Холодильник и испаритель для такого холодильника

Авторы патента:


Холодильник и испаритель для такого холодильника
Холодильник и испаритель для такого холодильника

 


Владельцы патента RU 2477427:

БСХ БОШ УНД СИМЕНС ХАУСГЕРЕТЕ ГМБХ (DE)

Холодильный аппарат выполнен, по меньшей мере, с одним отсеком для хранения, охлаждаемым испарителем в виде пластины, и одним холодильным контуром, содержащим испаритель в виде пластины. Канал (1) для хладагента испарителя разделен, по меньшей мере, на две ветки (4, 5) трубопровода, которые охлаждают отсек для хранения, включены в холодильный контур параллельно и имеют удаленные друг от друга центры (9, 10) тяжести. Расстояние между центрами (9, 10) тяжести превышает отношение площади поверхности испарителя к длине проложенного по нему канала (1) для хладагента, использование изобретения позволит снизить энергопотребление холодильника. 2 н. и 7 з.п. ф-лы, 2 ил.

 

Область техники

Изобретение относится к холодильному аппарату, по меньшей мере, с одним отсеком для хранения и одним холодильным контуром, содержащим испаритель для охлаждения отсека для хранения, а также к испарителю для такого холодильного аппарата.

Уровень техники

Подобные испарители обычно содержат пластину, на которой петлями уложен трубопровод для хладагента, ведущий от места впуска до места выпуска. Петли, как правило, располагаются с равными промежутками, последовательно в направлении монтажа испарителя сверху вниз. То есть, когда в начале фазы охлаждения хладагент поступает в испаритель, жидкий хладагент и, вместе с ним, охлаждающее действие постепенно распространяются сверху вниз по всей поверхности испарителя. До момента, когда вся поверхность испарителя будет равномерно охлаждена, может пройти несколько минут. Этот эффект тем сильнее, чем больше площадь пластины испарителя и/или длина его трубопровода, и чем интенсивнее теплообмен на поверхности испарителя. Вследствие этого в начале каждой рабочей фазы холодильного контура эффективный теплообмен происходит только в одной части поверхности испарителя. В результате увеличивается время работы холодильного контура, необходимое для отвода заданного количества тепла из отсека для хранения, а также энергопотребление холодильного аппарата.

Раскрытие изобретения

Задачей предлагаемого изобретения является разработка холодильного аппарата со сниженным энергопотреблением и испарителя, подходящего для такого холодильного аппарата.

Задача решается, с одной стороны, за счет того, что в холодильном аппарате, по меньшей мере, с одним отсеком для хранения и одним холодильным контуром, содержащим испаритель, на испарителе сформировано, по меньшей мере, две ветки трубопровода, охлаждающие отсек для хранения. Эти ветки включены в холодильный контур параллельно и имеют разнесенные центры тяжести. Благодаря параллельному включению в обе ветки трубопровода при включении холодильного контура одновременно начинает поступать жидкий хладагент; так как их центры тяжести удалены друг от друга, охлаждающее действие концентрируется, соответственно, в различных областях испарителя. Таким образом, после начала фазы охлаждения достигается более равномерное распределение холода по испарителю, то есть сокращается временной промежуток между началом фазы охлаждения и равномерным охлаждением всего испарителя.

Этот эффект тем значительнее, чем дальше друг от друга расположены центры тяжести веток трубопровода; поэтому расстояние между центрами тяжести должно, по меньшей мере, превышать отношение поверхности испарителя к длине проложенного по нему трубопровода для хладагента. В особом случае ветки трубопровода могут быть разделены за счет того, что на испарителе может быть протянута граница между областями, охлаждаемыми одной и другой ветками трубопровода, длина которой (границы) не превышает сумму длин кромок испарителя.

