиндром, можно использовать другие симметрические формы, с учетом вибраций второго порядка (например, прямой срез ножки может быть восьмиугольником при втором порядке вибрации, - т.е. второй порядок приводит к эллиптическим формам мод).

- В основании есть глухое отверстие, направленное внутрь резонатора. Это отверстие обеспечивает крепление резонатора с помощью свободного конца ножки. Данное закрепление находится внутри резонатора, максимально заполняя пространство в нем.

- Помимо этого к гермовыводам в основании подсоединена электронная схема. Ее желательно разместить внутри резонатора, чтобы минимизировать размер гироскопа. Эта электронная схема обеспечивает электрическое соединение электродов резонатора, расположенных на его наружной стороне (они используются для возбуждения и измерения вибрации) с гермовыводами в основании с помощью проводного соединения. Кроме того, следует понимать, что эти гермовыводы в основании расположены по окружности, диаметр которой меньше диаметра резонатора.

- По сути, количество электродов определяется теми же законами, что и количество отверстий, как было определено выше. Впрочем, это количество можно поделить на 2, используя методы разделения времени сигнала (один и тот же электрод поочередно используется для возбуждения и измерения вибрации). При втором порядке с исходной электронной схемой управления без метода разделения времени, желательное количество равняется 8. В данном случае по материалам заявки видно, что эти электроды нужно соединять попарно. В случае использования электродов одинаковой полярности соединяются пары противоположных электродов (расположенных под углом 180°). В случае использования электродов противоположной полярности соединяются два электрода, расположенных под углом 90°.

- В любом случае электронную схему можно сделать по последнему слову техники для того, чтобы выполнить электрическое соединение пар электродов. В таком случае количество гермовыводов можно сделать меньше, чем количество электродов. При втором порядке количество гермовыводов можно уменьшить до 4 или до 2 в случае использования электроники разделения времени. Это позволяет уменьшить размер основания, что необходимо для создания малогабаритных CVG.

- Следует отметить, что версия конструкции с внутренней электроникой над резонатором (а не внутри резонатора) также вполне целесообразна, хотя и несколько более высока.

- Не используя внутреннюю электронику внутри гироскопа, можно решить еще одну проблему. В данном случае провода припаиваются непосредственно между электродами и гермовыводами в основании, при одинаковом количестве гермовыводов и электродов резонатора. Соединение между электродами можно осуществлять вне гироскопа, если необходимо, например, в блоке электроники.

- Как видно по описанию выше, уменьшить Кориолисовы вибрационные гироскопы наивысшей точности можно главным образом за счет использования отверстий в дне резонатора.

Приведенные выше описания устройств лишь иллюстрируют заявляемое изобретение и не ограничиваются только ими. Любая модификация конструкции, сохраняющая дух и содержание данного изобретения, должна интерпретироваться как такая, которая соответствует формуле изобретения.

1. Осесимметричный кориолисовый вибрационный гироскоп, характеризующийся тем, что включает в себя тонкостенный резонатор полусферической, или цилиндрической, или тороидальной формы, закрепленный по центру на ножке и выполненный с отверстиями в дне резонатора, расположенном вокруг указанной ножки, количество которых определено по формуле "4nk", где "k" - целое число, "n" - порядок мод колебаний, а угол между двумя соседними отверстиями равен , при этом указанная ножка выполнена вдоль своей продольной оси симметричной и закреплена на основании, соленоиды и электроды, расположенные на стенке резонатора или рядом с ним для возбуждения и измерения двух мод колебаний, постоянная амплитуда одной из мод которых предназначена для контроля чувствительной к силам Кориолиса вторичной моды колебаний, а основание выполнено с посадочным местом для ножки резонатора и электроизолированными гермовыводами, выведенными через основание наружу, пропущенными через упомянутые отверстия и отверстия в стенке резонатора для присоединения к элементам электронной платы.

