Способ определения термомеханических характеристик материалов с памятью формы



Способ определения термомеханических характеристик материалов с памятью формы

 


Владельцы патента RU 2478928:

Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ" (RU)
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" (RU)

Изобретение относится к способам определения термомеханических характеристик материалов с памятью формы, температур фазовых превращений, величины эффекта памяти формы и может быть использовано в различных областях техники. Сущность: образец с подведенной к нему термопарой устанавливают на опоры стола и подводят к нему датчик линейных перемещений. Образец растягивают при температуре существования мартенситной фазы до заданной деформации, нагревают до температуры существования аустенитной фазы, при этом с помощью датчика линейных перемещений регистрируют изменение длины образца, а при помощи термопары - изменение температуры образца. Получают зависимость деформации образца от температуры, далее методом касательных определяют температуру фазовых превращений и величину восстанавливаемой деформации, которую рассчитывают по формуле. Затем рассчитывают степень восстановления деформации. Технический результат: возможность определения по диаграммам термомеханических характеристик: температур фазовых превращений, величины восстанавливаемой деформации и степени восстановления деформации по сравнению с наведенной. 1 ил.

 

Изобретение относится к способам определения термомеханических характеристик (ТМХ) материалов с памятью формы (МПФ), температур фазовых превращений, величины эффекта памяти формы (ЭПФ) и может быть использовано в различных областях техники.

Известен способ определения термомеханических характеристик, включающий нагружение цилиндрического образца активным кручением, после чего в условиях защемления образца производится нагрев с одновременной регистрацией температуры и реактивных напряжений (В.А.Лихачев и др. Проблемы прочности. №4, 1983 г., стр.72-74). Недостатком этого способа является трудность интерпретации результатов, полученных после реализации сложнодеформированного состояния образца методом кручения, сложная кинематическая схема нагружения образца, наведение деформации только в квазистатическом режиме.

Наиболее близким аналогом является способ определения термомеханических характеристик методом нагружения плоским изгибом и последующей регистрацией деформации при изменении температуры (С.В.Шишкин. Заводская лаборатория. №12, 1993 г., стр.41-48).

К недостаткам наиболее близкого аналога можно отнести:

- трудность реализации схемы нагружения плоским изгибом при динамическом нагружении образцов;

- в ряде случаев необходимо проводить исследования при более простых схемах нагружения типа растяжение-сжатие, чем при описанной в статье сложной схеме нагружения плоским изгибом.

Задачей, на решение которой направлено предлагаемое изобретение, является разработка способа определения термомеханических характеристик МПФ в широком диапазоне скоростей наведения деформации.

Техническим результатом, достигаемым при использовании заявляемого способа, является определение по диаграммам ТМХ: температур фазовых превращений, величины восстанавливаемой деформации, степени восстановления деформации по сравнению с наведенной.

Технический результат достигается тем, что в данном способе определения термомеханических характеристик материалов с памятью формы, заключающемся в том, что образец с прикрепленными к нему термопарой и датчиком линейных перемещений устанавливают в устройство для наведения деформации, далее образец растягивают при температуре существования мартенситной фазы до заданной деформации, нагревают до температуры существования аустенитной фазы, при этом с помощью датчика линейных перемещений регистрируют изменение длины образца, а при помощи термопары - изменение температуры образца, получают зависимость деформации образца от температуры, далее методом касательных определяют температуры фазовых превращений и величину восстанавливаемой деформации εЭПФ, которую рассчитывают по формуле

,

где ΔlЭПФ - разность длины образца до и после деформации, l0 - первоначальная длина образца;

затем рассчитывают степень восстановления деформации ηЭПФ по формуле

,

где εнав - деформация, наведенная образцу.

Предлагаемый способ поясняется следующим образом. Для реализации способа использовались укороченные цилиндрические образцы. Термомеханические характеристики МПФ определяли в диапазоне скоростей деформации при нагреве от -196°С до +200°С.

Для того чтобы обеспечить однородность напряженно-деформированного состояния при динамических скоростях наведения деформации, длина и диаметр укороченных цилиндрических образцов должны удовлетворять соотношениям:

где lp - длина рабочей части образца; dp - диаметр рабочей части образца; σ0,2 - предел текучести материала образца; ρ - плотность материала образца; c0 - скорость звука в материале образца; - скорость деформации; Е - модуль упругости материала образца.

Наведение динамической деформации проводилось на вертикальном копре с падающим грузом. При этом должны выполняться следующие требования: а≤0,1A, m≤0,1M, 2l≥0,1τ·cнак, где а - энергия деформирования образца; А - запасенная кинетическая энергия груза; m - масса наковальни; М - масса груза; l - длина наковальни; снак - скорость звука в материале наковальни; τ - полное время деформирования образца.

