Устройство для возбуждения сейсмических колебаний

Изобретение относится к области геофизики и может быть использовано в процессе сейсмической разведки полезных ископаемых. Заявлено устройство для возбуждения сейсмических колебаний, включающее шток-поршень и закрепленную на его нижнем торце плату. В теле шток-поршня выполнен осевой сквозной канал, а поршень шток-поршня размещен в корпусе гидроцилиндра, оборудованного верхней крышкой и отделенного от расположенной ниже пневматической камеры, в которой размещена плата, перегородкой. Плата установлена с возможностью взаимодействия своим нижним торцом, образуя пневмозахватное устройство, с верхним торцом цилиндрического ступенчатого волновода. В теле шток-поршня, в части, прилегающей к плате, выполнено местное расширение сквозного осевого канала, образующее цилиндрическую полость, соединенную радиальными каналами с пневматической камерой. В осевом канале размещен шток, на нижнем торце которого закреплен уплотнительный элемент, выполненный с возможностью взаимодействия с седлом, выполненным на нижнем торце цилиндрической полости. Верхний конец штока размещен в жестко закрепленном на верхнем торце шток-поршня и образованного тарельчатыми основанием и крышкой клапанном корпусе и оборудован подпружиненной относительно тарельчатого основания тарелкой. Технический результат: сокращение и стабилизация времени от момента подачи сигнала управления до момента динамического нагружения грунтового полупространства. 1 з.п. ф-лы, 2 ил.

 

Предлагаемое устройство относится к области сейсмической разведки месторождений полезных ископаемых, а точнее - к возбуждению сейсмических волн в грунтовых средах при проведении сейсморазведочных работ.

Известно устройство для возбуждения сейсмических колебаний (см. Шнеерсон М.Б. и др. Наземная сейсморазведка с невзрывными источниками колебаний. - М.: Недра, с.85), включающее гильзу со штоком, размещенным в центральном канале поршня, образующего с гильзой рабочую камеру и демпферную полость. Импульс давления в рабочей камере устройства формируется за счет выхлопа в нее порции воздуха, сжатого до давления 15,0-16,0 МПа. В результате в рабочей камере давление воздуха мгновенно поднимается от 0 до 3,5-4,0 МПа. Гильза при этом воздействует на грунт, генерируя в нем сейсмическую волну, а поршень при этом откатывается вверх. Недостатком этого устройства являются значительные эксплуатационные затраты, связанные с использованием имеющего низкий КПД и дорогостоящего компрессора высокого давления для образования рабочего тела - сжатого воздуха, который после реализации силового импульса полностью выбрасывается в атмосферу.

Указанные недостатки устранены в устройстве для возбуждения сейсмических колебаний (см. а.с. SU №1728820 A1, 23.04.1992), которое может быть принято в качестве прототипа. Устройство включает шток-поршень и закрепленную на его нижнем торце плату, при этом в теле шток-поршня выполнен осевой сквозной канал, а поршень шток-поршня размещен в корпусе гидроцилиндра, оборудованного верхней крышкой и отделенного от расположенной ниже пневматической камеры, в которой размещена плата, перегородкой; плата установлена с возможностью взаимодействия своим нижним торцом, образуя пневмозахватное устройство, с верхним торцом ступенчатого цилиндрического волновода, верхняя большего диаметра ступень которого размещена в пневматической камере, а нижняя ступень, оборудованная на своем нижнем торце рабочей плитой, образует с нижней крышкой пневматической камеры демпферную полость.

Недостатком этого устройства для возбуждения сейсмических колебаний является значительная продолжительность интервала времени от подачи электрического сигнала на разгерметизацию пневмозахватного устройства до момента динамического воздействия на грунт. При этом не достигается необходимая стабильность этого интервала, что не обеспечивает синхронность работы и не позволяет проведение работ в режиме группирования источников сейсмических колебаний и в режиме накопления сигналов. А это существенно снижает эффективность работ и исключает возможность применения этого устройства для изучения разрезов на требуемых глубинах. Большая длительность указанного выше интервала времени объясняется тем, что для разгерметизации пневмозахватного устройства (пневмозамка) здесь используется порция сжатого воздуха, подаваемая через клапан из пневмосистемы устройства. При этом длина и объем канала подачи воздуха в пневмозамок (включая и длину осевого сквозного канала в теле шток-поршня) велики и заполнение их сжатым воздухом из пневмосистемы весьма продолжительно.

Целью изобретения является повышение эффективности устройства для возбуждения сейсмических колебаний за счет повышения синхронности работы и производительности.

