Система контроля поверхности катания железнодорожной колесной пары


 


Владельцы патента RU 2483958:

Открытое акционерное общество "Российские железные дороги" (RU)

Изобретение относится к области измерительной техники и предназначено для автоматического контроля технического состояния рельсового подвижного состава в процессе его эксплуатации. Система контроля поверхности катания колеса железнодорожной колесной пары содержит две группы датчиков динамических нагрузок, датчики зоны контроля, блок датчиков температуры щебеночного балласта, блок сопряжения, блок сравнения. В систему также введены блоки прямого преобразования Фурье, блок вычисления усредненных амплитудно-частотных характеристик, блоки первой корректировки коэффициентов усиления, блоки второй корректировки коэффициентов усиления, блок коррекции коэффициентов усиления датчиков динамических нагрузок, по месту приложения к датчикам внешней силы, и блок обратного преобразования Фурье. В результате повышается достоверность определения дефектных колесных пар. 1 ил.

 

Изобретение относится к области измерительной техники и предназначено для автоматического контроля технического состояния рельсового подвижного состава в процессе его эксплуатации.

Известна система мониторинга износа поверхности катания колеса железнодорожной колесной пары, содержащая датчики динамических нагрузок, в виде акселерометров, закрепленных на рельсе, датчики начала и конца зоны контроля, в виде магнитоэлектрических датчиков, и блок обработки сигналов, входами соединенный с выходами датчиков, а выходом - с блоком принятия решения, выполненным в виде компьютера (RU 2337031, B61K 9/12, 27.10.08).

Известная система позволяет с достаточной точностью осуществлять диагностику состояния поверхности катания колеса за счет одновременного измерения высоты гребня колеса и динамических нагрузок, действующих на рельсы при движении поезда. Недостатком известной системы является относительно невысокая надежность акселерометров в условиях высокой интенсивности движения поездов через контрольный участок пути.

Наиболее близким техническим решением является выбранная в качестве прототипа система контроля поверхности катания колеса железнодорожной колесной пары, содержащая две группы датчиков динамических нагрузок, датчики зоны контроля, расположенные вдоль рельса, в начале и в конце измерительного участка, блок датчиков температуры щебеночного балласта, установленных по обе стороны пути, на глубине уровня подошвы шпалы, причем датчики динамических нагрузок выполнены в виде волоконно-оптических датчиков давления и установлены на измерительном участке пути, длиной не меньше длины окружности колеса и по разные стороны пути, напротив друг друга, между шпалой и рельсом, при этом выходные концы, каждой группы датчиков динамических нагрузок, подключены к соответствующим входам преобразователя оптического сигнала в электрический, а входные концы подключены к источнику оптического излучения, блок сопряжения, входы которого подключены к выходам датчиков зоны контроля, а выход - к входу блока счетчика колесных пар, к входу блока определения скорости движения поезда, и входу управления блоком питания, блок сравнения, один вход которого подключен к выходу блока датчиков температуры, а другой вход - к выходам блока эталонных значений температур, выходы блока сравнения, блока определения скорости движения поезда, блока счетчика колесных пар и блока идентификации вагона, соответственно, соединены с первым, вторым, третьим и четвертым входами блока принятия решений, первый выход которого соединен с персональным компьютером автоматизированного рабочего места работника диспетчерского центра, второй выход соединен с входом блока индикации, а третий выход соединен с входом блока хранения информации (RU 92840, B61K 9/12, B61L 27/04, 10.04.10).

Система имеет высокий уровень отказоустойчивости в условиях интенсивной эксплуатации за счет использования датчиков динамических нагрузок, устойчивых к ударным нагрузкам, однако обладает не достаточным уровнем достоверности определения дефектов, из-за влияния технологических разбросов параметров датчиков.

Технический результат изобретения заключается в повышении достоверности определения дефектных колесных пар.