Далее образец растягивался при температуре существования мартенситной фазы до определенной деформации ε. После этого он нагревался до температуры существования аустенитной фазы, и при этом с помощью датчика линейных перемещений регистрировалось изменение его длины, а при помощи термопары - его температуры. В результате получилась зависимость деформации образца от температуры, по которой методом касательных определялись различные температуры фазовых превращений и величина восстанавливаемой деформации εЭПФ. Степень восстановления деформации ηЭПФ определялась по указанной выше формуле.

На фигуре 1 приведена типичная диаграмма проявления ЭПФ цилиндрическими образцами сплава марки ТН1К, вырезанными из дисков, подвергнутых ударно-волновому нагружению, и получившими деформацию с квазистатическими скоростями; где 1, 2, 3 - касательные к участкам кривой формовосстановления при проявлении ЭПФ; ΔlЭПФ - изменение длины исследуемого образца при проявлении ЭПФ в диапазоне фазового превращения мартенсит В19'→R-фаза; - характеристические температуры обратного мартенситного превращения мартенсит B19'→R-фаза при проявлении ЭПФ; TR - температура начала образования аустенита из R-фазы.

За счет хорошей чувствительности применяемого нами емкостного деформометра диаграмма «Деформация-Температура» позволяет определять температуры начала и конца всех фазовых превращений.

Достоверность определения этих температур подтверждена результатами независимых рентгенофазовых исследований.

Пример конкретного исполнения. Были испытаны образцы с наружным диаметром 3 и длиной 12 мм, изготовленные из сплава марки ТН1 и сплава Ti-Ni-Nb с эффектом памяти формы. В результате были получены значения температур фазовых превращений, которые представлены в таблице 1.

Таким образом, описанный способ по сравнению с аналогами позволяет определять температуры мартенситно-аустенитных превращений при растяжении и в существенно более широком диапазоне скоростей деформаций, чем в известных аналогах.

Таблица 1
Определенные деформационным методом температуры фазовых превращений сплавов на основе никелида титана с эффектом памяти формы
Марка сплава Температуры фазовых превращений, °С
MsЭПФ МfЭПФ AsЭПФ AfЭПФ Схема превращений
ТН1 11 0 34 72 В2↔В19'
Ti-Ni-Nb -35 -110 40 65
Ms, Mf - температуры начала и окончания прямого мартенситного превращения;
As, Af - температуры начала и окончания обратного мартенситного превращения

Способ определения термомеханических характеристик материалов с памятью формы, заключающийся в том, что образец с подведенной к нему термопарой устанавливают на опоры стола и подводят к нему датчик линейных перемещений, образец растягивают при температуре существования мартенситной фазы до заданной деформации, нагревают до температуры существования аустенитной фазы, при этом с помощью датчика линейных перемещений регистрируют изменение длины образца, а при помощи термопары - изменение температуры образца, получают зависимость деформации образца от температуры, далее методом касательных определяют температуру фазовых превращений и величину восстанавливаемой деформации εЭПФ, которую рассчитывают по формуле: ,
где ΔlЭПФ - разность длины образца до и после деформации;
l0 - первоначальная длина образца,
затем рассчитывают степень восстановления деформации ηЭПФ по формуле: ,
где εнав - деформация, наведенная образцу.



 

Похожие патенты:

Изобретение относится к области испытаний материалов с памятью формы при циклических, тепловых и механических воздействиях. .

Изобретение относится к механическим испытаниям на растяжение материалов, кратковременную ползучесть при растяжении в вакууме при повышенных температурах. .

Изобретение относится к испытательной технике, а именно к устройствам исследования образцов конструкционных материалов (КМ) в среде газообразного окислителя при различных давлениях и температурах.

Изобретение относится к литейному производству, а именно к способам технологического контроля при определении физико-механических свойств стержневых и формовочных смесей.

Изобретение относится к испытательной технике. .
Изобретение относится к области исследования поверхности материалов и может быть использовано для определения границы охрупченного слоя поверхностно стареющих пластмасс.

Изобретение относится к технике испытания конструкционных материалов. .

Изобретение относится к испытательной технике. .

Изобретение относится к области обработки металлов давлением и может быть использовано для определения стойкости пуансонов различных конструкций, применяемых при полугорячей и горячей штамповке.

Изобретение относится к стоматологическому материаловедению и может быть использовано для определения прочности соединения стоматологических восстановительных материалов (стоматологических реставрационных материалов) с твердыми тканями зуба пациента - дентина и эмали, в т.ч

Использование: для определения склонности материала к образованию трещин при повторном нагревании. Сущность заключается в том, что выполняют измерение длины образца; приложение к образцу первого напряжения для достижения заданного удлинения образца; осуществление заданной термообработки образца; приложение к образцу второго напряжения до его разрушения по меньшей мере на две различные части и определение склонности разрушенного образца к образованию трещин при повторном нагревании. Технический результат: обеспечение возможности определения склонности материала к образованию трещин при повторном нагревании, соблюдая реальные режимы термообработки (в показателях времени, температур и напряжения), которые используют во время производства. 2 н. и 13 з.п. ф-лы, 23 ил.

