Способ получения катализатора для изотопного обмена протия-дейтерия



Способ получения катализатора для изотопного обмена протия-дейтерия
Способ получения катализатора для изотопного обмена протия-дейтерия
Способ получения катализатора для изотопного обмена протия-дейтерия
Способ получения катализатора для изотопного обмена протия-дейтерия

 


Владельцы патента RU 2481155:

Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) (RU)

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия. Способ включает получение наночастиц металла при восстановлении ионов металла в обратномицеллярном растворе, состоящем из раствора соли металла, представляющей собой RhCl3 или RuOHCl3, ПАВ, представляющего собой бис(2-этилгексил)сульфосукцинат натрия, и неполярного растворителя, изооктана, с последующим нанесением на носитель, в качестве которого используют Сибунит, причем наночастицы серебра получают путем приготовления обратномицеллярных растворов родия или рутения при отношениях мольных количеств водного раствора соли металла к мольному количеству ПАВ в диапазоне от 1:1 до 10:1, затем добавляют водно-спиртовой раствор в количестве 5-50 мас.% и аммиачный раствор в количестве 10-30 мас.%, после чего суспензию подвергают ультразвуковой обработке, деаэрации и воздействию γ-излучения 60Co с дозой от 1 до 40 кГр. Изобретение позволяет получить катализатор, обладающий высокой каталитической активностью и предназначенный для работы в интервале температур 77÷400 К. 1 з.п. ф-лы, 4 табл., 4 пр.

 

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия.

Известен способ получения катализатора путем ионного обмена, при котором носитель из огнеупорного оксида, содержащего катион водорода, обрабатывают раствором, содержащим катионы металлов. Непосредственно после обработки оксид промывают водой для отделения химически не связанных металлических катионов. Далее оксид сушат, при этом часть металлических катионов восстанавливается при нагревании огнеупорного оксида до элементарного металла путем отделения от связанной воды, которая ассоциирована с металлическими катионами (Пат. Германии №1542012, кл. B01Y 37/30 от 21.10.76 г.). Этот катализатор используется только для ионного обмена.

Известен способ получения катализатора для изотопного обмена между водой и водородом, где катализатор включает гидрофобную пористую матрицу с диспергированной в ней платиной и, по крайней мере, другой металл, выбранный из группы хрома или титана (пат. EP №1486457, Кл. B01D 59/00, B01Y 37/00-37/02 от 06.06.2003 г.). Однако этот катализатор используется только для изотопного обмена между водой и водородом.

Наиболее близким по технической сущности и достигаемому результату является способ получения катализатора Ptмиц/Al2O3 для изотопного обмена протия и дейтерия и о-п конверсии протия. Наночастицы Pt образуются при радиационно-химическом восстановлении ионов в системе H2[PtCl6]/H2O/ацетон/бис(2-этилгексил)сульфосукцинат натрия/изооктан. Наночастицы получены из трех различных исходных обратномицеллярных растворов, отличающихся значениями коэффициента солюбилизации ω=1,5, 3 и 5 («Перспективные материалы», специальный выпуск №8, стр.288-293, февраль, 2010 г., журнал ВАК, ISSN 1028-978X).

Однако катализатор обладает невысокой каталитической активностью.

Техническим результатом изобретения является получение катализатора для изотопного обмена протия-дейтерия, обладающего высокой каталитической активностью и предназначенного для работы в интервале температур 77÷400 К.

Этот технический результат достигается получением катализатора для изотопного обмена протия-дейтерия, включающего получение наночастиц металла при восстановлении ионов металла под воздействием γ-излучения 60Co в обратномицеллярном растворе, состоящем из раствора соли металла, ПАВ, представляющего собой бис(2-этилгексил)сульфосукцинат натрия, и неполярного растворителя, изооктана, с последующим нанесением на носитель, причем в качестве носителя используют сибунит - пористый углеродный носитель, а в качестве соли металла используют RhCl3 или RuOHCl3 и готовят обратномицеллярные растворы родия или рутения при отношениях мольных количеств водного раствора соли металла к мольному количеству ПАВ в диапазоне от 1:1 до 10:1, затем добавляют водно-спиртовый раствор в количестве 5-50 масс.% и аммиачный раствор в количестве 10-30 масс.% с последующей ультразвуковой обработкой, деаэрацией и воздействием γ-излучения 60Co с дозой от 1 до 40 кГр.

В качестве спирта в водно-спиртовом растворе используют изопропанол.

Все выбранные диапазоны значений различных варьируемых параметров синтеза наночастиц приводят к достижению высоких значений удельной каталитической активности заявленного катализатора. Катализатор, синтез которого проведен за пределами указанных параметров, либо вообще невозможно синтезировать, либо катализатор заявленным результатом по каталитической активности не обладает.