Кроме того, целесообразна схема, согласно которой охлаждающее действие сначала развивается в удаленных друг от друга областях испарителя, а затем распространяется оттуда по всей поверхности испарителя. Для этого ветки трубопровода рациональным образом располагаются так, чтобы, по меньшей мере, на одной из веток длина трубопровода между начальной точкой ветки трубопровода (впуском) и точкой этой ветки, максимально удаленной от центра испарителя, была меньше, чем длина трубопровода между точкой, максимально удаленной от центра испарителя, и конечной точкой этой же ветки трубопровода (выпуском).

Для обеспечения равномерного распределения холода по веткам трубопровода целесообразно включение перед этими ветками трубопровода общей дроссельной заслонки. Таким образом, возможное рассеянное гидравлическое сопротивление дроссельной заслонки, обусловленное производственным процессом, не может повлиять на распределение хладагента по веткам трубопровода.

Разветвление, образующее впуск веток трубопровода, предпочтительно располагается на самой пластине испарителя. Таким образом, к пластине испарителя необходимо присоединить только одну подводку, чтобы подать хладагент во все ветки трубопровода.

Соответственно, место слияния, образующее выпуск веток трубопровода и предназначенное для отвода хладагента, целесообразно находится также на пластине испарителя.

В целях равномерного распределения доступной охлаждающей мощности по веткам трубопровода эти ветки предпочтительно имеют одинаковое гидравлическое сопротивление. Нет необходимости в том, чтобы все ветки трубопровода имели одинаковую длину или одинаковое сечение, однако в целях выравнивания гидравлического сопротивления более короткая ветка трубопровода имеет меньшее сечение трубы по сравнению с более длинной веткой. Предпочтительно испаритель в виде пластины установлен в холодильном аппарате вертикально.

Кроме того, задача решается испарителем для холодильного аппарата, на пластине которого расположены ветки трубопровода, включенные параллельно в общий впуск.

Краткое описание чертежей

Прочие признаки и преимущества изобретения вытекают из нижеследующего описания вариантов исполнения с учетом прилагаемых фигур. На фигурах изображено:

Фигура 1: схематичный вид испарителя согласно изобретению для холодильного аппарата с единственным отсеком для хранения.

Фигура 2: второй вариант исполнения испарителя согласно изобретению.

Осуществление изобретения

На фигуре 1 представлен схематичный вид сверху испарителя для холодильного аппарата с единственным отсеком для хранения, например, для холодильника или морозильника. Испаритель известным образом может быть изготовлен специалистом из ровной пластины, на которой в качестве канала 1 для хладагента закреплен трубопровод, или ровной пластины и пластины, в которой выдавлен канал 1 для хладагента. В предлагаемом случае предпочтителен второй вариант, так как облегчается изготовление указанного канала для хладагента, как будет описано в дальнейшем. На впуске, расположенном в левом верхнем углу пластины, всасывающий трубопровод 11, ведущий к компрессору холодильного аппарата, присоединяется к каналу 1 для хладагента. Капилляр 2, проложенный внутри всасывающего трубопровода, плотно вводится в узость канала 1 для хладагента в месте 12 впуска. Испаритель может монтироваться, например, на задней стенке холодильного аппарата, между внутренней полостью и слоем изолирующей пены, ровной пластиной в сторону внутренней полости. Однако изобретение может применяться и на испарителе, расположенном во внутренней полости холодильника и огибающем морозильный отсек.

Ниже по течению от места 12 впуска в канале 1 для хладагента образовано разветвление 3, в котором поток хладагента расходится по двум веткам 4, 5 трубопровода. Ветка 4 трубопровода занимает, в целом, верхнюю половину пластины испарителя и простирается несколькими U-образными петлями до места 6 слияния, где она снова соединяется с веткой 5 трубопровода. Ветка 5 трубопровода простирается от разветвления 3 сначала вдоль кромок пластины испарителя до нижней кромки, где она, образуя петли, также подводится к месту 6 слияния. У обеих веток 4, 5 трубопровода длина трубы между разветвлением 3 и максимально удаленной от центра С пластины точкой 7 или 8 ветки трубопровода значительно меньше расстояния от точки 7 или 8 до места 6 слияния. Благодаря этому, когда в испаритель поступает хладагент, охлаждающее действие быстро развивается в двух удаленных друг от друга местах пластины и распространяется с двух направлений к центру пластины. Таким образом, вся пластина быстро охлаждается.