Технический результат достигается тем, что в систему контроля поверхности катания колеса железнодорожной колесной пары, содержащую две группы датчиков динамических нагрузок, датчики зоны контроля, расположенные вдоль рельса, в начале и в конце измерительного участка, блок датчиков температуры щебеночного балласта, установленных по обе стороны пути, на глубине уровня подошвы шпалы, причем датчики динамических нагрузок выполнены в виде волоконно-оптических датчиков давления и установлены на измерительном участке пути, длиной не меньше длины окружности колеса и по разные стороны пути, напротив друг друга, между шпалой и рельсом, при этом выходные концы каждой группы датчиков динамических нагрузок, подключены к соответствующим входам преобразователя оптического сигнала в электрический, а входные концы подключены к источнику оптического излучения, блок сопряжения, входы которого подключены к выходам датчиков зоны контроля, а выход - к входу блока счетчика колесных пар, к входу блока определения скорости движения поезда и входу управления блоком питания, блок сравнения, один вход которого подключен к выходу блока датчиков температуры, а другой вход - к выходу блока эталонных значений температур, выходы блока сравнения, блока определения скорости движения поезда, блока счетчика колесных пар и блока идентификации вагона, соединены, соответственно, с первым, вторым, третьим и четвертым входами блока принятия решений, первый выход которого соединен с персональным компьютером автоматизированного рабочего места работника диспетчерского центра, второй выход соединен с входом блока индикации, а третий выход соединен с входом блока хранения информации, согласно изобретению введены блоки прямого преобразования Фурье, блок вычисления усредненных амплитудно-частотных характеристик, блоки первой корректировки коэффициентов усиления, блоки второй корректировки коэффициентов усиления, блок коррекции коэффициентов усиления датчиков динамических нагрузок, по месту приложения к датчикам внешней силы, и блок обратного преобразования Фурье, при этом выходы блока обратного преобразования Фурье подключены, соответственно, к пятому и шестому входам блока принятия решений, а выходы преобразователя оптического сигнала в электрический, соответствующие, упомянутым группам датчиков динамических нагрузок соединены, соответственно, с входами блоков прямого преобразования Фурье, первые выходы которых подключены, соответственно, к первым входам блоков первой корректировки коэффициентов усиления, а вторые выходы - к соответствующим входам блока вычисления усредненных амплитудно-частотных характеристик, выходы которого соединены, соответственно, с вторыми входами блоков первой корректировки коэффициентов усиления, выходы которых подключены к первым входам соответствующих блоков второй корректировки коэффициентов усиления, вторые входы которых соединены с выходом блока коррекции коэффициентов усиления датчиков динамических нагрузок, по месту приложения к датчикам внешней силы, вход которого соединен с выходом блока определения скорости движения поезда, при этом выходы блоков второй корректировки коэффициентов усиления соединены, соответственно, с первым и вторым входами блока обратного преобразования Фурье.

На чертеже представлена структурная схема предлагаемой системы контроля поверхности катания колеса железнодорожной колесной пары.

Система контроля поверхности катания колеса железнодорожной колесной пары содержит две группы датчиков 1 динамических нагрузок, датчики 2 зоны контроля (рельсовые контакты), расположенные вдоль рельса, в начале и в конце измерительного участка 3, блок 4 датчиков температуры щебеночного балласта, установленных по обе стороны пути, на глубине уровня подошвы шпалы, причем датчики 1 динамических нагрузок выполнены в виде волоконно-оптических датчиков давления и установлены на измерительном участке 3 пути длиной не меньше длины окружности колеса и по разные стороны пути, напротив друг друга, между шпалой и рельсом, при этом выходные концы каждой группы датчиков 1 динамических нагрузок подключены к соответствующим входам преобразователя 5 оптического сигнала в электрический, а входные концы - подключены к источнику 6 оптического излучения, блок 7 сопряжения, входы которого подключены к выходам датчиков 2 зоны контроля, а выход - к входу блока 8 счетчика колесных пар, к входу блока 9 определения скорости движения поезда и входу управления блоком питания 10, блок 11 сравнения, один вход которого подключен к выходу блока 4 датчиков температуры, а другой вход - к выходу блока 12 эталонных значений температур, выходы блока 11 сравнения, блока 9 определения скорости движения поезда, блока 8 счетчика колесных пар и блока 13 идентификации вагона, соответственно, соединены с первым, вторым, третьим и четвертым входами блока 14 принятия решений, первый выход которого соединен с персональным компьютером 15 автоматизированного рабочего места работника диспетчерского центра, второй выход соединен с входом блока 16 индикации, а третий выход соединен с входом блока 17 хранения информации. Выходы блока 18 обратного преобразования Фурье подключены к пятому и шестому входам блока 14 принятия решений, а выходы преобразователя 5 оптического сигнала в электрический, соответствующие упомянутым группам датчиков 1 динамических нагрузок, соответственно, соединены с входами блоков 19 и 20 прямого преобразования Фурье, первые выходы которых, соответственно, подключены к первым входам блоков 21 и 22 первой корректировки коэффициентов усиления, а вторые выходы - к соответствующим входам блока 23 вычисления усредненных амплитудно-частотных характеристик, первый и второй выходы которого, соответственно, соединены с вторыми входами блоков 21 и 22 первой корректировки коэффициентов усиления, выходы которых подключены к первым входам блоков 24 и 25 второй корректировки коэффициентов усиления, вторые входы которых соединены с выходом блока 26 коррекции коэффициентов усиления, по месту приложения к датчикам 1 внешней силы, вход которого соединен с выходом блока 9 определения скорости движения поезда, при этом выходы блоков 24 и 25 второй корректировки коэффициентов усиления, соответственно, соединены с первым и вторым входами блока 18 обратного преобразования Фурье.

