Способ диагностики турбореактивного двухконтурного двигателя со смешением потоков



Способ диагностики турбореактивного двухконтурного двигателя со смешением потоков
Способ диагностики турбореактивного двухконтурного двигателя со смешением потоков
Способ диагностики турбореактивного двухконтурного двигателя со смешением потоков
Способ диагностики турбореактивного двухконтурного двигателя со смешением потоков
Способ диагностики турбореактивного двухконтурного двигателя со смешением потоков

 


Владельцы патента RU 2476915:

Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" (RU)

Изобретение относится к области авиационной техники. По замерам полетной информации определяют величину Rn.p идеальной тяги двигателя как Rn.p=Rcn.p- GBVΠ, где Rcn.p - условная тяга реактивного сопла, соответствующая полному расширению в нем выхлопной струи до атмосферного давления, GB - расход воздуха на входе в двигатель, VΠ - скорость полета летательного аппарата. Тягу двигателя для диагностики контролируют по отклонению Rn.p от эталонного значения, соответствующего тяге данного двигателя до начала эксплуатации. Изобретение позволяет повысить точность диагностики технического состояния двигателя в условиях эксплуатации. 1 ил.

 

Изобретение относится к области авиационной техники, а более точно касается диагностики состояния турбореактивного двухконтурного двигателя со смешением потоков (ТРДДсм).

Известен способ диагностики агрегатов летательных аппаратов по техническому состоянию, при котором с помощью комплекта датчиков: давления температуры, вибрации и т.д., блока коммутации и регистрации параметров, связанного с индикатором контроля и оповещения, регистрируют параметры, определяющие работу двигателя, накопленную повреждаемость каждой основной детали двигателя с учетом режимов работы двигателя, и по ним определяют остаточный ресурс двигателя (заявка РФ №2002106177).

Известен способ диагностики авиационных двигателей сетевой системой, в котором измеряют параметры, характеризующие работу авиационного двигателя, датчиками, установленными на авиационном двигателе. Аппаратные средства диагностического сервера с базой данных и программными средствами считывают в сетевых линиях связи данные, характеризующие полетную работу, и данные неразрушающего контроля авиационного двигателя и, обработав их в соответствии с базами данных и математических моделей, выдают диагностику технического состояния авиационного двигателя в сетевые линии связи (патент РФ на ПМ №87816).

Известен способ диагностики двигателя, основанный на способе контроля тяги турбореактивного двухконтурного двигателя со смешением потоков (ТРДДсм) (В.О.Боровик, В.М.Борщанский, В.А.Зозулин. Контроль величины тяги авиационных турбореактивных двигателей в условиях эксплуатации в сб. «Некоторые вопросы расчета и экспериментального исследования высотно-скоростных характеристик ГТД», Труды ЦИАМ №663, 1975, стр.240-254), в котором измеряют значения полного давления на входе в двигатель (Р*H), за компрессором низкого давления (Р*B) и за турбиной (Р*T), а также площади Fвых выходного сечения реактивного сопла, обработав их, по ним определяют значение параметров или характеризующих величину тяги двигателя (где а FI и FII - значения площади на входе в камеру смешения из первого и второго контура соответственно).

Недостатком данного способа является то, что он ограничивает контроль тяги двигателя только взлетным режимом, так как фактически оценивает значение тяги сопла без учета входного импульса набегающего потока.

Кроме того, рассмотренный способ не позволяет осуществлять диагностику двигателя по величине определенной таким образом тяги, так как оценивает значение действительной тяги с учетом реальных ограничений, например по максимальной площади раскрытия выходного сечения реактивного сопла; в силу чего полученное значение тяги не характеризует в полной мере потенциальные возможности двигателя. Поэтому рассмотренный известный способ ограничивает возможности диагностики двигателя, с одной стороны, областью применения (только взлетный режим), а с другой - не учетом потенциальных возможностей двигателя при наилучшем его регулировании, так как оценивает тягу при конкретно реализованном (возможно, неоптимальном) регулировании двигателя.

В основу изобретения положена задача повышения адекватности диагностики технического состояния ТРДДсм в условиях эксплуатации.

