Способ контроля сопротивления изоляции обмоток электродвигателя в мехатронной системе


 


Владельцы патента RU 2486649:

Федеральное государственное унитарное предприятие Производственное объединение "Север" (RU)

Изобретение относится к электротехнике и может быть использовано для контроля изоляции обмоток электрических машин, работающих в составе мехатронных систем на основе инверторных электроприводов. В предложенном способе контроля сопротивления изоляции обмоток электродвигателя в мехатронной системе производят многократную коммутацию двух ключей, принадлежащих одной из фаз («стоек») инвертора, или всех ключей инвертора непосредственно в рабочем режиме, в соответствии с алгоритмом широтно-импульсной модуляции (ШИМ) или 180°-ного управления («шестипульсного режима»), а контроль состояния изоляции обмоток электродвигателя производят по падению напряжения на дополнительном резисторе, включенном между средней точкой двух последовательно соединенных резисторов, подключенных свободными выводами к шинам питания инвертора, и землей (корпусом). При этом каждый из последовательно соединенных резисторов шунтирован конденсатором. Техническим результатом изобретения является расширение функциональных возможностей мехатронной системы и повышение быстродействия контроля состояния изоляции обмоток электродвигателя непосредственно в ее рабочем режиме. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к электротехнике и может быть использовано для контроля изоляции обмоток электрических машин, работающих в составе мехатронных систем на основе инверторных электроприводов.

Известен способ контроля изоляции обмоток электрических машин с помощью измерительных приборов типа мегомметра [Байда Л.И. и др. Электрические измерения: Учебник для вузов. Под ред. А.В.Фремке, Е.М.Душина. Л. Энергия. 1980. - 390 с.], согласно которому на исследуемую обмотку подают относительно заземляющего проводника («земли», «корпуса») высоковольтное испытательное напряжение и по измеренному току утечки судят о качестве изоляции обмотки.

Однако недостатком данного способа является то, что при всей очевидности положительных качеств его трудно применить в мехатронной системе, часто представляющей собой электромеханический конструктивный модуль без доступа к обмоткам электродвигателя или без отсоединения электродвигателя от силового полупроводникового инвертора (коммутатора). Кроме того, невозможно производить оперативный контроль изоляции обмоток в рабочем режиме мехатронной системы.

Известен также способ предварительного контроля изоляции обмоток электродвигателя, реализованный в устройстве, содержащем две R-C-цепи, каждая из которых включена между фазным проводом и нейтралью, связанной с «землей» («корпусом») [Р.И.Дудкин, А.П.Живило. Устройство для предварительного контроля изоляции обмоток трехфазного электродвигателя / А.с. №549854, H02H 7/00, G01R 27/18. Опубл. 05.05.77 в БИ №9]. При этом полный заряд на конденсаторах происходит лишь в случае исправной изоляции обмоток и фиксируется пороговым элементом, разрешающим включение электродвигателя на сетевое напряжение. В случае утечки тока на «землю» напряжение на конденсаторах шунтируется низким сопротивлением изоляции и электродвигатель не включается.

Однако недостатком данного способа является наличие дополнительных высоковольтных конденсаторов переменного тока, высокоомных высоковольтных резисторов и схемы порогового устройства, усложняющих реализацию способа контроля состояния изоляции. Кроме того, в случае отсутствия нулевого провода, что часто наблюдается в мехатронных системах или в сетях с изолированной нейтралью, реализация такого способа усложняется.

Кроме того, известен способ контроля межобмоточной изоляции в мехатронной системе, содержащей источник сетевого напряжения, управляемый выпрямитель, инвертор и электродвигатель переменного тока [Система и метод проверки сопротивления межобмоточной изоляции. Патент США №2009/0251154 А1. Опубл. 8.10.2009], являющийся прототипом предлагаемого изобретения, заключающийся в том, что перед включением электродвигателя в работу однократно коммутируют (включают) один из транзисторных ключей инвертора и контролируют изменение напряжения относительно земли (корпуса) на двух последовательно соединенных резисторах, подключенных к шинам цепи постоянного тока инвертора, общая точка которых соединена с землей (корпусом).