а) Выбранное отношение мольных количеств водного раствора соли металла к мольному количеству ПАВ в диапазоне от 1:1 до 10:1 соответствует возможности получения обратных мицелл, в которых производится восстановление ионов соли до нейтральных атомов с последующим образованием наночастиц, которые, в свою очередь, являются активным компонентом катализаторов для осуществления каталитической реакции. Уменьшение мольного соотношения не приводит к формированию наночастиц в обратномицеллярных растворах, а увеличение мольного соотношения может приводить к выпадению осадка из раствора (при этом образование наночастиц не происходит) или приводить к формированию агломератов мелких частиц в крупной обратной мицелле, что приводит к падению удельной каталитической активности катализаторов.

б) Добавление водно-спиртового раствора в количестве менее 5 масс.% приводит к уменьшению выхода образующихся наночастиц, т.к. плохо подавляет образование окислительных частиц. Количество наночастиц уменьшается, что приводит к уменьшению скорости протекания каталитической реакции дейтеро-водородного обмена и, таким образом, сказывается на величине каталитической активности предлагаемых наноструктурированных каталитических систем. При превышении указанного количества водно-спиртового раствора более 50 масс.% обратные мицеллы не образуются и, следовательно, не получается синтез катализаторов для изотопного обмена водорода.

в) Добавка аммиачного раствора в количестве менее 10 масс.% не стабилизирует обратномицеллярные системы с наночастицами металлов, и таким образом, сказывается на величине каталитической активности предлагаемых наноструктурированных каталитических систем. При превышении указанного количеств аммиачного раствора более 30 масс.% обратные мицеллы не образуются и, следовательно, не получается синтез катализаторов для изотопного обмена водорода.

Пример 1

Готовился обратномицеллярный раствор соли родия RhCl3 при отношении мольных количеств водного раствора соли металла к мольному количеству бис(2-этилгексил)сульфосукцината натрия 1:1. Затем добавляют водно-спиртовый раствор в количестве 3,4·10-3 г (5 масс.%) и аммиачный раствор в количестве 2,0·10-2 г (30 масс.%) с последующей ультразвуковой обработкой, деаэрацией и воздействием γ-излучения 60Co до достижения дозы 1 кГр.

Взвешен 1 г носителя сибунита и помещен в 10 мл полученного обратномицеллярного раствора.

По убыли интенсивности пиков, соответствующих наночастицам родия в растворе с погруженным в него носителем сибунитом, судили о факте адсорбции наночастиц родия. Факт образования наноструктурированных частиц родия фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с высаженными наночастицами родия извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами родия подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Rh/сибунит по отношению к реакции изотопного обмена водорода составила 4,41·1014 молекул/(см2·с), что в ~2 раза превышает активность катализатора Ptмиц/Al2O3, выбранного в качестве прототипа. Данные по активности данного образца катализатора Rh/сибунит, приготовленного по примеру 1, в интервале температур 77÷400 К представлены в таблице 1.

Пример 2

Готовился обратномицеллярный раствор соли родия RhCl3 при отношении мольных количеств водного раствора соли металла к мольному количеству бис(2-этилгексил)сульфосукцината натрия 10:1. Затем добавляют водно-спиртовый раствор в количестве 3,4·10-2 г (50 масс.%) и аммиачный раствор в количестве 6,8·10-3 г (10 масс.%) с последующей ультразвуковой обработкой, деаэрацией и воздействием γ-излучения 60Co до достижения дозы 40 кГр.

Взвешен 1 г носителя сибунита и помещен в 10 мл полученного обратномицеллярного раствора.

По убыли интенсивности пиков, соответствующих наночастицам родия в растворе с погруженным в него носителем сибунитом, судили о факте адсорбции наночастиц родия. Факт образования наноструктурированных частиц родия фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с высаженными наночастицами родия извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами родия подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Rh/C по отношению к реакции изотопного обмена водорода составила 4,18·1014 молекул/(см2·с), что в ~2 раза превышает активность катализатора Ptмиц/Al2O3, выбранного в качестве прототипа.

Данные по активности данного образца катализатора Rh/сибунит, приготовленного по примеру 2, в интервале температур 77÷400 К представлены в таблице 2.

Пример 3

Готовился обратномицеллярный раствор соли рутения RuOHCl3 при отношении мольных количеств водного раствора соли металла к мольному количеству бис(2-этилгексил)сульфосукцината натрия 1:1. Затем добавляют водно-спиртовый раствор в количестве 3,4·10-3 г (5 масс.%) и аммиачный раствор в количестве 2,0·10-2 г (30 масс.%) с последующей ультразвуковой обработкой, деаэрацией и воздействием γ-излучения 60Co до достижения дозы 1 кГр.

Взвешен 1 г носителя сибунита и помещен в 10 мл полученного обратномицеллярного раствора.

По убыли интенсивности пиков, соответствующих наночастицам рутения в растворе с погруженным в него носителем сибунитом, судили о факте адсорбции наночастиц родия. Факт образования наноструктурированных частиц родия фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с нанесенными наночастицами родия извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами родия подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Ru/сибунит по отношению к реакции изотопного обмена водорода составила 4,6·1014 молекул/(см2·с), что в ~2 раза превышает активность катализатора Ptмиц/Al2O3, выбранного в качестве прототипа.

