Трубная заготовка из легированной стали


 


Владельцы патента RU 2480532:

Открытое акционерное общество "Металлургический завод имени А.К. Серова" (RU)

Изобретение относится к металлургии, а именно к производству трубных заготовок диаметром от 90 до 110 мм, 140 мм и 150 мм. Заготовка изготовлена из легированной стали, включающей следующие компоненты, мас.%: углерод 0,16-0,20, марганец 0,50-0,90, кремний 0,17-0,37, хром 2,50-3,00, никель 0,05-0,25, молибден 0,15-0,25, ванадий 0,05-0,10, ниобий 0,03-0,06, титан 0,005-0,030, алюминий 0,020-0,050, медь 0,10-0,30, сера 0,0001-0,010, азот 0,001-0,008, железо и неизбежные примеси остальное. В качестве неизбежных примесей сталь содержит, в мас.%: фосфор 0,001-0,015, водород не более 2 ppm, кислород не более 20 ppm, a для ее компонентов выполняется соотношение: Crэкв.>3,0, где Crэкв.=[Cr]+2[Mo]+5[V]+1,5[Nb]+1,5[Ti]. Заготовка имеет максимальные значения показателей по макроструктуре до 2 баллов по каждому из видов: центральная пористость, точечная неоднородность, ликвационный квадрат, подкорковые пузыри на глубину не более 2 мм, а содержание неметаллических включений по сульфидам, оксидам строчечным, силикатам недеформируемым по среднему баллу - не более 2,5 и по максимальному - не более 3,0, по оксидам точечным, силикатам хрупким по среднему баллу - не более 1,5 и по максимальному - не более 2,0; по силикатам пластичным, нитридам по среднему баллу - не более 1,0 и по максимальному - не более 1,5. Повышается однородность макроструктуры проката и снижается содержание неметаллических включений, приводящие к повышению комплекса потребительских свойств. 4 табл., 1 пр.

 

Изобретение относится к металлургии, в частности к производству трубной заготовки диаметром от 90 до 110 мм, 140 мм и 150 мм.

Наиболее близкой к предлагаемой по качественному и количественному составу стали является трубная заготовка из легированной стали, горячекатаная с заданными параметрами структуры и механических свойств, которая выполнена из стали, включающей углерод 0,16-0,21, марганец 0,70-1,10, кремний 0,17-0,37, хром 0,80-1,10, никель 0,80-1,10, молибден 0,005-0,11, ванадий 0,002-0,015, титан 0,001-0,015, сера 0.20-0.35, кальций 0,001-0,010, азот 0,005-0,015, мышьяк 0,0001-0,03, олово 0,0001-0,2, свинец 0,0001-0,01, цинк 0,0001-0,005, железо и неизбежные примеси - остальное, при выполнении следующих соотношений компонентов: As+Sn+Pb+5×Zn≤0,7; Ca/S≥0,065; C+Mn/6+(Cr+Mo+V)/5+Ni/15≤0,70. При выполнении этих соотношений и с заданным количественным составом прокат имеет пластинчатую ферритовую структуру,

размер действительного зерна 6-9 баллов,

по макроструктуре - центральная часть пористость, точечная неоднородность, ликавционный квадрат, подусадочная ликвация не более 3 баллов по каждому виду,

ликвационные полоски не более 2 баллов,

по неметаллическим включениям - сульфиды, оксиды точечные, оксиды строчечные, силикаты хрупкие, силикаты пластичные, силикаты недеформированные не более 4,0 баллов по каждому виду включений,

механические свойства после нормализации - временное сопротивление разрыву не менее 485 Н/мм2, относительное удлинение не менее 18%. Кроме того, в качестве неизбежных примесей сталь срдержит, мас.%: ниобий не более 0,02 и фосфор не более 0,035 (патент РФ №2333968, C21D 8/10, C22C 38/60, 20.09.2008).

Одним из важнейших требований, предъявляемых к трубной заготовке из легированной стали, является обеспечение однородности макроструктуры и снижение содержания неметаллических включений. Изготовление трубной заготовки из известной стали не позволяет снизить у проката максимальные показатели по макроструктуре и количеству неметаллических включений, а именно в известном изобретении центральная пористость, точечная неоднородность, ликвационный квадрат, подусадочная ликвация составляют не более 3 баллов по каждому виду, а по неметаллическим включениям - сульфиды, оксиды точечные, оксиды строчечные, силикаты хрупкие, силикаты пластичные, силикаты недеформированные не более 4,0 баллов по каждому виду включений, что, в свою очередь, сужает комплекс потребительских свойств известной трубной заготовки.