Однако недостатком данного способа являются ограниченные функциональные возможности из-за отсутствия контроля изоляции в рабочем режиме, а также низкое быстродействие определения критического состояния изоляции вследствие больших постоянных времени используемых R-C-цепей.

Задача изобретения - расширение функциональных возможностей мехатронной системы и повышение быстродействия контроля состояния изоляции обмоток электродвигателя непосредственно в ее рабочем режиме.

Поставленная задача достигается тем, что в известном способе контроля межобмоточной изоляции в мехатронной системе, заключающемся в том, что коммутируют один из транзисторных ключей инвертора, к шинам постоянного тока которого подключены два последовательно соединенных инвертора, производят многократную коммутацию двух ключей, принадлежащих одной из фаз («стоек») инвертора, или всех ключей инвертора непосредственно в рабочем режиме, в соответствии с алгоритмом широтно-импульсной модуляции (ШИМ) или 180°-ного управления («шестипульсного режима»), а контроль состояния изоляции обмоток электродвигателя производят по падению напряжения на дополнительном резисторе, включенном между средней точкой двух последовательно соединенных резисторов, подключенных свободными выводами к шинам питания инвертора, и землей (корпусом). При этом каждый из последовательно соединенных резисторов может быть шунтирован конденсатором.

На чертеже приведена функциональная схема устройства, реализующего предлагаемый способ контроля сопротивления изоляции электродвигателя в мехатронной системе.

Устройство содержит электродвигатель 1, подключенный через ключи 2-7 инвертора 8 к шинам 9, 10 питания инвертора, к которым подключен компенсирующий конденсатор 11. Между шинами 9, 10 питания инвертора 8 включены последовательно соединенные резисторы 12, 13. Между общей точкой соединения резисторов 12, 13 и землей (корпусом) 14 включен резистор 15, являющийся датчиком тока утечки в электродвигателе 1. Сигнал с резистора 15 обрабатывается схемой 16 контроля. Резисторы 12, 13 могут быть шунтированы конденсаторами 17, 18. Резистор 19 характеризует сопротивление утечки между обмотками электродвигателя 1 и землей (корпусом) 14.

Инвертор 8 может быть выполнен на любых транзисторных ключах, например MOSFET или IGBT [Г.C.Зиновьев. Основы силовой электроники: Учебное пособие. Новосибирск. Изд-во НГТУ, 2003. - 664 с.]. Схема 16 контроля может быть составной частью микропроцессорной системы управления или являться самостоятельной пороговой схемой индикации.

Способ контроля сопротивления изоляции электродвигателя в мехатронной системе осуществляется следующим образом.

При включении инвертора 8 в рабочий режим на обмотках электродвигателя 1 формируются напряжения в соответствии с алгоритмом ШИМ или классического 180°-ного управления («шестипульсного режима»). В случае, если в электродвигателе 1 сопротивление изоляции обмоток (резистор 19) становится ниже критического уровня, на дополнительном резисторе 15 сразу же выделится переменный сигнал, который может быть обработан схемой 16 контроля с функцией предупреждения оператора или отключения электродвигателя 1. Шунтирование резисторов 12, 13 конденсаторами 17, 18 позволяет получить на резисторе 15 сигнал большей амплитуды, относительно случая, когда в схеме присутствуют лишь резисторы 12, 13. При этом каждая стойка инвертора 8 работает с емкостным делителем, состоящим из конденсаторов 17, 18, по схеме полумостового инвертора. Работа стоек инвертора 8 по отдельности, например, при коммутации транзисторов 2, 5 может быть предпринята и до включения электродвигателя 1 в работу, как это реализовано в прототипе. Следует отметить, что наряду с конденсатором 11 большой емкости в цепи постоянного тока инверторов присутствуют, как правило, и конденсаторы 17, 18, выполняя функцию фильтрации высокочастотных помех и замыкания реактивной составляющей от фронтов импульсов при переключении ключей инвертора. Емкость таких конденсаторов невелика и обычно на три порядка меньше емкости конденсатора 11, выполняющего функции сглаживания низкочастотных пульсаций выпрямителя и компенсации реактивной энергии нагрузки.