Данные по активности данного образца катализатора Ru/сибунит, приготовленного по примеру 3, в интервале температур 77-400 К представлены в таблице 3.

Пример 4

Готовился обратномицеллярный раствор соли рутения RuOHCl3 при отношении мольных количеств водного раствора соли металла к мольному количеству бис(2-этилгексил)сульфосукцината натрия 10:1. Затем добавляют водно-спиртовый раствор в количестве 3,4·10-2 г (50 масс.%) и аммиачный раствор в количестве 6,8·10-3 г (10 масс.%) с последующей ультразвуковой обработкой, деаэрацией и воздействием γ-излучения 60Co до достижения дозы 40 кГр.

Взвешен 1 г углеродного носителя сибунита и помещен в 10 мл полученного обратномицеллярного раствора.

По убыли интенсивности пиков, соответствующих наночастицам рутения в растворе с погруженным в него носителем сибунитом, судили о факте адсорбции наночастиц родия. Факт образования наноструктурированных частиц родия фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с нанесенными наночастицами родия извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами родия подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Ru/сибунит по отношению к реакции изотопного обмена водорода составила 4,42·1014 молекул/(см2·с), что в ~2 раза превышает активность катализатора Ptмиц/Al2O3, выбранного в качестве прототипа.

Результаты измерений удельной каталитической активности образца катализатора Ru/сибунит, приготовленного по примеру 4, в интервале температур 77-400 К представлены в таблице 4.

Представленные данные показывают отсутствие значимых различий в величинах каталитической активности при отношении мольного количества водно-спиртового раствора соли родия или рутения с добавлением аммиака к мольному количеству ПАВ в диапазоне от 1:1 до 10:1 и поглощенной дозе облучения 1-40 кГр.

1. Способ получения катализатора для изотопного обмена протия-дейтерия, включающего получение наночастиц металла при восстановлении ионов металла под воздействием γ-излучения 60Co в обратномицеллярном растворе, состоящим из раствора соли металла, ПАВ, представляющего собой бис(2-этилгексил)сульфосукцинат натрия, и неполярного растворителя, изооктана, с последующим нанесением на носитель, отличающийся тем, что в качестве носителя используют сибунит, а в качестве соли металла используют RhCl3 или RuOHCl3 и готовят обратномицеллярные растворы родия или рутения при отношениях мольных количеств водного раствора соли металла к мольному количеству ПАВ в диапазоне от 1:1 до 10:1, затем добавляют водно-спиртовой раствор в количестве 5-50 мас.% и аммиачный раствор в количестве 10-30 мас.% с последующей ультразвуковой обработкой, деаэрацией и воздействием γ-излучения 60Co с дозой от 1 до 40 кГр.

2. Способ получения катализатора для изотопного обмена протия-дейтерия по п.1, отличающийся тем, что в качестве спирта в водно-спиртовом растворе используется изопропанол.



 

Похожие патенты:

Изобретение относится к магнитной системе, которая имеет структуру, содержащую магнитные нанометровые частицы формулы , где MII=Fe, Со, Ni, Zn, Mn; MIII =Fe, Cr, или маггемита, которые функционализированы бифункциональными соединениями формулы R1-(CH2)n -R2.(где n=2-20, R1 выбран из: CONHOH, CONHOR, РО(ОН)2, PO(OH)(OR), СООН, COOR, SH, SR; R 2 является внешней группой и выбран из: ОН, NH2 , СООН, COOR; R является алкильной группой или щелочным металлом, выбранным из С1-6-алкила и K, Na или Li соответственно).

Изобретение относится к области аналитической химии вторичных аминов, может быть использовано при анализе газовых и жидких сред, содержащих диэтиламин. .

Изобретение относится к области электрогидро- и газодинамики, в частности к созданию высокоэффективных электроконвективных теплообменников. .

Изобретение относится к области нанотехнологии и биотехнологии. .

Изобретение относится к нанотехнологии, а именно к производству углеродных нанотрубок, широко используемых в различных областях науки и техники. .

Изобретение относится к нанотехнологии и к способу получения наноматериалов, которые могут использоваться в смазочных составах для обработки узлов трения, а также для восстановления трущихся поверхностей деталей механизмов и машин.

Изобретение относится к порошковой металлургии, в частности к получению открытопористого наноструктурного металла. .

Изобретение относится к катализаторам гидрирования и дегидрирования. .
Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия. .

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия.

Изобретение относится к области биохимии. .

Изобретение относится к способу получения магнитных железосодержащих наночастиц для использования в медицинских целях. .

Изобретение относится к порошковой металлургии, в частности к получению порошковых композиционных материалов на основе боридов молибдена, вольфрама. .

Изобретение относится к нанотехнологии, в частности к способу получения наночастиц металлов. .

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия.

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия.

Изобретение относится к порошковой металлургии, в частности к способу получения наноразмерного порошка оксида цинка. .
Изобретение относится к области получения наноразмерных частиц серебра и может быть использовано в технологиях, связанных с применением ультрадисперсных порошков серебра.

Изобретение относится к способу гидродесульфуризации (10) потоков углеводородов. .
Наверх