Предлагаемое изобретение решает задачу создания трубной заготовки из легированной стали, осуществление которой позволяет достичь технического результат, заключающегося в возможности повышения однородности макроструктуры проката путем снижения максимальных значений показателей по макроструктуре до 2 баллов по каждому виду и в возможности снижения содержания неметаллических включений по сульфидам, оксидам строчечным и силикатам недеформированным до 3,0 баллов, по оксидам точечным и силикатам хрупким до 2,0 баллов, по силикатам пластичным и нитридам до 1,5 баллов, что, в свою очередь, повышает комплекс потребительских свойств проката.

Сущность заявленного изобретения заключается в том, что в заявленной трубной заготовке из легированной стали с заданными параметрами структуры и чистоты по неметаллическим включениям новым является то, что она выполнена из стали, включающей углерод, марганец, кремний, хром, никель, молибден, ванадий, ниобий, титан, алюминий, медь, серу, азот, железо и неизбежные примеси при следующих соотношениях компонентов, мас.%:

углерод 0,16-0,20
марганец 0,50-0,90
кремний 0,17-0,37
хром 2,50-3,00
никель 0,05-0,25
молибден 0,15-0,25
ванадий 0,05-0,10
ниобий 0,03-0,06
титан 0,005-0,030
алюминий 0,020-0,050
медь 0,10-0,30
сера 0,0001-0,010
азот 0,001-0,008
железо и неизбежные примеси остальное

при выполнении соотношения: Crэкв.>3,0, где Crэкв.=[Cr]+2[Mo]+5[V]+1,5[Nb]+1,5[Ti], кроме того, сталь содержит кальций в присадке из расчета введения его в металл на 0,0010-0,0030%, при этом в качестве неизбежных примесей сталь содержит в мас.%: фосфор 0,001-0,015%; водород не более 2 ppm; кислорода не более 20 ppm, максимальные значения показателей по макроструктуре до 2 баллов по каждому виду (центральная пористость, точечная неоднородность, ликвационный квадрат, подкорковые пузыри на глубину не более 2 мм); содержание неметаллических включений: сульфиды, оксиды строчечные, силикаты недеформируемые по среднему баллу - не более 2,5, по максимальному - не более 3,0; оксиды точечные, силикаты хрупкие по среднему баллу - не более 1,5, по максимальному - не более 2,0; силикаты пластичные, нитриды по среднему баллу - не более 1,0, по максимальному - не более 1,5.

Заявленный технический результат достигается следующим образом.

Заявленные количественные и качественные сочетания легирующих элементов позволяют снизить верхнюю границу количественной характеристики неметаллических включений и повысить однородность макроструктуры проката, а следовательно, повысить комплекс потребительских свойств, в частности получить в готовом изделии ферритоперлитную мелкодисперсную структуру с благоприятным сочетанием характеристик прочности и пластичности, свариваемости и обрабатываемости резанием. При этом количественное содержание элементов в составе стали выбрано таким образом, что каждый элемент выполняет свое основное назначение, а в совокупности заявляемый качественный и количественный состав стали для трубной заготовки обеспечивает достижение заявленного технического результата: повышение однородности макроструктуры проката в результате снижения максимальных значений показателей по макроструктуре и в результате снижения содержания неметаллических включений, по сравнению с прототипом.

Качественный и количественный состав стали в заявленной трубной заготовке обусловлен следующим.

Железо является основным компонентом стали.

Углерод участвует в протекании двух процессов. Первый процесс - это образование графитовых включений в структуре стали, второй - образование частиц карбидной фазы в металлической матрице. При содержании углерода менее 0,16% образуется недостаточное количество как свободного углерода, так и карбидов, что приводит к повышенному износу изделий в процессе эксплуатации и снижению прочностных свойств материала. При содержании углерода более 0,20% происходит выделение избыточного количества частиц карбидной фазы неблагоприятной формы, что приводит к снижению пластических свойств стали. При этом в обоих случаях это сказывается отрицательно на однородности проката. Содержание углерода в пределах 0,16-0,20% является оптимальным и обеспечивает достижение заявленного технического результата.