Таким образом, согласно предложенному способу контроль сопротивления изоляции обмоток электродвигателя можно производить не только перед включением мехатронной системы, но и в ее рабочем режиме, используя информативные свойства инвертора [А.Г.Гарганеев. Информативные свойства инверторов в электромеханике // Электричество. 2001. №12]. При этом за счет дополнительного использования конденсаторов фильтра в цепи постоянного тока инвертора и ввиду этого фактического наличия в мехатронной системе полумостовых схем инверторов расширяются функциональные возможности системы, повышается уровень сигнала и быстродействие при контроле состояния изоляции обмоток электродвигателя в мехатронной системе.

1. Способ контроля сопротивления изоляции обмоток электродвигателя в мехатронной системе, в соответствии с которым перед включением электродвигателя в работу производят однократную коммутацию одного из транзисторных ключей инвертора, к шинам цепи постоянного тока которого подключены два последовательно соединенных инвертора, отличающийся тем, что производят многократную коммутацию двух ключей, принадлежащих одной из фаз инвертора, в соответствии с алгоритмом широтно-импульсной модуляции (ШИМ) 180°-го управления, а контроль состояния изоляции обмоток электродвигателя производят по падению напряжения на дополнительном резисторе, включенном между землей (корпусом) и средней точкой двух последовательно соединенных и шунтированных каждый своим конденсатором резисторов, подключенных свободными выводами к шинам питания инвертора.

2. Способ по п.1, отличающийся тем, что контроль сопротивления изоляции обмоток электродвигателя производят непосредственно в рабочем режиме коммутации всех ключей инвертора, работающих в соответствии с алгоритмом широтно-импульсной модуляции или 180°-го управления («шестипульсного режима»).



 

Похожие патенты:

Изобретение относится к электротехнике, конкретно к приводной системе с выпрямителем тока привода, синхронной электрической машине с постоянным возбуждением и управляющим устройством.

Изобретение относится к устройству (10) для принятия предохранительной меры в электрическом инструменте, содержащем электродвигатель (ЕМ) с по меньшей мере одной обмоткой возбуждения и обмоткой якоря.

Изобретение относится к электротехнике, а именно к технике релейной защиты. .

Изобретение относится к области защиты электрических машин, в частности автономных асинхронных генераторов с емкостями самовозбуждения, от внутренних витковых и межфазных коротких замыканий в обмотке статора и от неисправности подшипников.

Изобретение относится к области электротехники и может быть использовано для отключения электродвигателей в аварийных режимах. .

Изобретение относится к области электротехники и может быть использовано для отключения электродвигателей в аварийных режимах. .

Изобретение относится к области электротехники и может быть использовано при коммутации электрического устройства, например трансформатора, электрического двигателя.

Изобретение относится к области электротехники и может быть использовано для возбуждения синхронного электродвигателя с постоянными магнитами, встроенного в электрическое транспортное средство.

Изобретение относится к электротехнике, а именно к релейной защите, и может быть использовано для защиты электродвигателей погружных насосов от перегрузки и «сухого хода».

Изобретение относится к области электротехники и может быть использовано для защиты вращающейся машины переменного тока и ее схемы возбуждения от перегрузок по току

Изобретение относится к области электротехники и может быть использовано в устройствах тепловой защиты преимущественно асинхронных электродвигателей, используемых в гребных электроприводах. Техническим результатом является обеспечение автоматического определения наиболее нагруженной обмотки электродвигателя, повышение точности и надежности контроля его теплового состояния, улучшение информативности устройства, упрощение отыскания места и устранения причины возникшей неисправности и снижение габаритов, массы и стоимости устройства. Устройство тепловой защиты электродвигателя содержит датчики тока в фазах электродвигателя, блок контактора с контактами в цепи питания обмоток электродвигателя и блок индикации, дополнительно и снабжено блоком выделения наибольшего напряжения, блоком индикации фазы с наибольшим током, формирователем время-токовой характеристики, блоком фиксации начала перегрузки электродвигателя, генератором пилообразного напряжения, компаратором, схемой выборки - хранения и RS триггером. 7 з.п. ф-лы, 2 ил.

