Способ контроля работы системы терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР), преимущественно телекоммуникационных спутников. Способ включает телеметрические измерения (напр., с частотой опроса 0,5 с в принятом промежутке времени) таких параметров СТР, как суммарный расход теплоносителя в жидкостном тракте и температуры в его точках. Тракт включает в себя параллельные ветви, на выходах которых имеются датчики температуры. Третий датчик температуры установлен на общем выходе. Суммарный расход теплоносителя обеспечивается электронасосным агрегатом. При изготовлении СТР покрывают теплоизоляцией участки тракта между датчиками и определяют объем теплоносителя между точками установки этих датчиков и точкой смешения двух потоков теплоносителя из параллельных ветвей. По данным измерений действительные значения расходов теплоносителя в параллельных ветвях определяют по формулам, учитывающим транспортные запаздывания при измерениях датчиками температур. Техническим результатом изобретения является повышение точности определения расходов теплоносителя в параллельных ветвях и тем самым достоверности диагностики и прогноза величин коэффициентов полезного действия приборов, установленных на сотовых панелях СТР с параллельными ветвями. 2 ил.

 

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников.

В настоящее время СТР мощных телекоммуникационных спутников (холодопроизводительностыо, например, ≈ 10 кВт) с целью снижения ее массы выполняют с жидкостными трактами с параллельными ветвями (в этом случае в СТР применяют менее мощный электронасосный агрегат (ЭНА) с небольшой массой и жидкостный тракт СТР выполняют с внутренним диаметром, меньшим, чем при последовательном соединении, что также снижает объем и, следовательно, массу теплоносителя в СТР).

В общем случае при наземных испытаниях (в т.ч. при контроле качества изготовления) и орбитальном функционировании контроль работы СТР (контроль нормального функционирования СТР) осуществляется телеметрическими измерениями температур различных участков жидкостного тракта СТР, определением суммарного расхода теплоносителя в жидкостном тракте на основе данных телеметрических измерений, которые при нормальной работе СТР должны удовлетворять требуемым (заданным) нормам.

В случае наличия в жидкостном тракте параллельных ветвей также необходимо по данным телеметрических измерений подтверждать, что величины расходов теплоносителя в параллельных ветвях удовлетворяют требуемым нормам: как правило, жидкостные тракты параллельных ветвей должны быть выполнены таким образом, чтобы в каждой параллельной ветви расход теплоносителя был бы близок к половине суммарного расхода теплоносителя в жидкостном тракте (равной, например, 45 см3/с). В связи с тем, что знание высокоточной величины расхода теплоносителя в параллельной ветви важно для более достоверного прогноза и диагностики величин коэффициентов полезного действия приборов, установленных на этой ветви, авторами разработано новое техническое решение, обеспечивающее с высокой точностью (с погрешностью до 5%) определять величины расходов теплоносителя в параллельных ветвях по сравнению с известным способом с погрешностью до 20%.

Известен способ определения величины расхода теплоносителя на основе патента Российской Федерации №2164884 [1], по которому (см. фиг.1, где: 1 - электронасосный агрегат (ЭНА); 2, 3 - северная и южная сотовые приборные панели с встроенными последовательно соединенными жидкостными коллекторами; 4, 5 - сотовые панели (расположенные между панелями 2, 3), на которых с обеих сторон установлены приборы спутника, а в сотовых панелях под ними размещены коллекторы 4.1 и 5.1, которые в каждой панели между собой соединены стыками 4.2 и 5.2 монтажной сваркой; в общем случае фактические суммарные длины и гидравлические сопротивления коллекторов в каждой панели отличны друг от друга; жидкостные тракты панелей образуют две параллельные ветви (1) и (2), которые на их входах и выходах (4.3 и 5.3) гидравлически объединены и они являются частью жидкостного трата 6 СТР; 7 - гидроаккумулятор; 8 - система телеметрических измерений; 9, 10, 11 - датчики температуры) для данного момента времени по данным телеметрии измеряют:

- температуры жидкостного тракта t1, t2, t3 на каждом выходе параллельной ветви и на общем их выходе;

- определяют суммарный расход теплоносителя в жидкостном тракте, обеспечиваемый ЭНА 1.