Группа изобретений относится к испытательной технике и может быть использована для динамических испытаний режущей проволоки на разрыв. Согласно изобретению, способ динамических испытаний режущей проволоки включает ее растяжение в испытательной установке, при этом растяжение проводят путем протягивания проволоки через зону температурного нагрева с заданными значениями температуры и усилия натяжения. При этом диапазон задаваемых температур составляет 50÷300°C, а диапазон усилия натяжения составляет 1000÷4500 МПа. Натяжение проволоки осуществляется при ее перемотке, а заданное значение температуры обеспечивается нагревателем. Установка для реализации заявленного способа включает в себя подающий и принимающий регулируемые приводы с катушками, валы с пазами под проволоку, регуляторы натяжения, направляющие валки, нагревательный элемент, регулятор температуры и инфракрасный температурный датчик. При этом усилие натяжения проволоки контролируется балериной и регулируется разностью скоростей вращения подающего и принимающего приводов, а скорость подачи проволоки, проходящей через установку, может регулироваться тормозной системой подающего привода. Технический результат заключается в упрощении конструкции стенда и обеспечении возможности выявления скрытых дефектов в испытываемых образцах режущей проволоки. 2 н. и 6 з.п. ф-лы, 1 ил.

Изобретение относится к области испытательной техники и может быть использовано для проведения механических испытаний материала, в частности испытаний на растяжение и ползучесть образцов в канале ядерного реактора. Устройство содержит узел фиксации образца, узел создания и регулирования нагрузки, узел контроля за изменением параметров образца. Узел создания и регулирования нагрузки выполнен в виде сильфона, жестко связанного вверху с длинной гибкой трубой, которая связана с внешним источником подачи газа, а дно сильфона герметично закрыто. Узел фиксации образца расположен вне сильфона и состоит из двух частей: верхней и нижней, каждая из которых содержит первый и второй элементы для закрепления образца, жестко связанные с соответствующей тягой. Первый элемент для закрепления образца в верхней его части через первую тягу жестко связан с наружной стороной верха сильфона, а второй элемент для закрепления образца в нижней части через вторую тягу жестко связан с наружной стороной дна сильфона. Узел контроля за изменением параметров образца закреплен на тягах между первым и вторым элементом для закрепления образца. Расстояние между дном сильфона и первым элементом для закрепления образца превышает возможное растяжение образца под максимальной нагрузкой. Технический результат: расширение области испытания образцов. 1 з.п. ф-лы, 2 ил.

Изобретение относится к средствам испытаний образцов материалов при сложном нагружении и может быть использовано совместно со стендами для исследования энергообмена при деформировании и разрушении твердых тел. Термонагружатель к стенду для испытания образцов материалов содержит платформу, установленные на ней фрикционный элемент, привод вращения фрикционного элемента, опорную площадку из теплопроводного материала, приспособление для предотвращения вращения опорной площадки относительно платформы и приспособление для взаимного поджатия фрикционного элемента и площадки. Опорная площадка выполнена в виде разрезного кольца для размещения в отверстии образца. Разрезанные части кольца последовательно соединены между собой упругими элементами с возможностью радиального перемещения. Фрикционный элемент выполнен в виде конуса, размещенного внутри опорной площадки с возможностью вращения и осевого перемещения. Технический результат - проведение исследования свойств материалов в новых условиях термомеханического нагружения при подводе термической нагрузки к разным частям объема образца через отверстия. 1 ил.

Изобретение относится к механическим и теплофизическим испытаниям и может быть использовано в процессе испытаний токопроводящих материалов. Заявлена установка для механических и теплофизических испытаний образца из токопроводящего материала при импульсном нагреве, содержащая рабочую вакуумную камеру с токоподводами, цанговыми зажимами для крепления образца, регистрирующую аппаратуру, нагружающий элемент, динамометр. Регистрирующая аппаратура состоит из термопар, приваренных непосредственно на рабочей части образца, датчика перемещений индуктивного коаксиального, закрепленного на средней части образца, и динамометра. Нагружающий элемент выполнен в виде тонкостенной трубы, в которой размещена тяга, жестко соединенная через цанговый зажим с образцом. Другой конец образца также через цанговый зажим соединен с динамометром, установленным шарнирно на имеющейся раме. Токоподводы установлены с возможностью нагрева образца и нагружающего элемента. Регистрирующая аппаратура связана с контрольно-измерительной аппаратурой, которая связана с ПЭВМ. Технический результат - повышение информативности данных испытаний. 3 з.п. ф-лы, 1 ил.