Система контроля поверхности катания колеса железнодорожной колесной пары функционирует следующим образом.

Статическую составляющую усилий действующих в паре колесо рельс определяют, как среднее значение максимального и минимального значений измеренных усилий. Динамическая составляющая равна максимальной величине абсолютного значения динамического приращения вертикальной силы. Зная динамическую и статическую составляющие, в блоке 14 рассчитывают динамический коэффициент, как отношение статической и динамической составляющих усилий к статической нагрузке на колесо.

Основным параметром, для определения наличия дефекта на поверхности катания колеса является динамический коэффициент, который отражает влияние на величину измеряемых усилий, как со стороны подвижного состава, так и со стороны пути. Динамический коэффициент равный единице означает, что вагон, находящийся в зоне измерительного участка 3, неподвижен, т.е. силы взаимодействия между вагоном и путем равны статической нагрузке. При проходе подвижного состава по измерительному участку 3, динамический коэффициент становится больше единицы. Он имеет привязку к конкретному месту, так как верхнее строение пути в силу неоднородности структуры неоднозначно реагирует на прохождение поезда.

При вступлении первой колесной пары поезда в начало измерительного участка 3 срабатывает блок датчиков 2 зоны контроля, и включает блок 10 питания. При этом включается источник 6 оптического излучения (лазерного излучения) и, установленные в зоне контроля волоконно-оптические датчики 1, осуществляют преобразование вертикальных сил, действующих на рельсы от каждого колеса, движущегося по измерительному участку пути, в изменение интенсивности светового потока так, как под действием усилий со стороны рельса датчики 1 групп, связанных с правым и левым рельсами рельсового пути, деформируются. Преобразователь 5 осуществляет преобразование величины светового потока, с выхода каждого датчика 1, в электрический сигнал.

Для коррекции измерения усилий датчиками 1 от изменения температуры окружающей среды используются температурные датчики 4, которые измеряют температуру с каждой стороны полотна пути. Показания датчиков 4 в блоке сравнения 11 сравнивают с эталонными значениями, поступающими от блока эталонных значений 12, и вырабатывают поправки к измеренным амплитудам электрических сигналов датчиков 1, которые используются блоком 14 принятия решений.

В процессе обработки электрических сигналов от преобразователя 5 для каждого колеса система осуществляет сложную обработку отдельных сигналов, выраженных первичными функциями изменения их амплитуды от времени, и в конечном итоге вычисляет искомые динамические коэффициенты.

В предлагаемой системе при определении динамических коэффициентов используется ряд преобразований и калибровок, позволяющий, по сравнению с прототипом, уменьшить в среднем в 2 раза погрешность, вызванную разбросами результирующих коэффициентов усиления различных датчиков 1.

Эти разбросы, в основном, обусловлены двумя факторами. Физические разбросы чувствительности из-за разбросов параметров конструкций и изменения чувствительности датчиков 1, связанные с местом приложения сосредоточенного ударного воздействия, по длине датчика 1, относительно геометрического центра датчика 1.

Физические разбросы носят случайный характер, обусловленный, например, различиями коэффициентов механической передачи усилий от рельса на чувствительный элемент датчика (оптоволокно), в конкретном месте расположения каждого датчика.

Зависимость изменения чувствительности датчиков 1 от места приложения ударного воздействия, по длине датчика 1, относительно его геометрического центра, статистически определяется для каждого датчика 1 заранее и далее учитывается в расчетах.