2. Гироскоп по п.1, отличающийся тем, что электроды связаны проводами с электроизолированными гермовыводами через отверстия в стенке резонатора, а указанные гермовыводы одними концами выведены наружу через основание, а другие их концы расположены внутри полости резонатора.

3. Гироскоп по п.1, отличающийся тем, что количество отверстий равняется 8, количество электроизолированных гермовыводов равняется 8 и их концы с одной стороны расположены около каждого отверстия.

4. Гироскоп по п.1, отличающийся тем, что электроды выполнены пьезокерамическими и прикреплены к резонатору клеем или пайкой.

5. Гироскоп по п.1, отличающийся тем, что резонатор выполнен из металлических сплавов, или кварцевого стекла, или из кристаллических материалов с высокой добротностью.

6. Осесимметричный кориолисовый вибрационный гироскоп, характеризующийся тем, что включает в себя тонкостенный резонатор полусферической, или цилиндрической, или тороидальной формы, закрепленный по центру на ножке и выполненный с отверстиями в дне резонатора, расположенном вокруг указанной ножки, количество которых определено по формуле "4nk", где "k" - целое число, "n" - порядок мод колебаний, а угол между двумя соседними отверстиями равен , при этом указанная ножка выполнена вдоль своей продольной оси симметричной и закреплена на основании, соленоиды и электроды, расположенные на стенке резонатора или рядом с ним для возбуждения и измерения двух мод колебаний, постоянная амплитуда одной из мод которых предназначена для контроля чувствительной к силам Кориолиса вторичной моды колебаний, а основание выполнено с посадочным местом для ножки резонатора и электроизолированными гермовыводами, выведенными через основание наружу и предназначенными для присоединения к элементам электронной платы, которая размещена в полости внутри резонатора и укреплена на подсоединенных к ней электроизолированных гермовыводах, которые закреплены в основании через металлизированные отверстия.

7. Гироскоп по п.6, отличающийся тем, что электроды выполнены пьезокерамическими и прикреплены к резонатору клеем или пайкой.

8. Гироскоп по п.6, отличающийся тем, что резонатор выполнен из металлических сплавов, или кварцевого стекла, или из кристаллических материалов с высокой добротностью.

9. Осесимметричный кориолисовый вибрационный гироскоп, характеризующийся тем, что включает в себя тонкостенный резонатор полусферической, или цилиндрической, или тороидальной формы, закрепленный по центру на ножке и выполненный с отверстиями в дне резонатора, расположенном вокруг указанной ножки, количество которых определено по формуле "4nk", где "k" - целое число, "n" - порядок мод колебаний, а угол между двумя соседними отверстиями равен , при этом указанная ножка выполнена вдоль своей продольной оси симметричной и закреплена на основании, соленоиды и электроды, расположенные на стенке резонатора или рядом с ним для возбуждения и измерения двух мод колебаний, постоянная амплитуда одной из мод которых предназначена для контроля чувствительной к силам Кориолиса вторичной моды колебаний, а основание выполнено с посадочным местом для ножки резонатора и электроизолированными гермовыводами, выведенными через основание наружу, пропущенными через упомянутые отверстия и отверстия в стенке резонатора для присоединения к элементам электронной платы, которая размещена снаружи резонатора и укреплена на подсоединенных к ней электроизолированных гермовыводах, которые закреплены в основании через металлизированные отверстия.

10. Гироскоп по п.6, отличающийся тем, что электроды выполнены пьезокерамическими и прикреплены к резонатору клеем или пайкой.

11. Гироскоп по п.6, отличающийся тем, что резонатор выполнен из металлических сплавов, или кварцевого стекла, или из кристаллических материалов с высокой добротностью.



 

Похожие патенты:

Изобретение относится к вибрирующим гироскопам, принцип работы которых основан на использовании эффекта силы Кориолиса. .

Изобретение относится к приборам, измеряющим угловую скорость, в частности к микромеханическим гироскопам. .