И на основе данных этих измерений для вышеуказанного момента времени в настоящее время оценивают величины расходов теплоносителя в параллельных ветвях для того же вышеуказанного момента, считая, что они равны половине величины суммарного расхода в жидкостном тракте (т.к. при разработке параллельных ветвей их гидравлические сопротивления расчетно выполняют близкими друг к другу значениями).

Анализ, проведенный авторами, опыта применения вышеуказанного способа показал, что ввиду того что при определении величин расходов через параллельные ветви не учитываются влияния транспортных запаздываний от точки смешения двух параллельных потоков до места установки датчиков температуры жидкостного тракта на выходе каждой параллельной ветви и на общем выходе, а также в случае отсутствия теплоизоляции на этих участках жидкостного тракта, погрешность в определении вышеуказанных величин доходит до 20% от действительной величины расхода теплоносителя через ветвь.

Таким образом, существенным недостатком известного способа [1] контроля работы СТР КА является повышенная погрешность определения величины расхода теплоносителя через каждую параллельную ветвь.

Целью предлагаемого авторами технического решения является устранение вышеуказанного существенного недостатка.

Поставленная цель достигается тем, что в способе контроля работы СТР КА, включающем в себя телеметрические измерения обеспечиваемого электронасосным агрегатом суммарного расхода теплоносителя в жидкостном тракте системы, содержащем параллельные первую и вторую ветви, температур жидкостного тракта по показаниям датчиков температуры, установленных на каждом выходе из параллельных ветвей (t1; t2) и на общем выходе из них после точки смешения (t3), и на основе вышеуказанных телеметрических измерений определение величин расходов теплоносителя в указанных параллельных ветвях и соответствия их требуемым нормам, после сборки жидкостного тракта и установки датчиков температуры определяют объемы участков жидкостных трактов от места установки указанных датчиков температуры до точки смешения потоков теплоносителя на выходе из параллельных ветвей, покрывают эти участки теплоизоляцией и при контроле работы системы величины расходов теплоносителя в параллельных ветвях определяют в стабилизированном режиме работы приборов, установленных на панелях с параллельными ветвями, по формулам:

,

где - расход теплоносителя в жидкостном тракте первой ветви, см3/с;

- суммарный расход теплоносителя в жидкостном тракте, обеспечиваемый электронасосным агрегатом, при определении расходов теплоносителя в жидкостных трактах параллельных ветвей, в течение принятого промежутка времени, см3/с;

- температура жидкостного тракта на общем выходе из параллельных ветвей по данным телеметрических измерений датчика температуры t3 в момент времени , °С;

τ0 - момент времени при определении величины расходов теплоносителя в параллельных ветвях, с;

Vbd - объем теплоносителя на участке жидкостного тракта от точки смешения потоков теплоносителя на выходе из параллельных ветвей до места установки датчика температуры t3, см3;

- расчетная величина расхода теплоносителя через первую параллельную ветвь, равная при первом приближении половине величины суммарного расхода , а при последующих приближениях равная величине, определенной при предыдущем приближении, см3/с;

- температура жидкостного тракта на выходе из второй ветви по данным телеметрических измерений датчика температуры t2 в момент времени , °С;

Vbc - объем теплоносителя на участке жидкостного тракта второй ветви от точки смешения потоков теплоносителя до места установки датчика температуры t2, см3;

- температура жидкостного тракта на выходе из первой ветви по данным телеметрических измерений датчика температуры t1 в момент времени , °С;

Vab - объем теплоносителя на участке жидкостного тракта первой ветви от точки смешения потоков теплоносителя до места установки датчика температуры t1, см3;

- расход теплоносителя в жидкостном тракте второй ветви, см3/с,

что и является, по мнению авторов, существенными отличительными признаками предлагаемого авторами технического решения.

В результате анализа, проведенного авторами известной патентной и научно-технической литературы, предложенное сочетание существенных отличительных признаков заявляемого технического решения в известных источниках информации не обнаружено и, следовательно, известные технические решения не проявляют тех же свойств, что в заявляемом способе контроля работы СТР КА.