Расстояние между центрами 9, 10 тяжести веток 4, 5 трубопровода многократно превышает расстояние d между соседними параллельными витками веток 4, 5 трубопровода и, тем самым, значительно превышает отношение площади пластины к общей длине проложенного по ней канала 1 для хладагента.

На фигуре 2 представлен второй вариант исполнения испарителя. В то время как в варианте согласно фигуре 1 можно четко различить верхнюю половину пластины, охлаждаемую в целом веткой 4 трубопровода, и нижнюю половину пластины, охлаждаемую исключительно веткой 5 трубопровода, в варианте исполнения согласно фигуре 2 такое четкое разделение отсутствует. Верхняя половина пластины испарителя здесь также охлаждается в целом только веткой 4 трубопровода, в то время как ветка 5 трубопровода вдоль верхней и правой кромки пластины кратчайшим путем направляется к нижней половине пластины, однако в этой нижней половине ветки 4, 5 трубопровода проходят рядом друг с другом. Принцип действия, тем не менее, аналогичен варианту исполнения согласно фигуре 1. Так как ветка 5 трубопровода достигает нижней половины пластины напрямую, то она с небольшой задержкой после поступления потока хладагента на испаритель начинает охлаждать его нижнюю половину, задолго до того, как жидкий хладагент по ветке 4 трубопровода достигнет нижней половины пластины. Таким образом, и в этом случае охлаждающее действие начинает распространяться с верхней кромки пластины, а вскоре после этого продолжает распространяться снизу по всей поверхности пластины.

Так как ветки 4, 5 трубопровода не на всем протяжении проходят друг рядом с другом, то и в этом варианте центры 9, 10 тяжести веток 4, 5 трубопровода находятся на значительном расстоянии друг от друга.

В то время как в варианте согласно фигуре 1 ветки 4, 5 трубопровода имеют в целом равную длину, в варианте исполнения согласно фигуре 2 ветка 5 трубопровода значительно короче ветки 4. В целях обеспечения равномерного распределения хладагента и, тем самым, холода по двум веткам 4, 5 трубопровода, сечение трубы ветки 5 делается меньше, чем сечение трубы ветки 4. С учетом длины обеих веток 4, 5 сечение может быть выбрано так, чтобы обе ветки 4, 5 имели одинаковое гидравлическое сопротивление. Учитывая тот факт, что петли ветки 5 трубопровода занимают менее половины поверхности пластины, а кроме того, нижняя половина пластины в стационарном режиме работы охлаждается и веткой 4 трубопровода, гидравлическое сопротивление ветки 5 трубопровода может и превышать гидравлическое сопротивление ветки 4 трубопровода.

1. Холодильный аппарат, по меньшей мере, с одним отсеком для хранения, охлаждаемым испарителем в виде пластины, и одним холодильным контуром, содержащим испаритель в виде пластины, отличающийся тем, что канал (1) для хладагента испарителя разделен, по меньшей мере, на две ветки (4, 5) трубопровода, которые охлаждают отсек для хранения, включены в холодильный контур параллельно и имеют удаленные друг от друга центры (9, 10) тяжести, причем расстояние между центрами (9, 10) тяжести превышает отношение площади поверхности испарителя к длине проложенного по нему канала (1) для хладагента.

