Способ отбора проб костного материала для палеогенетических, биохимических и радиоуглеродных исследований



Способ отбора проб костного материала для палеогенетических, биохимических и радиоуглеродных исследований
Способ отбора проб костного материала для палеогенетических, биохимических и радиоуглеродных исследований
Способ отбора проб костного материала для палеогенетических, биохимических и радиоуглеродных исследований
Способ отбора проб костного материала для палеогенетических, биохимических и радиоуглеродных исследований

 

G01N1/28 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2484445:

Меренков Валерий Геннадьевич (RU)

Изобретение относится к биологии, а именно к палеогенетике, и может быть использовано в судебно-медицинской практике при проведении идентификации костных останков, а также в археологии при проведении радиоуглеродного датирования костного материала. Способ отбора проб костного материала для палеогенетических, биохимических и радиоуглеродных исследований включает высушивание костного материала и изготовление костных образцов. Образцы получают путем распила костного материала на пластины с последующими шлифовкой и механическим выделением не фоссилизированного костного вещества. Выделение не фоссилизированного костного вещества проводится в затемненном помещении при освещении длинноволновой ультрафиолетовой люминесцентной лампой с длиной волны 340-380 нм. Достигаемый при этом технический результат заключается в улучшении качества пробоподготовки, позволяющее выделять из костных образцов не фоссилизированные участки кости, а также в повышении достоверности исследований. 4 ил.

 

Изобретение относится к биологии, а именно к палеогенетике. Перспективным является его использование в судебно-медицинской практике при проведении идентификации костных останков и в археологии при проведении радиоуглеродного датирования костного материала.

Костные останки способны длительное время сохраняться в почве. Они широко используются при проведении биохимических и генетических исследований, в судебно-медицинской практике при проведении генетической идентификации костных останков, а также в археологии при определении абсолютного возраста археологических материалов методом радиоуглеродного анализа. Известно, что фоссилизация (естественная минерализация) в значительной степени снижает точность таких исследований.

Для уменьшения негативных последствий фоссилизации, при исследовании используются длинные трубчатые кости, наименее подверженные фоссилизации, костный материал которых подвергают специальной химической обработке (Петрищев В.Н., Кутуева А.Б., Рычков Ю.Г. Простой и эффективный метод выделения ДНК из ископаемых костей для последующей амплификации с помощью полимеразной цепной реакции // Генетика. - 1993. - Т.29. - №4. - С.690-191; Могнонов Д.М. и др. Способ абсолютного датирования остеологического материала археологических источников. Патент РФ №2187096 от 10.08.02; Могнонов Д.М. и др. Способ датирования остеологического материала археологических источников методом пиролитической газовой хроматографии. Патент РФ №2194980 от 20.12.02.) Но существующие методы подготовки проб не позволяют полностью исключить попадание в исследуемые пробы фоссилизированного костного материала, что значительно снижает точность последующих исследований.

Цель данного изобретения - улучшение качества пробоподготовки, позволяющее выделять из костных образцов не фоссилизированные участки кости, пригодные для дальнейших биохимических, генетических и радиоуглеродных исследований.

Многие белки, в том числе оссеин, костного вещества обладают способностью к фотолюминесценции под воздействием длинноволнового ультрафиолетового излучения с длинной волны 315-400 нм, исчезающей при его денатурации. (Черногрядская Н.А. и др. Ультрафиолетовая флуоресценция клетки. - Л.: Наука, 1978.) Традиционно для исследования биологических материалов применяется Лампа Вуда «лампа черного цвета» с длиной волны 340-380 нм. Фактором, мешающим фотолюминесценции, также является наличие на образце большого количества неорганических загрязнений, в том числе воды или частиц абразивного материала. Применение при препаровке биологических объектов более жесткого ультрафиолетового излучения может привести к деструкции белка и затрудняется необходимостью использования специальных средств защиты (ГОСТ 4557-88 Санитарные нормы ультрафиолетового излучения в производственных помещениях). Ультрафиолетовое излучение с длиной волны больше 380 нм не используется, так как воспринимается человеческим глазом как слабый свет и маскирует люминесценцию.