Обработка электрических сигналов осуществляется отдельно для групп датчиков 1, принадлежащих разным сторонам пути измерительного участка. Это позволяет определить дефекты отдельных колес колесных пар и учесть погрешности, связанные с наложением ударных воздействий от дефектов обоих колес одной колесной пары и также, учесть влияние несимметричного распределения на колеса колесной пары веса вагона.

Расчеты используют информацию о спектральных характеристиках, основанную на откорректированных результатах прямого преобразования Фурье (преимущественно используется алгоритм БПФ - быстрого преобразования Фурье) временного графика изменения напряжения на выходах преобразователя 5, для каждого электрического сигнала, формируемого проходом каждого колеса над каждым датчиком 1 соответствующей стороны измерительного участка.

Прямое преобразование Фурье выполняют блоки 19 и 20 прямого преобразования Фурье. В блоке 23 вычисления усредненных амплитудно-частотных характеристик (АЧХ) вычисляют усредненные АЧХ для групп датчиков 1 каждой стороны пути измерительного участка 3. В блоках 21 и 22 первой корректировки коэффициентов усиления производят приведение, по всем частотам спектра преобразования Фурье, коэффициентов усиления датчиков 1 к усредненным коэффициентам усиления для своих групп и, соответственно, получают АЧХ первично откалиброванных сигналов.

Вторую корректировку коэффициентов усиления осуществляют блоки 24 и 25 второй корректировки коэффициентов усиления. Они принимают по своим первым входам АЧХ, полученные в результате первой корректировки от блоков 21 и 22 первой корректировки коэффициентов усиления, и дополнительно корректируют их на основе данных, поступающих на их вторые входы, от блока 26 коррекции коэффициента усиления по месту приложения к датчикам внешней силы. Блок 26 использует информацию о средней скорости движения каждого вагона по измерительному участку 3. Ввиду того, что измерительный участок 3 достаточно короткий, блок 9 определения скорости движения поезда для каждого проходящего вагона выдает в блок 26 одно значение скорости движения. Исходя из имеющейся информации о расположении и длине датчиков 1, а также о времени вступления первой оси вагона на измерительный участок 3, блок 26 рассчитывает моменты времени прохождения оси каждого колеса вагона над центром каждого датчика 1. Далее, по смещению импульсов от датчиков 1 относительно этих моментов времени, он определяет место приложения ударного воздействия по длине каждого датчика 1. В соответствии с определенными смещениями точек воздействия относительно центров датчиков 1 блок 26 подает на вторые входы блоков 24 и 25 второй корректировки коэффициентов усиления корректирующие данные для второй коррекции коэффициентов усиления и соответственно АЧХ сигналов от датчиков 1. Блок 26 также учитывает при калибровке влияние скорости движения вагона на силу и время воздействия дефектов колеса на рельс.

От блоков 24 и 25 откорректированные АЧХ сигналов от датчиков 1 передаются в блок 18 обратного преобразования Фурье, использующий обратное преобразования Фурье для восстановления сигналов от датчиков 1 в виде функций времени, АЧХ сигналов от датчиков 1 и соответствующие им функции времени от блока 18 обратного преобразования Фурье передаются в блок 14 принятия решений. Блок 14 принятия решений, на основании функции времени восстановленных сигналов от датчиков 1, вычисляет для каждого сигнала статическую и динамическую составляющую силы вертикального давления на рельс в пиковый момент удара и их соотношение для определения статистически усредненного коэффициента динамического воздействия колеса на рельс. Усредненное, по множеству сигналов от датчиков 1, значение рассчитывается для каждого дефекта каждого колеса. Анализ результатов в блоке 14 принятия решений выполняется с учетом скорости движения поезда по измерительному участку 3, передаваемой в него от блока измерения скорости 9, типа вагонов, передаваемого в него из блока 13 идентификации вагона, определяющего идентификационный номер проходящего измерительный участок 3 вагона, и поправок на температуру окружающей среды, в месте установки датчиков 1, передаваемых от блока 11. Блок 14 принятия решений определяет порядковые номера колесных пар по данным от блока 8 счетчика осей и регистрирует колеса с дефектами, превышающими нормы по допустимому динамическому коэффициенту воздействия колес вагонов на рельсы, и отображает эти данные оператору на дисплее блока 16 индикации. В процессе определения дефектных колес блок 14 принятия решений также определяет по функциям сигналов от датчиков 1 и с учетом перечисленных выше влияющих факторов, скорости и типа вагонов, виды и степени развития дефектов передает все данные в персональный компьютер 15 автоматизированного рабочего места работника диспетчерского центра для архивирования, прогнозирования отказов и для отображения данных в виде удобном для управления процессом обслуживания и ремонта. В блоке 17 хранения информации постоянно суммируется общее количество пропущенных через участок колесных осей. Это позволяет определить степень старения волоконно-оптических датчиков для проведения дополнительных периодических калибровок или их замены.