Марганец, молибден и хром используют, с одной стороны, как упрочнители твердого раствора, с другой стороны, как элементы, повышающие устойчивость переохлажденного аустенита стали. Марганец, растворяясь в металлической основе, стабилизирует перлит, способствуя, тем самым, формированию однородной макроструктуры стали. При содержании марганца менее 0,50% в структуре стали наблюдается присутствие включений феррита. При содержании марганца более 0,90% наблюдается локальное пересыщение ферритной составляющей перлита марганцем.

Хром представляет собой эффективный легирующий элемент, повышающий коррозионную стойкость к газообразному диоксиду углерода, наиболее дешевый элемент, повышает твердость и прочность, незначительно уменьшает пластичность. Хром при заявленном содержании в стали в количестве 2,50-3,00% полностью растворяется в цементите, образуя сложные карбиды типа (Fe, Cr)3C, способствует получению высокой и равномерной твердости, износостойкой поверхности в результате повышения однородности макроструктуры.

Молибден эффективен в отношении повышения прочности и в состав стали, с этой целью, вводится по мере необходимости. Молибден в присутствии хрома образует карбид (Mo, Fe)23C6. Наличие молибдена в заявленных пределах позволяет получать равномерную и мелкозернистую структуру, увеличивает сопротивление стали ползучести, тормозит процесс роста и коагуляции карбидов. При содержании молибдена в стали менее 0,15% снижается количество образующихся соединений, структура стали отличается неоднородностью. При содержании более 0,25% образуется избыточное количество соединений молибдена.

Медь (0,10-0,30%) и ниобий (0,03-0,06%) в заданных пределах положительно влияют на однородность структуры и обеспечивают повышение механических свойств и износостойкости в условиях высоких температур и теплосмен. Кроме того, ниобий является карбонитридообразующим элементом. При заданном содержании его в стали образуется оптимальное количество соединений ниобия, что положительно сказывается на количественном содержании неметаллических включений.

Ванадий вводят в композицию данной стали с целью обеспечения мелкодисперсной, однородной зеренной структуры. Ванадий измельчает зерно микроструктуры. Одновременно ванадий управляет процессами в нижней части аустенитной области: определяет склонность к росту зерна аустенита, стабилизирует структуру при термомеханической обработке, повышает температуру рекристаллизации и, как следствие, влияет на характер γ-α-превращения.

Ванадий характеризуется отсутствием р-электронов и наличием незаполненных d-орбиталей ядра атома, следствием чего является понижение термодинамической активности углерода при вводе ванадия в расплав. Это приводит к процессу образования высокодисперсных соединений ванадия (карбидов, нитридов, карбонитридов), имеющих округлую форму, которые, равномерно распределяясь по границам зерен, измельчают и упрочняют их.

При содержании ванадия менее 0,05% снижается количество образующихся соединений, процесс измельчения зерна не происходит в полном объеме. При содержании ванадия более 0,10% образуется избыточное количество соединений ванадия, что способствует хрупкому разрушению. Ванадий в пределах 0,05-0,10% способствует уменьшению величины зерна. Он задерживает рост зерна в период рекристаллизации при высоких температурах.

Кремний относится к ферритообразующим элементам. Нижний предел по кремнию - 0,17% - обусловлен технологией раскисления стали. Верхнее количественное значение содержания кремния 0,37% является оптимальным.

Кремний способствует выделению углерода в свободном виде в соответствие со стабильной системой железо-углерод, что значительно повышает показатели износостойкости сплава. Количественное содержание кремния в заявленном составе стали соответствует количественному содержанию углерода и, кроме того, обеспечивает требования к однородности макроструктуры и количеству неметалических включений. Для заявленного количественного содержания углерода в заявленной стали кремний в количестве менее 0,17% не оказывает значительного влияния на процесс графитизации, вследствие чего углерод находится в связанном состоянии, что приводит к значительному износу изделий при эксплуатации в условиях интенсивного трения. При содержании кремния более 0,37% в структуре стали наблюдается повышенное количество крупных включений графита неблагоприятной формы.