Технический результат - расширение функциональных возможностей диагностики турбореактивного двухконтурного двигателя со смешением потоков (ТРДДсм) за счет диагностики его технического состояния на всех режимах работы и определения степени ухудшения характеристик данного ТРДДсм с наработкой.

Поставленная задача решается тем, что в способе диагностики турбореактивного двухконтурного двигателя со смешением потоков (ТРДДсм), включающем измерение полетной информации, ее обработку и контроль тяги для диагностики ТРДДсм, замеряют скорость полета летательного аппарата (Vп), характеризующую скорость набегающего на вход в двигатель потока воздуха, частоту вращения (nв) вала низкого давления, статическое давление (РH) атмосферного воздуха, полную температуру (ТBX*) воздуха на входе в двигатель, полное давление за компрессором низкого давления (Р*в), полное давления за турбиной (Р*т), положение створок реактивного сопла, характеризующее площадь критического сечения реактивного сопла (Fкр), по замерам определяют величину Rn.p идеальной тяги двигателя как Rn.p=Rcn.p-GBVП, где Rcn.p - условная тяга реактивного сопла, соответствующая полному расширению в нем выхлопной струи до атмосферного давления, Gв - расход воздуха на входе в двигатель, и контролируют тягу двигателя по отклонению Rn.p от эталонного значения, соответствующего тяге данного ТРДДсм до начала эксплуатации.

Предложенный способ основывается на использовании газодинамических соотношений, в том числе газодинамических функций π(λ), q(λ) и r(λ), для определения полного импульса сопла (см. Абрамович Г.Н. Прикладная фазовая динамика. В 2 ч. 3-е изд., перераб. и доп. - М.: Наука., 1991. - Ч.1, стр.241-246), позволяющих определять параметр тяги по осредненному значению полного давления перед соплом.

Значение тяги Rn.p, с учетом входного импульса GВVП следует определять в соответствии с алгоритмом следующим образом:

- определяют параметр , пропорциональный полному давлению на входе в реактивное сопло как где - отношение значений площади на входе в камеру смешения из первого и второго контура соответственно,

- определяют условное значение приведенной скорости λс п.р в выходном сечении реактивного сопла, соответствующее полному расширению в нем выхлопной струи до атмосферного давления по функции, обратной газодинамической функции π(λ), по предварительно вычисленному параметру, характеризующему располагаемый перепад давлений в реактивном сопле

- определяют условную площадь Fcn.p выходного сечения сопла, соответствующую полному расширению выхлопной струи до атмосферного давления

- определяют условную тягу реактивного сопла, соответствующую полному расширению в нем выхлопной струи до атмосферного давления

- с учетом входного импульса GВVП определяют величину идеальной тяги двигателя, соответствующей полному расширению выхлопной струи в реактивном сопле до атмосферного давления Rn.p=Rcn.p-GВVП, где q(λ), r(λ)- газодинамические функции;

Fкр - площадь критического сечения реактивного сопла;

λсп.р - приведенная скорость газа в выходном сечении сопла, соответствующая полному расширению выхлопной струи до атмосферного давления;

GB - расход воздуха через двигатель, который определяют расчетным путем по измеренному значению частоты вращения вала низкого давления nB, характеризующему приведенный расход воздуха через двигатель, измеренному значению полного давления за компрессором низкого давления Р*в и измеренному значению полной температуры воздуха на входе в двигатель ТBX*.

Способ, согласно изобретению, осуществляют следующим образом. При работе ТРДДсм измеряют текущие параметры, характеризующие работу ТРДДсм в полете, и обрабатывают результаты измерений по алгоритму с получением значения диагностического параметра, характеризующего текущую величину идеальной тяги ТРДД, соответствующей полному расширению в реактивном сопле выхлопной струи до атмосферного давления, и по его отклонению от эталонного значения проводят диагностику состояния ТРДДсм.

Согласно изобретению в качестве параметров, характеризующих работу ТРДДсм в полете, используют данные датчиков термогазодинамических параметров двигателя и самолета, а также частоты вращения ротора и критического сечения реактивного сопла, а именно: скорость набегающего на вход в двигатель потока воздуха (VП), частоту вращения вала низкого давления (nв), статическое давление атмосферного воздуха (РH), полную температуру воздуха на входе в двигатель (Т*вх), полное давление за компрессором низкого давления и полное давления за турбиной (Р*в и Р*т) соответственно, а также площадь критического сечения реактивного сопла (Fкр).