Цель достигается тем, что в устройстве для возбуждения сейсмических колебаний в теле шток-поршня, в части, прилегающей к плате, выполнено местное расширение сквозного осевого канала, образующее цилиндрическую полость, соединенную радиальными каналами с пневматической камерой, в осевом канале размещен шток, на нижнем торце которого закреплен уплотнительный элемент, выполненный с возможностью взаимодействия с седлом, выполненным на нижнем торце цилиндрической полости, верхний конец штока размещен в жестко закрепленном на верхнем торце шток-поршня и образованным тарельчатым основанием и крышкой клапанном корпусе и оборудован подпружиненной относительно тарельчатого основания тарелкой с защемленной по периметру между тарельчатым основанием и крышкой мембраной, а поршень шток-поршня выполнен ступенчатым, причем ступень меньшего диаметра выполнена с возможностью осевого перемещения в верхней крышке.

Сущность предлагаемого изобретения поясняется чертежом, где на фиг.1 показан общий вид устройства перед производством рабочего цикла, а на фиг.2 - вид устройства перед выполнением операции разгерметизации пневмозамка и последующего динамического воздействия на грунт.

Устройство включает шток-поршень 1, закрепленную на нижнем его торце плату 2, при этом в теле шток-поршня 1 по всей его длине выполнен осевой канал 3, имеющий в части, прилегающей к плате 2, местное расширение, образующее цилиндрическую полость 4, а поршень шток-поршня 1 размещен в корпусе гидроцилиндра 5, оборудованного верхней крышкой 6 и отделенного от расположенной ниже пневматической камеры 7, в которой размещена плата 2, перегородкой 8; плата 2 взаимодействует своим нижним торцом, образуя пневмозахватное устройство со снабженным уплотнительным кольцом 9 верхним торцом цилиндрического ступенчатого волновода 10, при этом его верхняя, большего диаметра, ступень 11 размещена в пневматической камере 7, а нижняя ступень 12, оборудованная на своем нижнем торце рабочей плитой 13, образует с нижней крышкой 14 пневматической камеры 7 демпферную полость 15; цилиндрическая полость 4 соединена радиальными каналами 16 с пневматической камерой 7, в осевом канале 3 размещен шток 17, на нижнем торце которого закреплен торцовый уплотнительный элемент 18, выполненный с возможностью взаимодействия с седлом 19 на нижнем торце цилиндрической полости 4, а верхний конец штока 17 размещен в жестко закрепленном на верхнем торце шток-поршня и образованным тарельчатыми основанием 20 и крышкой 21 клапанный корпус, и оборудован подпружиненной относительно основания 20 тарелкой 22 с защемленной по периметру между тарельчатыми основанием 19 и крышкой 21 мембраной 23. В клапанном корпусе размещена пружина 24, а для подачи воздуха и рабочей жидкости устройство оборудовано каналами 25, 26, 27, 28, 29 и 30.

Устройство работает следующим образом. Перед производством работ пневматическая камера 7 и демпферная полость 15 по каналам 26 и 27 соответственно заполняются воздухом до давления 1,0 (10) ÷ 1,5 (15) МПа (атм). После установки устройства на грунт сжатый воздух по каналу 25 из ресивера через управляемый клапан (на чертеже не показан) подается в полость, образованную тарельчатой крышкой 21 и мембраной 23. При этом, сжимая пружину 24, шток 17 перемещается вниз, и уплотнительный элемент 18 садится на седло 19. Затем нижняя полость гидроцилиндра 5 через канал 28 соединяется со сливом, а в верхнюю полость гидроцилиндра 5 по каналу 29 подается рабочая жидкость, при этом шток-поршень 1 с платой 2 опускаются вниз до посадки платы 2 на уплотнительное кольцо 9 на торце волновода 10. После чего воздух из герметичной относительно внутреннего объема пневматической камеры 7 полости между торцами платы 2 и волновода 10 выпускается через управляемый клапан (на чертеже не показан) по каналу 30 в шток-поршне 1 в атмосферу, формируя пневмозамок с образованием жесткой цепочки: шток-поршень 1 - плата 2 - волновод 10. Затем верхняя полость гидроцилиндра 5 соединяется со сливом, а рабочая жидкость под давлением по каналу 28 подается в нижнюю полость гидроцилиндра 5, и шток-поршень 1 с платой 2 и волноводом 10 перемещаются в верхнее положение. При этом вследствие того, что диаметр шток-поршня 1 намного меньше диаметра верхней ступени 11 волновода 10, давление в пневматической камере 7 резко возрастает. При достижении шток-поршня 1 с платой 2 и волноводом 10 крайнего верхнего положения (см. фиг.2) канал 30 посредством управляемого клапана герметизируется, а сжатый воздух из полости между тарельчатой крышкой 21 и мембраной 23 через управляемый клапан сбрасывается в атмосферу, и шток 17 под воздействием пружины 24 перемещается вверх, воздух под высоким давлением через радиальные каналы 16 и цилиндрическую полость 4 поступает в пневмозамок, разгерметизируя его. Сжатый воздух из пневматической камеры 7 воздействует на торец волновода 10, который через рабочую плиту 13 осуществляет динамическое воздействие на грунт, генерируя в нем сейсмическую волну. Одновременно под действием сжатого воздуха осуществляется откат вверх системы: шток-поршень 1 - плата 2 - пневмокамера 7 - гидроцилиндр 5. После того, как силы действия сжатого воздуха в пневматической камере 7 и демпферной камере 15 на волновод 10 уравняются, волновод 10 с рабочей плитой 13 отрывается от поверхности грунта и некоторое время двигаются совместно с остальными деталями устройства вверх. После отката устройство плавно с помощью специальной подвески (на чертеже не показана) опускается на грунт, и рабочий цикл может быть повторен с момента подачи рабочей жидкости в верхнюю полость гидроцилиндра 5.