Никель в заявленном количестве (0,05-0,25%) нейтрализует вредные влияния со стороны меди, которая также входит в состав заявленной стали, которые заключаются в возможности образования трещин на поверхности во время горячей прокатки. Также способствует поглощению газов металлом в процессе плавки, в особенности водорода, который вызывает образование в слитках газовых пузырей, а в случае крупнозернистой первичной структуры - трещин по границам зерен.

Титан - сильный карбонитридообразователь и раскислитель стали. Заявленный интервал количественных значений титана (0,005-0,030%) в составе стали является оптимальным.

Азот способствует образованию нитридов в стали. Верхний предел содержания азота - 0,008% - обусловлен необходимостью получения заданного уровня пластичности и вязкости стали, что оказывает влияние на однородность структуры, а нижний предел - 0,001% - вопросами технологичности производства.

Алюминий является раскисляющим и модифицирующим элементом. Кроме того, он связывает азот в нитриды. При содержании алюминия менее 0,020% его воздействие проявляется слабо. Увеличение содержания алюминия выше 0,050% приводит к разнозернистости микроструктуры стали.

Кальций - это элемент, модифицирующий неметаллические включения. Кальций, обладая повышенным химическим сродством к сере и кислороду, очищает границы зерен от неметаллических включений. В заявленной трубной заготовке сталь содержит кальций в присадке из расчета введения его в металл на 0,0010-0,0030%». Во время плавки кальций вводят в сталь в качестве присадки, подвергая тем самым сталь модифицирующей обработке кальцием из расчета его введения в металл на 0,0010-0,0030%. Кальций, являясь наиболее адсорбционно-активным элементом в стали и конкурируя с карбонитридообразующими элементами (титаном, ванадием, ниобием), а также с марганцем и азотом, снижает их адсорбцию в границах зерен и тем самым повышает межзеренную связь, повышая однородность макроструктуры проката. Улучшение обрабатываемости стали достигается модифицированием кальцием (вводится в жидкую сталь в виде силикокальция), который глобулизирует сульфидные включения, что положительно влияет на обрабатываемость, но не так активно, как сера и фосфор. Как показала практика, модифицирование кальцием в заданных количествах приводит к

- повышению степени чистоты стали по газам, вредным примесям и неметаллическим включениям вследствие рафинирования расплава в процессе раскисления и десульфурации;

- повышению однородности структуры стали, равномерности распределения мелкодисперсных глобулярных неметаллических включений в результате модифицирования;

- повышению чистоты границ зерен по охрупчивающим примесным и микролегирующим элементам и пленочным гетерофазным выделениям благодаря микролегированию, в основе которого лежат явления межкристаллитной внутренней адсорбции.

Выполнение соотношения Crэкв.>3,0, где Crэкв.=[Cr]+2[Mo]+5[V]+1,5[Nb]+1,5[Ti], способствует процессу образования в оптимальном количестве высокодисперсных соединений: карбидов, нитридов, карбонитридов, имеющих округлую форму, которые, равномерно распределяясь по границам зерен, измельчают и упрочняют их, что обеспечивает достижение заявленного технического результата, а также повышает прочностные и пластические свойства стали, не вызывая при этом появления напряжений.

В качестве примесей заявленная сталь содержит в мас.%: фосфор 0,001-0,015; водород не более 2 ppm; кислород не более 20 ppm. Заявленное содержание водорода и кислорода в примеси исключает опасность образования в готовом металле дефектов в виде свищей, флокенов.

Фосфор определяет уровень пластичности стали, который обуславливается ее однородностью. Содержание фосфора в заявленном составе примесей стали в количестве 0,001-0,015% является оптимальным и оказывает положительное влияния на получение заданного уровня однородности структуры.

В результате контрольных плавок были получены трубные заготовки со следующими характеристиками: максимальные значения показателей по макроструктуре до 2 баллов по каждому виду (центральная пористость, точечная неоднородность, ликвационный квадрат, подкорковые пузыри на глубину не более 2 мм); содержание неметаллических включений: сульфиды, оксиды строчечные, силикаты недеформируемые по среднему баллу - не более 2,5, по максимальному - не более 3,0; оксиды точечные, силикаты хрупкие по среднему баллу - не более 1,5, по максимальному - не более 2,0; силикаты пластичные, нитриды по среднему баллу - не более 1,0, по максимальному - не более 1,5.