Исходя из значений измеренных параметров, их обрабатывают по вышеуказанному алгоритму и определяют:

- параметр , пропорциональный полному давлению на входе в реактивное сопло , где отношение значений площади на входе в камеру смешения из первого и второго контура соответственно;

- условное значение приведенной скорости λс п.р в выходном сечении реактивного сопла, соответствующее полному расширению в нем выхлопной струи до атмосферного давления по функции, обратной газодинамической функции π(λ), по предварительно вычисленному параметру, характеризующему располагаемый перепад давлений в реактивном сопле

- условную площадь выходного сечения сопла, соответствующую полному расширению выхлопной струи до атмосферного давления где q(λ) - газодинамическая функция;

- условную тягу реактивного сопла, соответствующую полному расширению в нем выхлопной струи до атмосферного давления где r(λ) - газодинамическая функция;

- параметр Rn.p=Rcn.p-GВVП, характеризующий идеальную тягу двигателя, соответствующую полному расширению выхлопной струи в реактивном сопле до атмосферного давления Rn.p=f(Rcn.p,nв,Vn,P*в,T*вх) с учетом входного импульса GВVП.

Расход воздуха GВ определяют расчетным путем по измеренному значению частоты вращения вала низкого давления nв, характеризующему приведенный расход воздуха через двигатель, измеренному значению полного давления за компрессором низкого давления Р*в и измеренному значению полной температуры воздуха на входе в двигатель Твх*.

Контролируют состояние двигателя по отклонению тяги Rn.p от ее эталонного значения, соответствующего данному ТРДДсм до начала эксплуатации, которое определяют по номограммам или математической модели двигателя.

Параметр Rcn.p учитывает идеальную тягу реактивного сопла, соответствующую полному расширению в нем выхлопной струи до атмосферного давления, что позволяет расширить возможность диагностики состояния ТРДДсм на всех режимах его работы.

Параметр в виде разницы Rn.p и ее эталонного значением, соответствующего данному двигателю до начала эксплуатации, характеризует степень ухудшения характеристик данного ТРДДсм с наработкой, и его учет позволяет расширить возможность диагностики состояния ТРДДсм.

Изобретение иллюстрируется рисунком, на котором схематично представлена система для реализации способа.

Система для диагностики ТРДДсм 1 как объекта контроля на летательном аппарате 10 включает датчик 2 скорости полета летательного аппарата (VП), характеризующей скорость набегающего на вход в двигатель потока воздуха, датчик 3 частоты вращения (nв), характеризующей частоту вращения вала низкого давления, датчик 4 давления (РH), характеризующего статическое давление атмосферного воздуха, датчик 5 температуры (Твх*), характеризующей полную температуру воздуха на входе в двигатель, датчики 6 и 7 давления (Р*в и Р*т), характеризующего полное давление за компрессором низкого давления и полное давление за турбиной соответственно.

Система включает также датчик 8 положения створок реактивного сопла, характеризующего площадь критического сечения реактивного сопла (Fкр), программный блок 9 контроля тяги и регистрирующий прибор - индикатор 11, связанный с выходом программного блока 9.

Программный блок 9 выполнен с возможностью определять условную тягу Fcp реактивного сопла, соответствующую полному расширению в нем выхлопной струи до атмосферного давления, и условную тягу двигателя, соответствующую полному расширению выхлопной струи в реактивном сопле до атмосферного давления в виде функции Rn.p=f(Rcn.p, nB, Vn, P*B, T*вх), учитывающей входной импульс GВVП, где GВ - расход воздуха на входе в двигатель, VП - скорость полета летательного аппарата.

Индикатор 11 отображает отклонение полученной величины от эталонной, соответствующей данному двигателю до начала эксплуатации и вычисленной, например, по номограммам или математической модели двигателя.

Изобретение позволяет существенно расширить функциональные возможности диагностики состояния турбореактивного двухконтурного двигателя со смешением потоков (ТРДДсм).

Изобретение может быть использовано в системах диагностики турбореактивного двухконтурного двигателя со смешением потоков в условиях эксплуатации.