2. Холодильный аппарат по п.1, отличающийся тем, что, по меньшей мере, на одной из веток (4, 5) длина трубопровода между начальной точкой (3) ветки (4, 5) трубопровода (впуском) и точкой (7, 8) этой ветки (4, 5), максимально удаленной от центра (С) испарителя в виде пластины, меньше, чем длина трубопровода между точкой (7, 8), максимально удаленной от центра испарителя, и конечной точкой (6) этой же ветки (4, 5) трубопровода (выпуском).

3. Холодильный аппарат по п.1, отличающийся тем, что перед ветками (4, 5) трубопровода включена общая дроссельная заслонка (2).

4. Холодильный аппарат по п.1, отличающийся тем, что испаритель в виде пластины содержит разветвление (3), образующее начальную точку (впуск) веток (4, 5) трубопровода.

5. Холодильный аппарат по п.1, отличающийся тем, что испаритель в виде пластины содержит место (6) слияния, образующее конечную точку (выпуск) веток (4, 5) трубопровода.

6. Холодильный аппарат по п.1, отличающийся тем, что ветки (4, 5) трубопровода имеют одинаковое гидравлическое сопротивление.

7. Холодильный аппарат по п.1, отличающийся тем, что сечение более короткой ветки (5) трубопровода меньше сечения более длинной (4) ветки трубопровода.

8. Холодильный аппарат по п.1, отличающийся тем, что испаритель в виде пластины установлен в холодильном аппарате вертикально.

9. Испаритель для холодильного аппарата по одному из предыдущих пунктов, отличающийся тем, что на пластине испарителя расположены ветки (4, 5) трубопровода, параллельно включенные в общее место (12) впуска.



 

Похожие патенты:

Изобретение относится к клапанному узлу (1), содержащему впускное отверстие, распределитель и выпускную часть, имеющую по меньшей мере два выпускных отверстия. .

Изобретение относится к области теплоэнергетики и может быть использовано в охлаждающих элементах радиаторов и охладителей. .

Изобретение относится к сельскому хозяйству. .

Изобретение относится к области сельского хозяйства. .

Изобретение относится к области сельского хозяйства. .

Изобретение относится к сельскому хозяйству. .

Изобретение относится к холодильным установкам. .
Изобретение относится к бумагоподобному композиционному материалу, который может быть использован для изготовления капиллярно-пористых деталей систем косвенно-испарительного охлаждения воздуха.

Изобретение относится к холодильному аппарату с системой циркуляции хладагента, которая содержит компрессор хладагента, конденсатор, испаритель с испарительной пластиной для передачи тепловой энергии из холодильного отделения холодильного аппарата в систему циркуляции хладагента и температурный датчик для определения температуры испарительной пластины через сенсорную поверхность температурного датчика, который посредством держателя соединен с испарительной пластиной

Изобретение относится к испарительным устройствам для нагрева, перегрева водного раствора мочевины с целью получения таким путем в конечном итоге газообразного аммиака, который можно подавать в систему выпуска отработавших газов

Изобретение относится к криогенной технике, а именно к испарителям криогенной жидкости, и может быть использовано в газификационных установках. Испаритель криогенной жидкости содержит корпус с камерами подвода и выдачи хладагента, теплообменные элементы, содержащие камеру жидкого хладагента и центральную трубу, снабженную эжектором. Камеры подвода и выдачи хладагента разделены перегородкой с отверстием, теплообменные элементы установлены в перегородке и сообщаются с центральной трубой, центральная труба установлена в отверстие в перегородке с зазором, а эжектор имеет вставку, регулирующую расход газообразного хладагента из камер жидкого хладагента. Испаритель криогенной жидкости снабжен рекуператором. Испаритель позволяет увеличить эффективность использования хладагента за счет повторного использования хладагента и организации двухступенчатого охлаждения рабочего вещества. Отсутствие какого-либо дополнительного источника тепла для испарения жидкого хладагента и отсутствие в конструкции массивных теплообменных насадок дополнительно увеличивает эффективность работы испарителя и снижает гидравлическое сопротивление испарителя. 1 з.п. ф-лы, 3 ил.