Поставленная цель достигается тем, что препаровка костных образцов ведется при освещении длинноволновой ультрафиолетовой люминесцентной лампой с длиной волны 315-400 нм.

На первом этапе подготовки пробы изготавливаются костные образцы, для чего костный материал предварительно высушивается, затем распиливается на пластины толщиной 5-7 мм. Толщина пластин определяется удобством дальнейшей препаровки: в случае использования более тонких образцов, повышается вероятность их повреждения при шлифовке, использование более толстых образцов создает неудобства при выделении необходимых образцов. Полученные образцы шлифуются на абразивных кругах убывающей зернистости до исчезновения царапин, видимых невооруженным глазом. Дальнейшая подготовка пробы проводится в затемненном помещении при освещении ультрафиолетовой люминесцентной лампой с длиной волны 315-400 нм. При таком освещении не фоссилизированная кость приобретает яркую голубовато-белую окраску, фоссилизированная кость - тусклую сероватую, буроватую, иногда - почти черную, частицы абразивных материалов - светло-фиолетовую. Частицы абразивных материалов удаляются с поверхности с помощью кисточки из натуральной щетины. Дальнейшее выделение не фоссилизированного фрагмента кости производится любым доступным механическим способом: фрезой, лобзиком или обкалываем с помощью скальпеля.

Нами были исследованы длинные трубчатые кости из 37 захоронений XVII века на территории г.Смоленска. На фиг.1, 2 представлена фотография шлифа большой берцовой кости взрослого человека. Толщина шлифа - 7 мм. На фиг.3, 4 - фотография шлифа большой бедренной кости ребенка. Толщина шлифа - 5 мм. Шлифы были получены путем выпиливания лобзиком и дальнейшей полировкой на абразивных кругах убывающей зернистости, далее - сфотографированы при видимом свете и при освещении длинноволновой ультрафиолетовой люминесцентной лампой.

Предлагаемый способ выделения не фоссилизированных листков кости позволяет получить для исследования наиболее сохранившиеся фрагменты костного вещества, что резко увеличивает точность биохимических, палеогенетических, радиоуглеродных исследований, и повышает достоверность идентификации костных останков в судебной медицине.

Способ прост в использовании, основан на применении доступного оборудования, не требует специальной подготовки персонала.

Сущность изобретения поясняется фигурами, где на фиг.1 представлена фотография костного образца большой берцовой кости взрослого человека из захоронения XVII века при видимом освещении, на фиг.2 представлена фотография костного образца большой берцовой кости взрослого человека из захоронения XVII века при ультрафиолетовом освещении длинноволновой ультрафиолетовой люминесцентной лампой с длиной волны 315-400 нм, позицией 1 отмечено не фоссилизированное костное вещество; позицией 2 - фоссилизированное костное вещество; позицией 3 - участок, незначительно загрязненный абразивным материалом. На фиг.3, 4 представлена фотография костного образца бедренной кости ребенка при видимом освещении и освещении длинноволновой ультрафиолетовой люминесцентной лампой с длиной волны 315-400 нм.

Способ отбора проб костного материала для палеогенетических, биохимических и радиоуглеродных исследований, включающий высушивание костного материала, изготовление костных образцов, получаемых путем распила костного материала на пластины, с последующими шлифовкой и механическим выделением нефоссилизированного костного вещества, отличающийся тем, что выделение нефоссилизированного костного вещества проводится в затемненном помещении при освещении длинноволновой ультрафиолетовой люминесцентной лампой с длиной волны 340-380 нм.



 

Похожие патенты:

Изобретение относится к сигнализатору паров кислоты, который может быть использован для измерения концентрации паров кислоты и сигнализации о содержании в рабочей зоне при химической обработке (травлении) металлоизделий при повышенных температурах раствора.