На фиг.2 изображена принципиальная схема реализации предложенного авторами технического решения, где: 1 - электронасосный агрегат (ЭНА); 2, 3 - северная и южная сотовые приборные панели с встроенными последовательно соединенными жидкостными коллекторами; 4, 5 - сотовые панели (расположенные между панелями 2, 3), на которых с обеих сторон установлены приборы спутника, а в сотовых панелях под ними размещены коллекторы 4.1 и 5.1, которые в каждой панели между собой соединены стыками 4.2 и 5.2 монтажной сваркой; в общем случае фактические суммарные длины и гидравлические сопротивления коллекторов в каждой панели отличны друг от друга; жидкостные тракты панелей образуют две параллельные ветви, которые на их входах и выходах (4.3 и 5.3) гидравлически объединены и являются частью жидкостного тракта 6 СТР; 7 - гидроаккумулятор; 8 - система телеметрических измерений; 1.1 -датчик суммарного расхода теплоносителя; 9, 10, 11 - датчики температуры; b - точка смешения двух потоков теплоносителя, идущих из первой (1) и второй (2) ветвей жидкостного тракта СТР; а, с, d - точки измерения температур жидкостного тракта датчиками температур t1, t2, t3, установленных на выходах первой и второй ветвей и на общем выходе их.

Предложенный способ контроля работы СТР КА включает в себя следующую последовательность выполняемых операций:

1. Осуществляют сборку КА, в том числе сборку жидкостного тракта СТР 6 на конструкции КА; на жидкостном тракте на выходах 4.3 и 5.3 из параллельных ветвей, встроенных в сотовые панели 4 и 5, и на жидкостном тракте после точки смешения двух потоков теплоносителя устанавливают датчики температуры t1, t2, t3.

2. Определяют объемы теплоносителя в жидкостных трактах участков ab, bc, bd.

3. Участки жидкостного тракта ab, bc, bd, содержащие датчики температуры t1, t2, t3, покрывают теплоизоляцией (чтобы снизить утечки тепла в космическое пространство: это обеспечивает повышение точности измерения расходов теплоносителя в параллельных ветвях).

4. При наземных испытаниях и в условиях орбитального функционирования КА включают в работу СТР (включают в работу ЭНА1), затем включают в работу приборы КА и при стабилизированном режиме работы приборов КА периодически контролируют работу СТР, используя показания телеметрических датчиков суммарного расхода теплоносителя 1.1 и температуры жидкостного тракта 9, 10, 11 (теплоносителя, циркулирующего в нем), для чего в некотором промежутке времени (например, в течение 2-3 минут) непрерывно (с частотой опроса, например, 0,5 с) фиксируют телеметрические данные по величинам суммарного расхода теплоносителя - , температур теплоносителя на выходах параллельных ветвей - t1, t2 и после точки смешения - t3.

5. Выбирают момент времени в середине промежутка времени (τ0), указанного в п.4.

6. Определяют величины расходов теплоносителя в параллельных ветвях для момента времени по п.5 (τ0) по формулам:

.

7. Сравнивают измеренные телеметрические данные t1, t2, t3, с допустимыми нормами. Затем, если указанные параметры удовлетворяют требуемым нормам, сравнивают полученные в п.6 данные по расходам теплоносителя в параллельных ветвях: они должны отличаться от половины измеренного суммарного расхода не более, чем |±5%|.

8. Если определенные данные по величинам расхода теплоносителя через параллельные ветви не удовлетворяют вышеуказанному требованию, выполняют второе приближение, взяв при осуществлении повторных расчетов по п.6 за расчетную величину

9. Выполняют операцию п.7.

10. Если результаты операций п.7 и п.9 положительны, то это означает, что СТР функционирует нормально.

Таким образом, как следует из вышеизложенного, в результате реализации предложенного авторами технического решения при контроле работы СТР КА, повышается точность определения величин расходов теплоносителя в параллельных ветвях жидкостного тракта СТР, необходимая для более достоверного прогноза и диагностики величин коэффициентов полезного действия приборов, установленных на сотовых панелях с параллельными ветвями, и, следовательно, тем самым достигается цель изобретения.

