Способ спутниковой связи, система спутниковой связи и бортовой радиотехнический комплекс низкоорбитального космического аппарата



Способ спутниковой связи, система спутниковой связи и бортовой радиотехнический комплекс низкоорбитального космического аппарата
Способ спутниковой связи, система спутниковой связи и бортовой радиотехнический комплекс низкоорбитального космического аппарата

 


Владельцы патента RU 2486674:

Закрытое акционерное общество "Меркурий" (RU)

Изобретение относится к области радиотехники, а именно к системам и способам спутниковой связи, и может быть использовано для обеспечения связи низкоорбитальных космических аппаратов с наземной станцией. Технический результат заключается в повышении качества и надежности связи, а также в достижении отсутствия необходимости выделения дополнительных запоминающих устройств бортового радиотехнического комплекса. Для этою в способе определяют пространственное положение низкоорбитального космического аппарата по данным, по меньшей мере, одной спутниковой системы позиционирования, выполняют ответную передачу в выбранном широком луче на спутник-ретранслятор регистрационного сигнала на осуществление связи, содержащего информацию о положении этого космического аппарата, и определяют узкий управляемый луч спутника-ретранслятора, в зоне покрытия которого находится космический аппарат, для передачи информации в узком управляемом луче. Система спутниковой связи включает, по меньшей мере. один низкоорбитальный космический аппарат, по меньшей мере, одну спутниковую систему позиционирования и группировку геостационарных спутников-ретрансляторов системы связи. Бортовой радиотехнический комплекс низкоорбитального космического аппарата включает активную фазированную антенную решетку, бортовое устройство связи, блок управления. 3 н.п. ф-лы, 2 ил.

 

Предлагаемое изобретение относится к области космонавтики и является дальнейшим развитием систем связи, обеспечивающих связь между низкоорбитальными космическими аппаратами и наземными станциями.

В качестве ближайшего аналога предлагаемого изобретения могут быть выбраны способ и соответствующая система спутниковой связи, описанная в патенте RU 2344457, опубликованном 20.01.2009, и включающая группировку низкоорбитальных спутников и группировку геостационарных спутников-ретрансляторов. Для установления устойчивой связи между низкоорбитальными космическими аппаратами и наземными станциями предусматривается оповещение спутников-ретрансляторов об эфемеридах низкоорбитальных космических аппаратов. Для передачи указанных сведений об эфемеридах используется бортовой радиотехнический комплекс низкоорбитального космического аппарата, включающий активную фазированную антенную решетку (схемы активных фазированных антенных решеток достаточно широко известны, например, из патента RU 2162260, публикация 20.01.2001, заявки US 2010099370, публикация 22.04.2010, патента RU 2408140, публикация 27.10.2010). Недостатком известных из RU 2344457 способа и системы космической связи является ее недостаточно высокая надежность, связанная с возможными погрешностями при вычислении эфемерид и/или требующая выделения дополнительных запоминающих устройств бортового радиотехнического комплекса для хранения баз данных, содержащих эфемериды. В свою очередь, предлагаемое изобретение позволит устранить указанные выше недостатки и повысить надежность эксплуатации систем космической связи.

Описанный выше технический результат достигается при использовании способа спутниковой связи, системы спутниковой связи и бортового радиотехнического комплекса низкоорбитального космического аппарата.

Предложенный способ спутниковой связи предусматривает проведение, по меньшей мере, одного сеанса связи между, по меньшей мере, одним низкоорбитальным космическим аппаратом и, по меньшей мере, одной наземной станцией через группировку геостационарных спутников-ретрансляторов системы связи, например системы Inmarsat. Каждый из указанных геостационарных спутников-ретрансляторов системы связи обеспечивает формирование глобального луча, покрывающего всю видимую подспутниковую область, совокупности широких фиксированных лучей, расположенных поверх глобального луча во всей видимой подспутниковой области, и совокупности узких управляемых лучей, расположенных поверх широких лучей во всей видимой подспутниковой области.