Изобретение относится к сигнализатору паров кислоты, который может быть использован для измерения концентрации паров кислоты и сигнализации о содержании в рабочей зоне при химической обработке (травлении) металлоизделий при повышенных температурах раствора.

Изобретение относится к устройствам для дисперсного анализа и одновременного измерения объемной активности аэрозольной и газовой фракций радиоактивных аэродисперсных систем, содержащих радиоактивный рутений, оно может быть использовано в промышленности и для санитарно-гигиенической оценки воздушной среды, а также для оценки эффективности работы пылеулавливающего оборудования и средств индивидуальной защиты (СИЗ) органов дыхания.

Изобретение относится к изокинетическому зонду, в частности, для анализа загрязнения газов, вырабатываемых авиационным двигателем. .

Изобретение относится к зонду для размещения датчика или пробоотборника для металлических расплавов. .

Изобретение относится к области специальной техники, связанной с обеспечением безопасности при проведении работ по отбору высокотоксичных экологически опасных продуктов из герметичной камеры.

Изобретение относится к устройству для послойного отбора проб снега для выявления загрязнения снежного покрова, связанного с морозным конденсированием техногенных эмиссий при их осаждении из приземного слоя воздуха при образовании инея и изморози, а также изучения послойной динамики изменчивости геохимических параметров снега, связанной с сублимационным метаморфизмом снежной толщи при формировании снежного покрова.

Изобретение относится к экстракционно-вольтамперометрическому способу определения цинка, кадмия, свинца и меди, позволяющего осуществлять поэлементный мониторинг природных вод и водных экосистем.

Изобретение относится к способу оценки чистоты воздуха гермокабин летательных аппаратов, поступающего от компрессоров газотурбинных двигателей, на содержание продуктов разложения смазочных масел, включающий проведение параллельных отборов проб воздуха гермокабины путем его прокачки через патроны с сорбентом с последующим наземным газохроматографическим анализом на колонках разной селективности и полярности для идентификации компонентов-примесей.

Изобретение относится к способу подготовки образцов биопленок микроорганизмов для исследования в сканирующем электронном микроскопе

Изобретение относится к способу рентгенофлуоресцентного определения микроэлементов и может быть использовано при анализе природных вод и техногенных растворов

Изобретение относится к устройствам для отбора проб жидкости, а именно к пробоотборникам, которые, в частности, могут быть использованы при прямых геохимических методах поисков нефти и газа, например, в газовом каротаже, а также в лабораторных условиях

Изобретение относится к области радиохимии и может быть использовано при подготовке разведенных порций указанных растворов в условиях тяжелых боксов или защитных камер в целях анализа состава этих растворов

Изобретение относится к области радиохимии и может быть использовано при подготовке разведенных порций указанных растворов в условиях тяжелых боксов или защитных камер в целях анализа состава этих растворов

Изобретение относится к сенсорной системе и к способу распознавания

Изобретение относится к аналитической химии и может быть использовано для извлечения растворенного сероводорода из расплава серы и формирования газовой смеси для дальнейшего хроматографического анализа при проведении контроля степени дегазации расплава серы и оценке ее качества

Изобретение относится к области радиохимии, а именно к обращению с высокоактивными растворами, и может быть использовано при подготовке разведенных порций (образцов) указанных растворов в условиях тяжелых боксов или защитных камер в целях анализа состава этих растворов, а также при выполнении вспомогательных операций, связанных с выдачей образцов, обеспечивая при этом радиационную защиту персонала

Изобретение относится к устройству для автоматического отбора проб в приземном слое атмосферы и может быть использовано при создании техники дистанционного автоматического отбора проб воздуха в приземном слое атмосферы для оценки содержания загрязняющих веществ и динамики их распространения на территориях, прилегающих к наземным стационарным и передвижным источникам загрязнения окружающей среды
Наверх