Изобретение относится к холодильному аппарату, в котором установлен испаритель с антиобледенительным устройством (4), предназначенным для устранения обледенения на трубке (3) для хладагента и/или теплообменнике (2), причем указанный теплообменник (2) содержит трубку (3) для хладагента с точкой (3.3) расширения, имеющей увеличивающийся диаметр, причем с теплообменником (2) соединен, по меньшей мере, один патрубок (3.1) малого диаметра и один патрубок (3.2) большого диаметра. Свойством изобретения является то, что, по сравнению с передним участком трубки (3), указанное антиобледенительное устройство (4) на участке до впускного элемента (3.2.1) теплообменника приближено к патрубку (3.2) большого диаметра и, предпочтительно, к точке (3.3) расширения. Использование изобретения позволит обеспечить эффективное устранение обледенение испарителя. 7 з.п. ф-лы, 3 ил.

Изобретение относится к холодильному аппарату (1), который содержит внешний корпус (2), по меньшей мере, один холодильный отсек (3) для хранения охлаждаемых продуктов (5) и холодильный контур (6) с испарителем (4) для охлаждения холодильного отсека (3). Испаритель (4) содержит первый элемент (7) испарителя и второй элемент (8) испарителя, причем первый элемент (7) испарителя расположен снаружи холодильного отсека (3), а второй элемент (8) испарителя расположен внутри холодильного отсека (3). Первый элемент (7) испарителя выполнен в виде спирального испарителя, окружает холодильный отсек (3) и содержит проводящие хладагент, трубопроводы, которые намотаны вокруг холодильного отсека и состоят в теплопроводящем контакте с ним. Первый элемент (7) испарителя и второй элемент (8) испарителя включены последовательно, при этом хладагент, циркулирующий в холодильном контуре (6) холодильного аппарата, сначала протекает через один элемент испарителя, а затем через другой элемент испарителя, или включены параллельно. Техническим результатом является повышение КПД, а также охлаждающей или замораживающей способности. 5 з.п. ф-лы, 1 ил.

Изобретение относится к холодильному контуру. Сущность изобретения: холодильный контур (3) для бытовой техники, в частности бытовой техники для охлаждения, такой как холодильники и морозильники, включает первый теплообменник (5), выполненный с возможностью гидравлического сообщения с компрессором (4), обеспечивающий охлаждение проходящей через него охлаждающей текучей среды и ее переход по существу в жидкую фазу. Также он включает второй теплообменник (7), гидравлически сообщающийся с указанным первым теплообменником (5) и действующий в пространстве (2), подлежащем охлаждению. Второй теплообменник (7) обеспечивает частичный переход охлаждающей текучей среды в газообразную фазу с поглощением тепла, посредством чего охлаждается указанное пространство (2). Охлаждающая текучая среда циркулирует от первого теплообменника (5) ко второму теплообменнику (7) и, таким образом, поступает в компрессор (4) для следующего цикла. Капиллярное устройство (6), расположенное между первым теплообменником (5) и вторым (7) теплообменником, для расширения указанной охлаждающей текучей среды. Один из указанных первого теплообменника (5) и второго теплообменника (7) включает гибкую трубу (9), причем участок указанной трубы (9) имеет такой гофрированный профиль, который придает ей гибкость, и указанная труба (9) в сечении включает слой (100) из пластмассы и слой (101), включающий металлический материал. Металлический слой (101) соединен со слоем пластмассы, а указанный металлический материал выполнен с возможностью образования барьера против влаги. Указанный слой (100) из пластмассы представляет собой слой, конструкционное назначение которого состоит в сохранении формы трубы (9), и предпочтительно изготовлен из термопластичного материала. Металлический слой (101) является гибким, не выполняет функции опорной конструкции и включает однослойную металлическую пленку или многослойную пленку, включающую одну или несколько металлических пленок, соединенных или не соединенных со слоем материала, выполненного с возможностью сохранения формы. Техническим результатом изобретения является повышение эффективности теплообмена и обеспечение водонепроницаемости. 3 н. и 13 з.п. ф-лы, 27 ил., 1 табл.