Изобретение относится к области электротехники и может быть использовано в устройствах тепловой защиты преимущественно асинхронных электродвигателей, используемых в гребных электроприводах. Техническим результатом является обеспечение автоматического определения наиболее нагруженной обмотки электродвигателя, повышение точности и надежности контроля его теплового состояния, улучшение информативности устройства, упрощение отыскания места и устранения причины возникшей неисправности и снижение габаритов, массы и стоимости устройства. Устройство тепловой защиты электродвигателя содержит датчики тока в фазах электродвигателя, блок контактора с контактами в цепи питания обмоток электродвигателя и блок индикации, дополнительно и снабжено блоком выделения наибольшего напряжения, блоком индикации фазы с наибольшим током, формирователем время-токовой характеристики, блоком фиксации начала перегрузки электродвигателя, генератором пилообразного напряжения, компаратором, схемой выборки - хранения и RS триггером. 7 з.п. ф-лы, 2 ил.

Изобретение относится к области электротехники и может быть использовано в устройствах тепловой защиты двигателей. Техническим результатом является повышение точности, надежности, уменьшение габаритов, веса и стоимости, упрощение настройки и регулировки устройства в целом. Устройство тепловой защиты двигателя снабжено блоком выделения наибольшего напряжения, блоком индикации фазы с наибольшим током, компараторами, таймерами, элементами запрета, элементом ИЛИ и блоком индикации величины тока перегрузки двигателя, что обеспечило контроль теплового состояния двигателя по наибольшему фазному току. Количество каналов контроля по величине тока перегрузки и длительности его протекания необходимо и достаточно для его полного соответствия время токовой характеристике двигателя. Устройство обладает повышенной информативностью, позволяющей оценивать состояние двигателя как в процессе работы, так и после его отключения. 5 з.п. ф-лы, 2 ил.

Использование: в области электротехники для питания трехфазного двигателя (4) с постоянными магнитами, в частности, для железнодорожного транспортного средства. Технический результат - надежность и безопасность. Система электрического питания содержит инвертор (1), соединенный с первым концом (2а, 2b, 2с) каждой из обмоток (3а, 3b, 3с) трех фаз двигателя, и контактор (9) отключения, расположенный, по меньшей мере, на двух из указанных фаз между инвертором и указанным первым концом соответствующей обмотки, при этом вторые концы (5а, 5b, 5с) трех обмоток соединены с общей точкой (6). Система также содержит орган (11) отключения нейтрали, расположенный, по меньшей мере, на двух фазах между общей точкой и указанным вторым концом соответствующей обмотки. 3 н. и 1 з.п. ф-лы, 2 ил.

Изобретение относится к области электротехники и может быть использовано для возбуждения синхронного электродвигателя транспортного средства. Технический результат заключается в том, чтобы не допускать генерирование опасного перенапряжения коммутации, связанного с переключением размыкающего контактора электродвигателя. Устройство управления возбуждением электродвигателя переменного тока, включающее в себя: инвертор (INV), имеющий множество переключающих элементов, подвергаемых управлению включением/выключением, для преобразования напряжения постоянного тока в напряжение переменного тока с требуемой частотой, чтобы возбуждать электродвигатель (6) переменного тока; размыкающий контактор (MMK) электродвигателя, подключенный между инвертором (INV) и электродвигателем (6) переменного тока; блок (55) предварительного детектирования операции переключения для детектирования операции переключения размыкающего контактора (MMK) электродвигателя до контакта или отсоединения главных контактов и вывода сигнала предварительного детектирования операции переключения; и блок (10А) управления, имеющий блок (70) управления инвертора для выполнения управления включением/выключением для множества переключающих элементов и управления переключением для размыкающего контактора (MMK) электродвигателя и управления инвертором (INV) на основе сигнала предварительного детектирования операции переключения. 4 н. и 9 з.п. ф-лы, 14 ил.