Способ контроля работы системы терморегулирования космического аппарата, включающий в себя телеметрические измерения обеспечиваемого электронасосным агрегатом суммарного расхода теплоносителя в жидкостном тракте системы, содержащем параллельные первую и вторую ветви, температур жидкостного тракта по показаниям датчиков температуры, установленных на каждом выходе из параллельных ветвей (t1; t2) и на общем выходе из них после точки смешения (t3), и на основе вышеуказанных телеметрических измерений определение величин расходов теплоносителя в указанных параллельных ветвях и соответствия их требуемым нормам, отличающийся тем, что после сборки жидкостного тракта и установки датчиков температуры определяют объемы участков жидкостных трактов от места установки указанных датчиков температуры до точки смешения потоков теплоносителя на выходе из параллельных ветвей, покрывают эти участки теплоизоляцией и при контроле работы системы величины расходов теплоносителя в параллельных ветвях в стабилизированном режиме работы приборов, установленных на панелях с параллельными ветвями, определяют по формулам:


где - расход теплоносителя в жидкостном тракте первой ветви, см3/с;
- суммарный расход теплоносителя в жидкостном тракте, обеспечиваемый электронасосным агрегатом, при определении расходов теплоносителя в жидкостных трактах параллельных ветвей в течение принятого промежутка времени, см3/с;
- температура жидкостного тракта на общем выходе из параллельных ветвей по данным телеметрических измерений датчика температуры t3 в момент времени °C;
τ0 - момент времени при определении величины расходов теплоносителя в параллельных ветвях, с;
Vbd - объем теплоносителя на участке жидкостного тракта от точки смешения потоков теплоносителя на выходе из параллельных ветвей до места установки датчика температуры t3, см3;
- расчетная величина расхода теплоносителя через первую параллельную ветвь, равная в первом приближении половине величины суммарного расхода , а в последующих приближениях равная величине, определенной в предыдущем приближении, см3/с;
- температура жидкостного тракта на выходе из второй ветви по данным телеметрических измерений датчика температуры t2 в момент времени °C;
Vbc - объем теплоносителя на участке жидкостного тракта второй ветви от точки смешения потоков теплоносителя до места установки датчика температуры t2, см3;
- температура жидкостного тракта на выходе из первой ветви по данным телеметрических измерений датчика температуры t1 в момент времени , °С;
Vab - объем теплоносителя на участке жидкостного тракта первой ветви от точки смешения потоков теплоносителя до места установки датчика температуры t1, см3;
- расход теплоносителя в жидкостном тракте второй ветви, см3/с.



 

Похожие патенты:

Изобретение относится к области создания и эксплуатации систем терморегулирования космических объектов и их элементов. .

Изобретение относится к космической технике, в частности к системам терморегулирования объектов, расположенных на космических аппаратах, и может быть использовано на предприятиях, занимающихся разработкой и эксплуатацией космической техники.

Изобретение относится к области космонавтики и касается устройств для изменения теплопередачи, а именно микроструктурных систем, содержащих упругие гибкие деформируемые исполнительные элементы.

Изобретение относится к космической технике и касается обеспечения требуемого температурного режима в герметичных отсеках космических аппаратов и станций. .

Изобретение относится к космической технике и касается проектирования автоматических космических аппаратов (КА) для эксплуатации на околоземных орбитах с приборными контейнерами, выполненными из сотопанелей с применением тепловых труб (ТТ).

Изобретение относится к наземному моделированию работы систем терморегулирования, преимущественно телекоммуникационных спутников, снабженных дублированными жидкостными контурами.

Изобретение относится к системам терморегулирования (СТР), главным образом телекоммуникационных спутников, в т.ч. .

Изобретение относится к технологии изготовления и испытаний элементов систем терморегулирования (СТР) космических аппаратов, преимущественно телекоммуникационных спутников.

Изобретение относится к технологии сборки жидкостных контуров систем терморегулирования, в частности телекоммуникационных спутников. .

Изобретение относится к управлению полетом космического аппарата (КА), преимущественно телекоммуникационного спутника, в составе которого имеется система терморегулирования (СТР) с дублированными жидкостными трактами.

Изобретение относится к созданию и отработке систем терморегулирования космических аппаратов (КА), преимущественно телекоммуникационных спутников

Изобретение относится к созданию и эксплуатации систем терморегулирования космических аппаратов, преимущественно телекоммуникационных спутников

Изобретение относится к устройству для отвода тепловых потерь, а также к системе ионного ускорителя с таким устройством

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников

Изобретение относится к системам терморегулирования космических аппаратов, преимущественно телекоммуникационных спутников

Изобретение относится к космической технике, в частности к посадочным и перелетным межпланетным космическим аппаратам, и может быть использовано для обеспечения теплового режима электронного и другого оборудования, предназначенного для длительного, автономного функционирования на Луне, на Марсе, а также на Земле в суровых климатических условиях