Способ диагностики турбореактивного двухконтурного двигателя со смешением потоков (ТРДДсм), включающий измерение полетной информации, ее обработку и контроль тяги для диагностики ТРДДсм, отличающийся тем, что замеряют скорость полета летательного аппарата (Vп), характеризующую скорость набегающего на вход в двигатель потока воздуха, частоту вращения (nв) вала низкого давления, статическое давление (Рн) атмосферного воздуха, полную температуру (Tвх*) воздуха на входе в двигатель, полное давление за компрессором низкого давления (Р*в), полное давление за турбиной (Р*т), положение створок реактивного сопла, характеризующее площадь критического сечения реактивного сопла (Fкр), по замерам определяют величину Rп.p идеальной тяги двигателя как Rп.p=Rcп.p-GвVп, где Rcп.p - условная тяга реактивного сопла, соответствующая полному расширению в нем выхлопной струи до атмосферного давления, Gв - расход воздуха на входе в двигатель, и контролируют тягу двигателя по отклонению Rп.p от эталонного значения, соответствующего тяге данного ТРДДсм до начала эксплуатации, причем условную тягу Rcп.p определяют в соответствии с алгоритмом следующим образом:
- определяют параметр , пропорциональный полному давлению на входе в реактивное сопло как где - отношение значений площади на входе в камеру смешения из первого и второго контура соответственно,
- определяют условное значение приведенной скорости λсп.р в выходном сечении реактивного сопла, соответствующее полному расширению в нем выхлопной струи до атмосферного давления по функции, обратной газодинамической функции π(λ), по предварительно вычисленному параметру, характеризующему располагаемый перепад давлений в реактивном сопле
- определяют условную площадь Fcп.p выходного сечения сопла, соответствующую полному расширению выхлопной струи до атмосферного давления
определяют условную тягу реактивного сопла, соответствующую полному расширению в нем выхлопной струи до атмосферного давления
с учетом входного импульса GвVп определяют величину идеальной тяги двигателя, соответствующей полному расширению выхлопной струи в реактивном сопле до атмосферного давления Rп.p=Rcп.p-GвVп, где q(λ), r(λ) - газодинамические функции,
Fкр - площадь критического сечения реактивного сопла;
λсп.р - приведенная скорость газа в выходном сечении сопла, соответствующая полному расширению выхлопной струи до атмосферного давления.



 

Похожие патенты:

Изобретение относится к средствам автоматизации финансовой и банковской деятельности. .

Изобретение относится к устройству и способу раздачи лекарств, в частности к устройству и способу раздачи лекарств в пункте оказания помощи. .

Изобретение относится к системам и способам для тестирования и контроля данных о состоянии здоровья. .

Изобретение относится к области обработки данных профилей, ассоциированных с сетевыми службами. .

Изобретение относится к печатной продукции и способу изготовления изготовления печатной продукции, которые в качестве источника новостей для обычных печатных средств информации используют веблоги и содержащиеся в них статьи блогов.

Изобретение относится к средствам категоризации контента. .

Изобретение относится к системам извлечения данных радиочастотной идентификации из совокупности РЧИД устройств в сети РЧИД. .

Изобретение относится к области офтальмологии и предназначено для создания очков, к которым крепятся вспомогательные очки. .

Изобретение относится к оптико-механическим приборам медицинской техники, в частности бинокулярным приборам наблюдения стереоскопического изображения мелкоструктурных объектов в увеличенном масштабе.

Изобретение относится к оптической технике, а именно к конструкциям очков и бинокулярных луп. .

Изобретение относится к агроинженерной экологии и может быть использовано для определения и мониторинга выбросов вредных газов из животноводческих помещений с естественными системами вентиляции

Изобретение относится к системе и способу хранения данных термического пульверизатора с пистолетом для распыления

Изобретение относится к средствам автоматизации учета состояния производственного процесса

Изобретение относится к информационно-измерительной технике и может быть использовано в распределенных системах сбора данных, вырабатываемых контролируемыми объектами, в частности в системах бортовых измерений, АСУ ТП, контрольно-проверочной аппаратуре и т.п

Изобретение относится к области ведения реестра пользователей портала обеспечения законотворческой деятельности
Изобретение относится к средствам для обеспечения идентификации продукции
Наверх