При принятии решений по дефектам точность может быть дополнительно повышена, за счет группирования дефектов, с применением кластерного анализа и на основе заранее установленных критериев, связанных с характером дефектов, их размерами и расстоянием между ними.

При объединении в кластеры дефекты группируются в однородные группы с близкими значениями параметров. Например, могут быть сформированы кластеры таких дефектов, как навары, наплывы, выбоины, выщерблины, ползуны. Площадь и отношение сторон кластера позволяют усилить детализацию. Например, разделить компактные дефекты и протяженные дефекты. Дополнительно можно образовать кластеры дефектов типа выщерблин и типа кольцевых выработок.

Каждый из кластеров может иметь свои дополнительные и более точные критерии оценки того, что дефект превысил допустимую норму. При этом критериями оценки может быть не только назначение пороговых величин для динамических коэффициентов, рассчитанных по функциям во временной области, но и задание ограничений на амплитуды гармоник АЧХ для выбранных поддиапазонов частот, характерных для тех или иных групп дефектов, в тех или иных диапазонах скоростей движения.

Таким образом, из-за более точной обработки исходных сигналов от датчиков 1 предлагаемая система, по сравнению с прототипом, обеспечивает повышение достоверности определения различных дефектов на поверхности катания колеса подвижного состава, при высокой надежности работы в условиях интенсивного движения поездов.

Система контроля поверхности катания колеса железнодорожной колесной пары, содержащая две группы датчиков динамических нагрузок, датчики зоны контроля, расположенные вдоль рельса, в начале и в конце измерительного участка, блок датчиков температуры щебеночного балласта, установленных по обе стороны пути, на глубине уровня подошвы шпалы, причем датчики динамических нагрузок выполнены в виде волоконно-оптических датчиков давления и установлены на измерительном участке пути, длиной не меньше длины окружности колеса и по разные стороны пути, напротив друг друга, между шпалой и рельсом, при этом выходные концы каждой группы датчиков динамических нагрузок подключены к соответствующим входам преобразователя оптического сигнала в электрический, а входные концы подключены к источнику оптического излучения, блок сопряжения, входы которого подключены к выходам датчиков зоны контроля, а выход - к входу блока счетчика колесных пар, к входу блока определения скорости движения поезда и входу управления блоком питания, блок сравнения, один вход которого подключен к выходу блока датчиков температуры, а другой вход - к выходу блока эталонных значений температур, выходы блока сравнения, блока определения скорости движения поезда, блока счетчика колесных пар и блока идентификации вагона соединены, соответственно, с первым, вторым, третьим и четвертым входами блока принятия решений, первый выход которого соединен с персональным компьютером автоматизированного рабочего места работника диспетчерского центра, второй выход соединен с входом блока индикации, а третий выход соединен с входом блока хранения информации, отличающаяся тем, что в нее введены блоки прямого преобразования Фурье, блок вычисления усредненных амплитудно-частотных характеристик, блоки первой корректировки коэффициентов усиления, блоки второй корректировки коэффициентов усиления, блок коррекции коэффициентов усиления датчиков динамических нагрузок, по месту приложения к датчикам внешней силы, и блок обратного преобразования Фурье, при этом выходы блока обратного преобразования Фурье подключены, соответственно, к пятому и шестому входам блока принятия решений, а выходы преобразователя оптического сигнала в электрический, соответствующие упомянутым группам датчиков динамических нагрузок, соединены, соответственно, с входами блоков прямого преобразования Фурье, первые выходы которых подключены, соответственно, к первым входам блоков первой корректировки коэффициентов усиления, а вторые выходы - к соответствующим входам блока вычисления усредненных амплитудно-частотных характеристик, выходы которого соединены, соответственно, с вторыми входами блоков первой корректировки коэффициентов усиления, выходы которых подключены к первым входам соответствующих блоков второй корректировки коэффициентов усиления, вторые входы которых соединены с выходом блока коррекции коэффициентов усиления датчиков динамических нагрузок, по месту приложения к датчикам внешней силы, вход которого соединен с выходом блока определения скорости движения поезда, при этом выходы блоков второй корректировки коэффициентов усиления соединены, соответственно, с первым и вторым входами блока обратного преобразования Фурье.