Изобретение относится к области испытательной техники и направлено на создание простого и безопасного для операторов, работающих в герметично изолированных от внешних сред обитаемых помещениях, оперативного способа определения местонахождения негерметичного участка гидравлической магистрали системы терморегулирования объекта после установления факта негерметичности, что обеспечивается за счет того, что при осуществлении способа определения местоположения негерметичного участка замкнутой гидравлической магистрали, снабженной побудителем расхода и гидропневматическим компенсатором температурного изменения объема рабочего тела, снижают давление среды в газовой полости гидропневматического компенсатора до уровня стабилизации этого давления в пределах погрешности измерения

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников

Изобретение относится к конструкции космического аппарата (КЛ) и его бортовым, главным образом, терморегулирующим системам. КЛ конструктивно объединяет модули целевой аппаратуры и служебных систем и снабжен термостабилизирующим кожухом, выполненным в виде прямоугольного параллелепипеда. На боковых его сторонах закреплены трехслойные сотовые термопанели (ТП) с металлическими обшивками, между которыми встроены тепловые трубы (ТТ). На оболочке кожуха выполнен канал для жидкого теплоносителя с шагом, равным шагу расположения ТТ. Теплоноситель имеет тепловой и механический контакт с соответствующими ТТ. Протяженность канала, длина ТТ и шаг между ТТ выбраны так, чтобы перепады температуры кожуха вдоль двух взаимно перпендикулярных направлений не превышали допустимых. Одна из ТП стенок кожуха, в виде пятислойной сотовой панели, обеспечивает механический контакт модулей целевой аппаратуры и служебных систем. На внешних обшивках этой ТП уложены трубопроводы гидромагистрали. Другая торцевая ТП выполнена в виде металлической пластины с отверстиями под крышки целевой аппаратуры. Каждое отверстие соосно оптической оси соответствующей аппаратуры. На внутренней поверхности торцевой ТП расположены трубопроводы гидромагистрали. Внутри кожуха вдоль продольной оси КА параллельно боковым стенкам закреплена размерно-стабильная несущая конструкция (например, из углепластика) для целевой аппаратуры. Обеспечивающие приборы модуля целевой аппаратуры установлены на верхней торцевой стенке кожуха. Кожух с внешней стороны изолирован от космического пространства экранно-вакуумной теплоизоляцией. Техническим результатом изобретения является повышение качества, в т.ч. точности получаемой КА целевой информации при сохранении его ресурсных характеристик. 4 ил.

Изобретение относится к системам термостатирования (СТС) энергоемкого оборудования космических объектов (КО). СТС содержит две двухполостные жидкостные термоплаты (22), на которые устанавливается оборудование. Термоплаты размещены в приборной зоне обитаемого отсека (1). Внешний радиатор (12) выполнен в виде четырех попарно диаметрально противоположных радиаторных панелей (14). Панель (14) снабжена контурной тепловой трубой с конденсатором (15), размещенным внутри панели (14), и испарителем (19) в составе конструкции автономного теплопередающего элемента (16), установленного на внешней поверхности корпуса КО рядом с панелью (14). Элемент (16) содержит также две однополостные жидкостные термоплаты (18). Испаритель (19) снабжен регулятором температуры пара (17), перекрывающим или открывающим магистраль контурной тепловой трубы в зависимости от температуры настройки. Термоплаты (22) связаны гидравлическими контурами (13, 21) с соответствующими однополостными жидкостными термоплатами (18) элементов (16). образуя замкнутые магистрали с однофазным рабочим телом. Каждый из контуров (13, 21) содержит электронасос (3), дренажно-заправочные клапаны (5), гидропневматический компенсатор (8), датчики давления (4, 7) и расхода (10), регулятор расхода (11) и электронагреватели (23). Каждый из контуров (13, 21) имеет датчики температуры рабочего тела (20). Заменяемые элементы контуров включены в магистрали через гидравлические разъемы (2). Ввод магистралей в обитаемый отсек (1) организован через гермовводы (6). СТС также содержит двухполостной газожидкостный теплообменный агрегат (24) с двумя заменяемыми вентиляторами, включенный в оба контура (13, 21). Техническим результатом изобретения является расширение области применения СТС, повышение ее надежности и снижение инерционности, а также улучшение ремонтопригодности системы. 1 ил.

Изобретение относится к системам терморегулирования, преимущественно телекоммуникационных спутников

Наверх