Изобретение относится к реле перегрузки для защиты электродвигателя или иного устройства от состояния тепловой перегрузки. Технический результат заключается в уменьшении размеров реле перегрузки, снижении его стоимости и осуществлении возможности его использования с источником постоянного тока. Реле перегрузки содержит: множество шунтирующих резисторов и средство управления, соединенное с каждым из шунтирующих резисторов. При этом каждый шунтирующий резистор установлен на пути тока соответствующей линии питания источника питания для электродвигателя или иного устройства. Средство управления выполнено с возможностью генерации сигнала отключения для прерывания подачи питания, если оно определяет наличие условий перегрузки на основании одного или большего количества сигналов, представляющих ток через шунтирующие резисторы. Блок питания включает в себя: выпрямитель для создания постоянного тока от линий питания источника питания переменного тока, подключенного к электродвигателю или иному устройству, защищенному реле перегрузки, и по меньшей мере один трансформатор для соединения источника питания с реле перегрузки. 3 н и 15 з.п. ф-лы, 8 ил.

Изобретение относится к области электротехники и может быть использовано в регулируемом трехфазном электроприводе, выполненном на основе надсинхронного вентильного каскада, асинхронного вентильного каскада или двигателя двойного питания. Технический результат: обеспечение живучести электропривода, выполненного на основе двигателя двойного питания при аварийных отказах полумоста роторного преобразователя или/и сетевого преобразователя с отказами типа «невыключение» или «невключение» тиристора. Устройство управления и обеспечения живучести двигателя двойного питания содержит асинхронный двигатель, преобразователь частоты, состоящий из регулируемого выпрямителя и инвертора, трехфазный трансформатор. Выпрямитель выполнен как сетевой тиристорный преобразователь, а инвертор - как роторный тиристорный преобразователь, выполненные по мостовой трехфазной схеме. Устройство дополнительно содержит датчики тока, защитные элементы, два резервных полумоста, каждый из которых составлен из трех симисторов и двух резервных тиристоров, и микроконтроллер, который подключен ко всем тиристорам и симисторам. Упомянутые элементы соединены так, как указано в материалах заявки. 1 з.п. ф-лы, 2 ил.

Изобретение относится к системе для обеспечения работы электрической машины и к способу защиты блока управления работой в такой системе. Система содержит блок (20) управления работой, кабель (16) переменного тока, соединяющий машину (30) с блоком управления работой, и электрическое короткозамыкающее устройство (26). Это устройство подключено к выводам блока управления работой на стороне кабеля, а закорачивание этих выводов основано на обнаруживаемом перенапряжении. Технический результат - обеспечение защиты от перенапряжения, обусловленного самовозбуждением. 2н. и 10 з.п. ф-лы, 4ил.

Изобретение относится к электротехнике и может быть использовано в насосостроении для защиты электронасоса погружного типа от аварийного режима его работы при неполном погружении в воду, так называемого «сухого хода». Устройство защиты погружного электронасоса от «сухого хода» содержит датчик (5) уровня воды в источнике - скважине (3), расположенный над электронасосом (2) и воздействующий на установленный в цепи (1) питания электронасоса (2) исполнительный орган (4). Датчик (5) уровня содержит последовательно соединенные геркон (9) и резистор (8), включенные между фазным проводом цепи (1) питания и «землей», а также закрепленный на поплавке (12) магнит (13) с возможностью размыкания геркона (9) при всплытии поплавка (12). Исполнительный орган (4) реагирует на ток утечки цепи (1) питания электронасоса (2) на «землю». Изобретение направлено на повышение надежности защиты электронасоса. 1 ил.
Наверх