 

Похожие патенты:

Изобретение относится к диагностике поверхности катания колесных пар подвижного состава железнодорожного транспорта и метрополитена. .

Изобретение относится к железнодорожному транспорту, а именно к автоматизированным системам, предназначенным для повышения безопасности движения поездов. .

Изобретение относится к области машиностроения, к способам технологического контроля, а именно к способам контроля колеса колесной пары локомотива в движении, и может быть использовано для измерения геометрических параметров, выявления износа и дефектов цельнокатаных колес на ходу поезда.

Изобретение относится к области контроля технического состояния вагонов поезда и может быть использовано для выявления дефектов, неисправностей и повреждений тележек, колесных пар и буксовых узлов в процессе движения поезда.

Изобретение относится к измерительной технике и может быть использовано для автоматизированного контроля технического состояния колесной пары железнодорожного транспорта при его движении по рельсовому пути.

Изобретение относится к контрольно-измерительной технике и предназначено для автоматического измерения диаметра поверхности катания колесных пар рельсовых транспортных средств в движении.

Изобретение относится к области измерительной техники и может быть использовано для автоматизированного контроля технического состояния колесной пары рельсового подвижного состава в процессе его эксплуатации.

Изобретение относится к оборудованию для измерений железнодорожных рельс и колес. .

Изобретение относится к области дефектоскопии и неразрушающего контроля

Изобретение относится к железнодорожному транспорту и может быть использовано для контроля технического состояния колесной пары железнодорожного транспорта при его движении по рельсовому пути. Согласно способу после наезда колеса (9) на стык (4) в колесе начинает распространяться круговая волна, которая проходя по колесу (9), вызывает появление акустической волны, исходящей от колеса и регистрируемой датчиком (1). Датчик преобразует акустическую волну в электрический сигнал. При отсутствии трещин длительность и частота сигнала будут иметь определенное значение. В случае наличия трещины в колесе указанные параметры изменятся - длительность и частота уменьшатся, что будет свидетельствовать о недопустимости дальнейшей эксплуатации этого колеса. Затем колесо (9) начнет катиться по участку (5), протяженность которого в данном случае равна половине длины окружности колеса, на котором с помощью акустических датчиков осуществляется проверка качества поверхности катания. В результате упрощается конструкция осуществляющего контроль устройства, повышаются эксплуатационные характеристики, снижается энергопотребление. 7 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть использовано на железнодорожном транспорте для бесконтактного измерения профиля железнодорожных колес с помощью мобильных лазерных триангуляционных датчиков. Устройство включает по меньшей мере пять мобильных лазерных триангуляционных датчиков (3-7), из которых: первый, второй и третий - формируют параллельные друг другу зондирующие лучи. При этом третий, четвертый и пятый датчики размещены друг относительно друга с возможностью определения центра колеса. Также раскрыт способ измерения профиля железнодорожного колеса, примененный алгоритм которого позволяет скорректировать реальные значения измеренных профилей с учетом произвольной ориентации датчиков. Технический результат - расширение функциональных возможностей и повышение удобства в эксплуатации измерительного устройства. 2 н. и 2 з.п. ф-лы, 13 ил.

Изобретение относится к способу контроля состояния поворотной тележки (3) рельсового транспортного средства, имеющей, по меньшей мере, одну колесную пару (4). Причем колеса (8) колесной пары (4) жестко соединены осью (6) и имеют приближенно конический профиль колеса. На поворотных тележках (3) располагают датчики (10). Из сигналов, поданных датчиками (10), выделяются сигналы, которые соответствуют синусоидальному ходу колесной пары (4) поворотной тележки (3), базирующемуся на коническом профиле колеса колес (8). Изобретение предусматривает, что определяется частота (f) синусоидального хода в отношении к краевым условиям как соответственно существующая скорость (v) движения транспортного средства и сравнивается с хранящимся в памяти значением или диапазоном значений для частоты (f) синусоидального хода, типичным для имеющихся краевых условий, причем контролируется отклонение измеренной частоты (f) от хранящегося в памяти значения или диапазона значений для этой частоты (f). Изобретение относится к устройству для осуществления указанного способа. В результате повышается точность и качество контроля состояния поворотной тележки. 3 н. и 11 з.п. ф-лы, 5 ил.