Сведения, подтверждающие возможность осуществления заявленного изобретения с получением заявленного технического результата, приведены в примере.

Пример осуществления изобретения.

Выплавку исследуемой стали выполняли с химическим составом в мас.%: С=0,19; Mn=0.60; Si=0,31; Cr=2,61; Ni=0,14; Cu=0,27; Мо=0,20; Ti=0,008; V=0,073; Al=0,027; N=0,0077; Nb=0,039. Н=1,7 ppm; O2=20 ppm; Crэ=3,4455, железо - остальное, при выполнении соотношения: Crэкв.>3,0, где Crэкв.=[Cr]+2[Mo]+5[V]+1,5[Nb]+1,5[Ti].

Выплавку выполняли в 80-тонных дуговых сталеплавильных печах (ДСП) с использованием в шихте до 40% жидкого чугуна.

Предварительное легирование металла по марганцу и кремнию производили в ковше при выпуске из ДСП. После выпуска производили продувку металла аргоном через донный продувочный блок, во время которой сталь раскисляется алюминием.

Дальнейшую обработку металла производили на установке внепечной обработки стали (УВОС), где осуществляется наведение рафинировочного шлака присадкой извести и плавикового шпата для снижения неметаллических включений и снижения газов в стали; продувка металла аргоном через донный продувочный блок, десульфурация, нагрев металла до необходимой температуры, корректировка химического состава металла присадкой кусковых ферросплавов и порошковой проволоки с наполнителями, в т.ч. присадка силикокальциевой проволокой по расчету на 0,0010-0,0030% кальция.

По окончании обработки на УВОС производили вакуумирование металла на установке вакуумной дегазации. В процессе вакуумирования обеспечивается содержание водорода в металле не более 2,0 ppm и удаление газов. Во время вакуумирования производили окончательную корректировку по химическому составу. Разливка осуществлялась в изложницы с защитой струи аргоном.

В результате горячей прокатки получили трубную заготовку диаметром 90 мм, 110 мм, 140 мм, 150 мм, длиной 5900 мм.

Трубная заготовка 90 мм: - макроструктура по ГОСТ 10243-75 (в скобках указаны количественные характеристики по прототипу): центральная пористость - 1 (3) балл, точечная неоднородность - 1 (3) балл, ликвационный квадрат - 0 (3) баллов, подусадочная ликвация - 0 (3) баллов.

Металл нерадиоактивный.

Неметаллические включения, контролируемые по ГОСТ 1778-70 метод Ш, вариант Ш6:

Вид включения Средний балл Максимальный балл
С (сульфиды) 2,0 2,0 (4)
СН (силикаты недеформированные) 1,83 3,0 (4)
Н (нитриды) 0 0
ОТ (оксиды точечные) 0 0 (4)
ОС (оксиды строчечные) 2,0 2,0 (4)
СП (силикаты пластичные) 0 0 (4)
СХ (силикаты хрупкие) 1,5 1,5 (4)

Трубная заготовка 110 мм:

- макроструктура по ГОСТ 10243-75 (в скобках указаны количественные характеристики по прототипу): центральная пористость - 1 (3) балл, точечная неоднородность - 2 (3) балла, ликвационный квадрат - 1 (3) балл, подусадочная ликвация - 0 (3) баллов. Металл нерадиоактивный;

- неметаллические включения, контролируемые по ГОСТ 1778-70 метод Ш, вариант Ш6:

Вид включения Средний балл Максимальный балл
С (сульфиды) 1,78 2,0 (4)
СН (силикаты недеформированные) 2,08 3,0 (4)
Н (нитриды) 0 0
ОТ (оксиды точечные) 0 0 (4)
ОС (оксиды строчечные) 2,06 3,0 (4)
СП (силикаты пластичные) 0 0 (4)
СХ (силикаты хрупкие) 0 0 (4)

Трубная заготовка 140 мм:

- макроструктура по ГОСТ 10243-75 (в скобках указаны количественные характеристики по прототипу): центральная пористость - 1 (3) балл, точечная неоднородность - 2 (3) балла, ликвационный квадрат - 1 (3) балл, подусадочная ликвация - 0 (3) баллов. Металл нерадиоактивный;

- неметаллические включения, контролируемые по ГОСТ 1778-70 метод Ш, вариант Ш6:

Вид включения Средний балл Максимальный балл
С (сульфиды) 1,8 2,0 (4)
СН (силикаты недеформированные) 2,06 3,0 (4)
Н (нитриды) 0 0
ОТ (оксиды точечные) 0 0 (4)
ОС (оксиды строчечные) 2,11 3,0 (4)
СП (силикаты пластичные) 0 0 (4)
СХ (силикаты хрупкие) 0 0 (4)

Трубная заготовка 150 мм:

- макроструктура по ГОСТ 10243-75 (в скобках указаны количественные характеристики по прототипу): центральная пористость - 1 (3) балл, точечная неоднородность - 2 (3) балла, ликвационный квадрат - 1 (3) балл, подусадочная ликвация - 0 (3) баллов. Металл нерадиоактивный;

- неметаллические включения, контролируемые по ГОСТ 1778-70 метод Ш, вариант Ш6:

Вид включения Средний балл Максимальный балл
С (сульфиды) 1,76 2,0 (4)
СН (силикаты недеформированные) 2,08 3,0 (4)
Н (нитриды) 0 0
ОТ (оксиды точечные) 0 0 (4)
ОС (оксиды строчечные) 2,18 3,0 (4)
СП (силикаты пластичные) 0 0 (4)
СХ (силикаты хрупкие) 0 0 (4)

Как следует из результатов плавки, заявленная трубная заготовка из легированной стали по сравнению с известной - с прототипом позволила достичь заявленного технического результата: не только снизить верхнюю границу количественной характеристики неметаллических включений, но и исключить из неметаллических включений нитриды, оксиды точечные, силикаты пластичные и, тем самым, повысить однородность макроструктуры проката, а следовательно, повысить комплекс потребительских свойств, в частности получить в готовом изделии ферритоперлитную мелкодисперсную структуру с благоприятным сочетанием характеристик прочности и пластичности, свариваемости и обрабатываемости резанием.

Таким образом, из вышеизложенного следует, что предлагаемое изобретение при осуществлении позволяет достичь технического результат, заключающегося в возможности повышения комплекса потребительских свойств проката путем повышения однородности макроструктуры проката и снижения содержания неметаллических включений (повышение однородности макроструктуры проката в результате снижения максимальных значений показателей по макроструктуре не более 2 баллов по каждому виду; снижение содержания неметаллических включений по сульфидам, оксидам строчечным и силикатам недеформированным не более 3,0 баллов, по оксидам точечным и силикатам хрупким не более 2,0 баллов, по силикатам пластичным и нитридам не более 1,5 баллов).

Внедрение в производство трубной заготовки из легированной стали обеспечивает повышение уровня потребительских свойств при обеспечении низкого содержания неметаллических включений и однородной макроструктуры проката.

Трубная заготовка из легированной стали, выполненная с заданными параметрами структуры и чистоты по неметаллическим включениям, отличающаяся тем, что она выполнена из стали, включающей углерод, марганец, кремний, хром, никель, молибден, ванадий, ниобий, титан, алюминий, медь, серу, азот, железо и неизбежные примеси, при следующих соотношениях, мас.%:

углерод 0,16-0,20
марганец 0,50-0,90
кремний 0,17-0,37
хром 2,50-3,00
никель 0,05-0,25
молибден 0,15-0,25
ванадий 0,05-0,10
ниобий 0,03-0,06
титан 0,005-0,030
алюминий 0,020-0,050
медь 0,10-0,30
сера 0,0001-0,010
азот 0,001-0,008
железо и неизбежные примеси остальное,

причем сталь подвергнута модифицирующей обработке кальцием присадкой из расчета введения его в металл на 0,0010-0,0030%, а в качестве неизбежных примесей она содержит, мас.%: фосфор 0,001-0,015%, водород не более 2 млн-1, кислород не более 20 млн-1, при выполнении соотношения: Crэкв>3,0,
где Crэкв=[Cr]+2[Mo]+5[V]+1,5[Nb]+1,5[Ti],
при этом заготовка имеет максимальные значения показателей по макроструктуре до 2 баллов по каждому из видов: центральная пористость, точечная неоднородность, ликвационный квадрат, подкорковые пузыри на глубину не более 2 мм, а содержание неметаллических включений по сульфидам, оксидам строчечным, силикатам недеформируемым по среднему баллу - не более 2,5 и по максимальному - не более 3,0, по оксидам точечным, силикатам хрупким по среднему баллу - не более 1,5 и по максимальному - не более 2,0; по силикатам пластичным, нитридам по среднему баллу - не более 1,0 и по максимальному - не более 1,5.