Вследствие небольшого объема полости управления между тарельчатой крышкой 20 и мембраной 23, небольшой величины хода штока 17 и незначительной длины каналов перетекания сжатого воздуха из пневматической камеры 7 в пневмозамок между торцами платы 2 и волновода 10 время разгерметизации невелико. Это обеспечивает постоянство интервала времени от подачи сигнала на разгерметизацию пневмозамка до момента динамического нагружения грунта рабочей плитой 13, то есть обеспечивает синхронность работы устройства. Ступенчатая форма поршня шток-поршня 1 позволяет уменьшить время рабочего цикла устройства, а значит и повысить производительность работ. Это обеспечивается тем, что на перемещение шток-поршня 1 с платой 2 вниз в пневматическую камеру 7 требуется значительно меньшее усилие, чем на их обратный ход, при котором давление воздуха в пневматической камере 7 резко возрастает. При этом возрастает и сопротивление перемещению шток-поршня 1. В связи с этим при одной и той же величине номинального давления рабочей жидкости расход ее на операцию опускания шток-поршня 1 может быть снижен, а время этой операции, а значит и время рабочего цикла, значительно снижено.

1. Устройство для возбуждения сейсмических колебаний, включающее шток-поршень и закрепленную на его нижнем торце плату, при этом в теле шток-поршня выполнен осевой сквозной канал, а поршень шток-поршня размещен в корпусе гидроцилиндра, оборудованного верхней крышкой и отделенного от расположенной ниже пневматической камеры, в которой размещена плата, перегородкой, плата установлена с возможностью взаимодействия своим нижним торцом, образуя пневмозахватное устройство, с верхним торцом цилиндрического ступенчатого волновода, верхняя большего диаметра ступень которого размещена в пневматической камере, а нижняя ступень, оборудованная на своем нижнем торце рабочей плитой, образует с нижней крышкой пневматической камеры демпферную полость, отличающееся тем, что в теле шток-поршня, в части, прилегающей к плате, выполнено местное расширение сквозного осевого канала, образующее цилиндрическую полость, соединенную радиальными каналами с пневматической камерой, в осевом канале размещен шток, на нижнем торце которого закреплен уплотнительный элемент, выполненный с возможностью взаимодействия с седлом, выполненным на нижнем торце цилиндрической полости, верхний конец штока размещен в жестко закрепленном на верхнем торце шток-поршня и образованного тарельчатыми основанием и крышкой клапанном корпусе и оборудован подпружиненной относительно тарельчатого основания тарелкой с защемленной по периметру между тарельчатым основанием и крышкой мембраной.

2. Устройство для возбуждения сейсмических колебаний по п.1, отличающееся тем, что поршень шток-поршня выполнен ступенчатым, причем ступень меньшего диаметра выполнена с возможностью осевого перемещения в верхней крышке.



 

Похожие патенты:

Изобретение относится к способам и устройствам для возбуждения импульсов в жидкозаполненных скважинах и может быть использовано в прикладной геофизике для разведки и доразведки полезных ископаемых и очистки призабойной зоны.

Изобретение относится к геофизической технике, а именно к вибрационным источникам сейсмических колебаний, погружаемым в скважину или другую выработку в геологической среде.

Изобретение относится к устройствам для возбуждения импульсов в жидкой среде и может быть использовано в прикладной геофизике для разведки и доразведки полезных ископаемых.

Изобретение относится к невзрывным источникам сейсмических импульсов. .

Изобретение относится к геофизике, а именно к скважинным источникам сейсмических колебаний. .

Изобретение относится к невзрывным источникам сейсмических сигналов и предназначено для возбуждения продольных волн в грунте. .