Группа изобретений относится к холодильному аппарату и к испарителю, используемому в таком холодильном аппарате. Испаритель для холодильного аппарата содержит трубу, по которой проходит хладагент. Указанный испаритель содержит по меньшей мере одну несущую пластину, на которой закреплена труба. Между трубой и несущей пластиной расположен теплораспределительный слой. Теплораспределительный слой является графитосодержащим. Также описан холодильный аппарат. Группа изобретений направлена на обеспечение хорошего теплообмена между трубой и несущей пластиной, повышение экономичности. 2 н. и 13 з.п. ф-лы, 6 ил.

Группа изобретений относится к холодильной технике. Испаритель для холодильного аппарата включает в себя трубу (11) для хладагента, по меньшей мере, одну несущую пластину (7), на которой закреплена труба (11), и расположенную между трубой (11) и несущей пластиной (7) теплораспределительную пластину (12), имеющую выступы (18), которыми зажимается труба (11). Теплораспределительная пластина (12; 21) образована из пластмассы с добавкой из теплопроводного материала и имеет канавку, прилегающую к трубе (11; 23, 24) с геометрическим замыканием. Техническим результатом является улучшение теплопередачи. 3 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к области теплотехники и может быть использовано в теплообменных аппаратах испарительного типа. усовершенствованный змеевик в сборе включает в себя предпочтительно змеевидные трубы. Эти трубы имеют в основном эллиптическое поперечное сечение с внешними ребрами (20), сформированными на наружной поверхности труб. Ребра разнесены друг от друга с интервалом, соответствующим по существу от 1,5 до по существу 3,5 ребер на дюйм (2,54 см), вдоль продольной оси (13) труб, причем ребра имеют высоту от внешней поверхности труб, составляющую по существу от 23,8% до по существу 36% от номинального внешнего диаметра трубы, и имеют толщину, составляющую по существу от 0,007 дюйма (0,018 см) до по существу 0,020 дюйма (0,051 см). Трубы разнесены с межосевым интервалом (DH) в основном по горизонтали, который перпендикулярен продольной оси труб и составляет от по существу 109% до по существу 125% от номинального внешнего диаметра трубы, и в основном с вертикальным межосевым интервалом (DV), составляющим по существу от 100% до приблизительно 131% от номинального внешнего диаметра трубы. Технический результат - повышение производительности испарительного теплообменника. 34 з.п. ф-лы, 16 ил., 1 табл.

Группа изобретений относится к эксплуатации холодильной системы, где холодильная система содержит испаритель, выполненный с возможностью расположения в тепловом контакте с охлаждаемой камерой, компрессор, конденсатор, расширительный элемент и каналы. Каналы соединяют испаритель, компрессор, конденсатор и расширительный элемент. Способ включает определение мгновенного требуемого количества холода для камеры на основе перепада между заданной температурой и фактической температурой, усредненной по времени. Далее формирование переменной величины потребности относительно мгновенного требуемого количества холода. Переменная величина потребности представляет собой отношение продолжительности включенного состояния компрессора к продолжительности выключенного состояния компрессора. Фиксирование первого промежутка времени, в течение которого компрессор включен, и второго промежутка времени, в течение которого компрессор выключен на основе переменной величины потребности. Включение и выключение компрессора в соответствии с первым и вторым промежутком времени. Также холодильная система содержит первый запорный клапан, расположенный в канале, проходящем между конденсатором и испарителем, при этом способ включает закрытие первого запорного клапана в связи с выключением компрессора и открытие первого запорного клапана в связи с включением компрессора. Технический результат заключается в дополнительном снижении потребления энергии в холодильных системах. 2 н. и 35 з.п. ф-лы, 5 ил.
Наверх