 

Похожие патенты:

Изобретение относится к термомеханической обработке и может быть использовано при производстве холоднокатаной ленты для изготовления монетной заготовки. .

Изобретение относится к прокатному производству и может быть использовано при производстве холоднокатаной ленты, применяемой, например, для холодной вырубки. .
Изобретение относится к области металлургии, а именно к низколегированным литым сталям, используемым для изготовления ответственных деталей машин, например деталей вагонов.
Изобретение относится к области металлургии, а именно к производству стальной катанки круглого сечения, ускоренно охлажденной с прокатного нагрева и предназначенной для изготовления сварочной проволоки.

Изобретение относится к области черной металлургии, в частности производству горячекатаного листового проката для изделий и конструкций, подвергающихся воздействию динамических нагрузок.
Изобретение относится к черной металлургии, в частности к способам получения автокузовной стали в дуговых сталеплавильных печах. .

Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям, используемым для изготовления высоконагруженных немагнитных деталей, работающих в условиях коррозионного воздействия в энергомашиностроении.

Изобретение относится к области термической обработки деталей из стали перлитного класса. .

Изобретение относится к области металлургии, а именно к созданию жаропрочных хромоникелевых сплавов аустенитного класса, используемых для печей первичного риформинга крупнотоннажных агрегатов аммиака и метанола.
Изобретение относится к области металлургии, а именно к производству трубных заготовок. .

Изобретение относится к области металлургии, в частности стальному листу для производства магистральной трубы и способу изготовления стального листа. .
Изобретение относится к металлургии, в частности к производству трубной заготовки диаметром от 90 до 110 мм. .

Изобретение относится к области металлургии, а именно к получению нефтегазопромысловой бесшовной трубы из мартенситной нержавеющей стали, обладающей прочностью с пределом текучести YS на уровне 95 кфунт/кв.дюйм (665-758 МПа) и повышенной низкотемпературной ударной прочностью.

Изобретение относится к области термической обработки холоднодеформированных труб, используемых при производстве парогенераторов энергоблоков с реакторами БН-600, БН-800.

Изобретение относится к обработке металлов давлением и может быть использовано при производстве холоднодеформированных труб из стали марки 08Х14МФ (08Х14МФ-Ш) для теплообменных аппаратов ТЭС и АЭС.

Изобретение относится к области радиационного материаловедения и может быть использовано в технологических циклах получения полуфабрикатов сплавов на основе ванадия, используемых в качестве конструкционных материалов в реакторах деления и синтеза.
Изобретение относится к машиностроению, в частности к производству штанг для бурильных машин мелкошпурового бурения (до 4250 мм). .

Изобретение относится к обработке металлов давлением, в частности к способам формовки тройников, и может быть использовано в различных отраслях машиностроения для изготовления штампованных и штампосварных тройников трубопроводов. Способ изготовления тройника включает нагрев заготовки прямоугольной формы до температуры 750-1000°C, формирование цилиндрической обечайки путем гибки заготовки и выполнения продольного сварного соединения, нагрев до температуры 800-1000°C, производят продольный обжим заготовки, выполняют отверстие для ответвления в заготовке, нагревают заготовку до температуры 800-1000°C, производят радиальное обжатие заготовки, охлаждают большую часть заготовки, расположенной противоположно выполненному отверстию, до температуры не выше 550°C, осуществляют поперечный обжим заготовки с одновременной отбортовкой ответвления пуансоном, диаметр которого не превышает 1,5 диаметра выполненного отверстия, нагревают заготовку до температуры 800-1000°C, выдерживают заготовку при этой температуре не менее 1 мин на 1 мм толщины заготовки и выполняют отбортовку ответвления пуансоном, диаметр которого равен внутреннему диаметру ответвления. Согласно другому варианту тройник изготавливают из трубной заготовки, что обеспечивает повышение качества тройников для трубных магистралей и снижает металлоемкость при их производстве. 2 н. и 7 з.п. ф-лы, 8 ил., 2 пр.
Наверх