Изобретение относится к сейсмической разведке, в частности к электродинамическим источникам сейсмических колебаний. .

Изобретение относится к области геофизики и может быть использовано при сейсмической разведке месторождений полезных ископаемых

Использование: для создания импульса ударной волны на больших глубинах моря и в скважинах. Источник в скважинах в процессе их бурения во время перерывов используется для выделения объектов в области, расположенной впереди и вокруг бурящегося ствола скважины при прогнозном обращенном ВСП или при межскважинном просвечивании. Устройство содержит: полый корпус, во внутренней двухступенчатой проточке которого с возможностью возвратно-поступательного движения установлен с уплотнениями поршень привода со штоком поршня зачистки имплозивной камеры. К верхнему концу штока поршня привода жестко крепится груз возврата поршня зачистки. На наружной двухступенчатой проточке с возможностью возвратно-поступательного движения установлена с уплотнениями подвижная гильза с поршнем. Внутренняя полость под гильзой заполнена маслом и в верхней своей части через отверстия и проточки связана с подпоршневой полостью поршня привода поршня зачистки. В нижней уменьшенного диаметра части корпуса выполнены продольные окна. Снизу к корпусу на герметичной резьбе жестко крепится гильза камеры, которая снизу закрыта муфтой, соединенной с гильзой на герметичной резьбе. В осевое отверстие муфты установлен обратный клапан, препятствующий попаданию жидкости в камеру. К муфте снизу жестко крепится нижний груз, по форме обеспечивающий вертикальное положение оси камеры. Подвижная гильза сверху жестко крепится к отсеку с сейсмическим приемником. Отсек через кабельный наконечник крепится к грузонесущему кабелю. Поршень зачистки с возможностью возвратно-поступательного движения уплотнен в гильзе камеры и сверху жестко закреплен с уплотнением к полому ползуну, который свободно вставлен и уплотнен в отверстии хвостовика, жестко закрепленного и уплотненного на штоке и ограниченого в осевом перемещении нижним буртом хвостовика. Внутри камеры под поршнем зачистки свободно с большим радиальным зазором установлен боек, который выполнен с внутренней проточкой в осевом отверстии, которая имеет возможность взаимодействовать с несколькими пружинными зацепами, жестко закрепленными в нижней части поршня зачистки. Окна камеры находятся в открытом положении, когда поршень зачистки находится в крайнем верхнем положении. Рабочие площади поршня привода поршня зачистки и подвижной гильзы с поршнем подобраны так, что давление в масляной полости при натяжении кабеля создает усилие на поршне зачистки, превышающее усилие на нем от гидростатического давления. По этой причине при натяжении кабеля при помощи лебедки в первый момент происходит зачистка камеры, потом открытие окон и гидравлический удар жидкости и бойка по дну муфты и только потом подъем устройства над забоем. При постановке устройства на забой и появлении слабины в кабеле поршень зачистки под действием груза возврата опускается в крайнее нижнее положение, где пружинными захватами соединяется с бойком. В отсеке установлен сейсмический приемник, который по первому полученному максимальному сигналу управляет пускам сейсмостанции и передает в дальнейшем на станцию полученные им параметры отраженных волны. Технический результат: достижение многократного повторения сейсмического импульса при строительстве скважин во время перерывов в бурении для проведения прогнозного обращенного ВСП или для межскважинного просвечивания, при которых производятся выделения объектов в области, расположенной впереди и вокруг бурящегося ствола скважины. Это все достигается без дополнительных работ по подъему и спуску колонны с использованием только каротажной лебедки. Для работы источник не требует подачи на него ни электрической энергии, ни гидравлической жидкости. 1 ил.

Настоящее изобретение относится к устройствам для генерации упругих волн для сейсморазведки в морской среде и содержит цилиндр, определяющий ось, в котором расположены ударный и насосный поршни, каждый из которых имеет две соответствующие противоположные стороны по отношению к указанной оси, из которых сторона ударного поршня, расположенная перед насосным поршнем, является первой ударной стороной, а сторона насосного поршня перед ударным поршнем является второй ударной стороной, насосный и ударный поршни скользят в цилиндре в направлении, параллельном оси, и соударяются друг с другом посредством первой и второй ударных сторон, ударный поршень приводится активационным средством, давящим на сторону, противоположную его собственной ударной стороне, при этом цилиндр содержит на одном из его концов камеру, имеющую диаметр, больший, меньший или равный части цилиндра, в которой расположен ударный поршень, при этом в указанной камере может скользить часть насосного поршня, коммуникационные каналы которого соединяют камеру с водой подводной среды. Технический результат заключается в возможности использования устройства на борту автономных подводных аппаратов. 2 н. и 8 з.п. ф-лы, 8 ил.
Наверх