Изобретение относится к измерительной технике. .

Изобретение относится к резонатору датчика углового параметра, содержащему колокол из электроизоляционного материала, снабженный центральной ножкой, и электропроводящий слой, который содержит ветви, проходящие от центрального участка колокола до его периферического края, число которых является простым числом не меньше семи, что обеспечивает достаточную проводимость электрического тока и одновременно позволяет ограничить влияние проводящего слоя на механическое поведение колокола.

Изобретение относится к области приборостроения, а именно к приборам ориентации, навигации и систем управления. .

Изобретение относится к измерительной технике и может применяться в интегральных гироскопах осциляторного типа. .

Изобретение относится к области микромеханики, в частности к микромеханическим гироскопам вибрационного типа. .

Изобретение относится к приборам, измеряющим угловую скорость. .

Изобретение относится к области гироскопов и может использоваться в волновых твердотельных гироскопах, работающих в режиме датчика угловой скорости. .

Изобретение относится к измерительной технике, в частности к приборам для измерения величины угловой скорости. .

Изобретение относится к области точного приборостроения, преимущественно гироскопического, и может быть использовано при создании твердотельных волновых гироскопов и систем ориентации и навигации на их основе

Изобретение относится к инерциальному датчику угловой скорости с компенсацией отклонения

Изобретение относится к навигационной технике

Изобретение относится к области микромеханики, в частности к микромеханическим гироскопам (ММГ) вибрационного типа

Изобретение относится к области микромеханики, в частности к микромеханическим гироскопам вибрационного типа

Изобретение относится к измерительной технике и может применяться в навигационно-пилотажных системах летательных аппаратов

Изобретение относится к области измерительной техники и интегральной электроники, а именно к интегральным измерительным элементам величины угловой скорости

Изобретение относится к измерительной технике и может быть использовано в гиродатчиках

Изобретение относится к измерительной технике и может быть использовано в приборах навигационных систем. Устройство содержит чувствительный элемент, выполненный в виде диска, на котором на верхней поверхности нанесено восемь проводящих электродов-секторов, а на нижней выполнен сплошной электрод. Первый электронный преобразователь, вход которого соединен с двумя диаметрально противоположными возбуждающими электродами-секторами, а выход с двумя диаметрально противоположными возбуждающими электродами-секторами, размещенными крест на крест относительно первых. Второй электронный преобразователь, вход которого соединен с двумя измерительными электродами-секторами, расположенными под углом 45° к возбуждающим электродам-секторам, а выход второго преобразователя соединен с оставшимися двумя электродами-секторами обратной связи и является выходом пьезогироскопа, центральный штыревой электрод, одним концом соединенный с неподвижным основанием (подложкой), на втором конце электрода укреплен пьезодиск. При этом в пьезодиске выполнено N сквозных отверстий вокруг электрода крепления пьезодиска к неподвижной подложке. Технический результат - повышение чувствительности пьезогироскопа в режиме изменения угловой скорости. 1 ил.

Изобретение относится к полусферическому резонатору, являющемуся элементом вибродачика угловой скорости. Полусферический резонатор (7) содержит колоколообразный элемент (4), закрепленный на основе (3), которая несет основные электроды (2), обращенные к кольцевому ободу (6.2) колоколообразного элемента, и, по меньшей мере, один охранный электрод (1), располагаемый рядом с основными электродами (2). По меньшей мере, часть внутренней поверхности (6.1) колоколообразного элемента и указанный кольцевой обод (6.2) покрыты электропроводящим слоем (6), который к тому же покрывает участок (6.3) наружной поверхности колоколообразного элемента, примыкающий к его кольцевому ободу. Изобретение обеспечивает минимизацию ошибок измерения угловой скорости и ограничивает демпфирование колебаний колоколообразного элемента, что повышает точность и надежность. 5 з.п. ф-лы, 3 ил.

Изобретение относится к гироскопическому приборостроению

Наверх