Стационарное устройство предназначено для измерения в условиях эксплуатации износа бандажей (проката) и износа гребней (подреза) локомотивных колесных пар. В заявленном стационарном устройстве рельсовые вставки смещены относительно друг друга на расстоянии 4-5 метров, их профили выполнены в соответствии со стандартным профилем бандажей. Дополнительно вставки оборудованы контррельсами, обеспечивающими, в процессе измерения проката и подреза гребней бандажей, смещение колесной пары в одинаковые контролируемые положения. Кроме этого, рельсовые вставки дополнительно в вертикальной и горизонтальной плоскостях оборудованы возвратно-подвижными толкателями, которые контактно сопряжены с индуктивными датчиками линейных перемещений, и толкатели размещены на расстоянии 70 мм от внутренних граней бандажей и 20 мм от вершин гребней. В результате повышается точность измерений, достигается независимость точности измерений от погодных условий. 1 з.п. ф-лы, 3 ил.

Изобретение относится к измерительным устройствам. Устройство замера горизонтальных усилий между гребнем колеса и головкой рельса при проведении макетных исследований движения подвижного состава по рельсовому пути состоит из макета рельс в виде стальной ленты, креплений, шпал и датчиков. В месте замера на макете рельс, выполненном в виде полосы, делается выборка материала для возможности установки чувствительного элемента в виде пластинки, повторяющей форму макета рельс определенной длины, высоты и толщины, что обеспечивает разделение действия весовой и горизонтальной сил в точках контакта колеса и рельса. В результате повышается точность моделирования и адекватность результатов исследования. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области железнодорожного транспорта. Согласно способу автоматического считывания сил воздействия колеса железнодорожного транспорта на рельс происходит преобразование механических сил воздействия колеса на рельс в давление жидкости. Далее происходит преобразование изменяющегося давления жидкости, которое возникает в результате взаимодействия колес с рельсом в процессе движения, в электрический сигнал, который повторяет форму сигнала результирующих мгновенных значений сил воздействия колеса на рельсы. Затем проводится анализ полученного сигнала для определения дефектов элементов подвески. Устройство для осуществления автоматического считывания мгновенных сил воздействия колеса железнодорожного транспорта на рельс включает размещенный под рельсом резервуар с жидкостью и поршнем, передающим воздействие колес на жидкость. При этом резервуар с жидкостью связан с датчиком давления. Герметичность резервуара обеспечивается посредством гибкой герметизирующей прокладки, размещенной в резервуаре и контактирующей с поршнем. В результате повышается безопасность железнодорожного транспорта за счет своевременного выявления повреждений элементов подвески. 2 н. и 2 з.п. ф-лы, 4 ил.

Изобретение относится к автоматизированным системам, предназначенным для измерения динамических характеристик вагонов. Автоматизированная система измерения динамических характеристик и выявления вагонов с отрицательной динамикой содержит блок лазерных маркеров, измеряющий с помощью видеокамеры и лазеров положение борта вагона и выделение кадра с бортовым номером, комплект трех компонентных комбинированных датчиков, расположенных попарно друг напротив друга на каждом рельсе, включающих в себя индуктивный датчик, регистрирующий проход колеса вагона, акселерометр, измеряющий уровень воздействия колеса в трехмерном пространстве, и гироскоп, определяющий величину смещения рельса. Автоматизированная система содержит также многоканальный цифровой регистратор данных, полученных от датчиков и видеокамер, соединенных линиями связи, оснащенными защитой от мощных электрических разрядов, и имеющих оптоэлектронную развязку, синхронизированных контроллером предварительной обработки результатов измерений и формирования управляющих сигналов, необходимых для работы системы. Контроллером производится подсчет количества осей в проходящем составе и предварительное распознавание типов подвижных единиц. В результате расширяются функциональные возможности системы, повышается безопасность движения поездов. 2 з.п. ф-лы, 1 ил.
Наверх