Изобретение относится к средствам испытаний образцов материалов при сложном нагружении и может быть использовано совместно со стендами для исследования энергообмена при деформировании и разрушении твердых тел. Термонагружатель содержит платформу, установленные на ней фрикционный элемент, привод вращения фрикционного элемента, опорную площадку из теплопроводного материала, установленную без возможности вращения относительно фрикционного элемента. Фрикционный элемент выполнен в виде витой цилиндрической пружины, одним концом соединенной с приводом вращения, опорная площадка выполнена в виде трубы для размещения в отверстии образца. Наружный диаметр пружины превышает внутренний диаметр трубы, а в трубе выполнены прорези в соответствии с зонами прогрева. Технический результат: увеличение объема информации путем обеспечения испытаний при неравномерном подводе термической нагрузки к разным частям объема образца через отверстия. 1 ил.

Изобретение относится к испытательной технике и может быть использовано для испытания образцов материалов на прочность. Сущность: установка содержит основание (1), на котором установлены захваты (2, 3) для образца (4), нагружатель (5), связанный с захватами (2, 3), приспособление для нагрева в виде теплопроводного кольца (6) для закрепления на поверхности образца (4), фрикционный элемент (7), предназначенный для взаимодействия с наружной поверхностью кольца (6), приспособление для поджатия фрикционного элемента (7) к кольцу (6) с упругим элементом (8) и регулятором (9) деформации упругого элемента (8), приспособление для перемещения фрикционного элемента (7) относительно кольца (6) с платформой (10) и приводом (11) вращения с валом (12). Кроме того, установка снабжена дополнительными приспособлениями (13) для нагрева в соответствии с количеством зон термического нагружения и мест их расположения по длине образца (4). При этом каждое приспособление (13) для нагрева снабжено шкивом (14), установленным на валу (12) соответствующего привода (11) вращения. Фрикционные элементы (7) выполнены бесконечными гибкими и охватывают шкивы (14) с обеспечением взаимодействия без проскальзывания и кольца (6, 13) с обеспечением взаимодействия с проскальзыванием. Приводы (11) установлены на платформах (10). Упругие элементы (8) и регуляторы (9) деформации упругих элементов (8) соединяют платформы (10) с основанием (1). Нагружатель (5) выполнен в виде пресса для механического нагружения образца (4). Технический результат - расширение объема получаемой информации. 1 ил.

Изобретение относится к средствам испытаний образцов при сложном нагружении и может быть использовано совместно со стендами для исследования энергообмена при деформировании и разрушении твердых тел. Термонагружатель содержит платформу, установленные на ней фрикционный элемент, опорный элемент из теплопроводного материала, устройство для взаимного перемещения фрикционного и опорного элементов с приводом вращения и приспособление для взаимного поджатия фрикционного и опорного элементов. Термонагружатель дополнительно снабжен шкивом, кинематически связанным с приводом вращения. Фрикционный элемент выполнен виде замкнутого гибкого элемента, охватывающего шкив, опорный элемент выполнен в виде набора трубок, предназначенных для размещения внутри образца вдоль линии термического нагружения. Фрикционный элемент размещен в отверстиях трубок опорного элемента. Технический результат: увеличение объема информации путем обеспечения исследований при подводе термической нагрузки к разным частям объема образца вдоль регулируемой изогнутой линии термического нагружения. 1 ил.

Изобретение относится к испытаниям механических свойств металлов и сплавов и может быть использовано для оценки критической температуры хрупкости металла элементов нефтегазового оборудования при эксплуатации в сероводородсодержащих средах, вызывающих охрупчивание металла. Сущность: образцы отбирают из макропробы одного из элементов группы нефтегазового оборудования. Каждый образец подвергают охрупчиванию путем растяжения до одной из остаточной деформации 0, 10, 20, 30, 40%, после чего из каждого образца макропробы вырезают образцы испытаний и измеряют в них твердость при каждой из температур испытаний -60, -40, -20, 0, 10, 20°C, затем для каждой остаточной деформации и каждой температуры испытаний проводят испытания образцов на ударный изгиб. Устанавливают зависимости ударной вязкости от твердости для каждой из температур испытаний. Критическую температуру хрупкости определяют как точку пересечения кривой зависимости ударной вязкости от температуры с нормативным значением ударной вязкости для металла данной группы однотипного нефтегазового оборудования. Зависимости ударной вязкости от твердости описываются формулой KCV=A еB*H, где A и B - экспериментальные коэффициенты для каждого металла и температуры испытаний, H - твердость по Бринелю. Технический результат: повышение точности и надежности результатов, снижение трудоемкости и материалоемкости оценки критической температуры хрупкости металлов и сплавов нефтегазового оборудования при эксплуатации в сероводородсодержащих средах. 3 ил.
Наверх