В ходе сеанса связи выполняют: передачу со спутника-ретранслятора на низкоорбитальный космический аппарат в глобальном луче несущей частоты и широковещательной системной информации, включающей карту узких управляемых лучей упомянутых геостационарных спутников-ретрансляторов и перечень несущих частот в каждом широком фиксированном луче упомянутого спутника-ретранслятора. Затем выполняют передачу со спутника-ретранслятора на низкоорбитальный космический аппарат в выбранном широком луче инструкции о несущих частотах узкого луча, выделенных для проведения сеанса связи. Далее определяют пространственное положение низкоорбитального космического аппарата по данным, по меньшей мере, одной спутниковой системы позиционирования и выполняют ответную передачу в выбранном широком луче с низкоорбитального космического аппарата на спутник-ретранслятор регистрационного сигнала на осуществление связи, содержащего информацию о пространственном положении этого низкоорбитального космического аппарата. Для осуществления сеанса связи спутник-ретранслятор на основе полученных данных о пространственном положении низкоорбитального космического аппарата определяет узкий управляемый луч, в зоне покрытия которого находится низкоорбитальный космический аппарат, и выполняет передачу информации в узком управляемом луче.

Предложенная система спутниковой связи, обеспечивающая осуществление описанного выше способа спутниковой связи, включает, по меньшей мере, один низкоорбитальный космический аппарат, оснащенный активной фазированной антенной решеткой и приемником сигнала, по меньшей мере, одной спутниковой системы позиционирования, и группировку геостационарных спутников-ретрансляторов системы связи, например системы Inmarsat. Каждый из геостационарных спутников-ретрансляторов системы связи обеспечивает формирование глобального луча, покрывающего всю видимую подспутниковую область, совокупности широких фиксированных лучей, расположенных поверх глобального луча во всей видимой подспутниковой области, и совокупности узких управляемых лучей, расположенных поверх широких лучей во всей видимой подспутниковой области. Бортовой радиотехнический комплекс низкоорбитального космического аппарата включает активную фазированную антенную решетку, включающую тракт приема данных и тракт передачи данных, бортовое устройство связи, блок управления. Тракт приема данных содержит последовательно расположенные: блок излучателей приемных, блок фазовращателей, соединенных с платой управления, обеспечивающей управление наведением луча в соответствии с предложенным способом спутниковой связи, сумматор, блок фильтров приемных, блок малошумящего усилителя. Тракт передачи данных содержит последовательно расположенные блок фильтров передающих, делитель, блок фазовращателей, соединенных с платой управления, обеспечивающей управление наведением луча в соответствии с предложенным способом спутниковой связи, блок излучателей передающих.

Предложенная система спутниковой связи включает группировку низкоорбитальных космических аппаратов и группировку геостационарных спутников-ретрансляторов (см. фиг.1 и 2). Группировка геостационарных спутников-ретрансляторов представляет собой совокупность спутников какой-либо системы связи, например системы Inmarsat или же подобной системы. Каждый из низкоорбитальных космических аппаратов оснащен активной фазированной антенной решеткой, являющейся частью бортового радиотехнического комплекса, и приемником сигнала одной или же нескольких спутниковых систем позиционирования, например GPS Navstar, ГЛОНАСС, Бейдоу, Galileo или GPS Navstar/ГЛОНАСС, GPS Navstar/ГЛОНАСС/Galileo и т.п. В свою очередь каждый из геостационарных спутников-ретрансляторов системы связи обеспечивает формирование глобального луча, покрывающего всю видимую подспутниковую область, совокупности широких фиксированных лучей (например, 19 широких лучей системы Inmarsat), расположенных поверх глобального луча во всей видимой подспутниковой области, и совокупности узких управляемых лучей (например, 228 узких управляемых лучей системы Inmarsat), расположенных поверх широких лучей во всей видимой подспутниковой области. Бортовой радиотехнический комплекс низкоорбитального космического аппарата включает активную фазированную антенную решетку, включающую тракт приема данных и тракт передачи данных, бортовое устройство связи, блок управления. Тракт приема данных содержит последовательно расположенные: блок излучателей приемных (ИПРМ), блок фазовращателей (ФВ), соединенных с платой управления (Упр.), сумматор, блок фильтров приемных (ФПРМ), блок малошумящего усилителя (МШУ). Тракт передачи данных содержит последовательно расположенные: блок фильтров передающих (ФПРД), делитель, блок фазовращателей (ФВ), соединенных с платой управления (Упр.), блок излучателей передающих (ИПРД). Плата управления (Упр.) обеспечивает наведение узкого управляемого луча низкоорбитального космического аппарата на геостационарный спутник-ретранслятор с использованием данных целеуказания о его положении, полученных от приемника спутниковой системы позиционирования.

При осуществлении предложенного способа спутниковой связи со спутника-ретранслятора на низкоорбитальный космический аппарат в глобальном луче передают несущую частоту и широковещательную системную информацию, включающую карту узких управляемых лучей упомянутых геостационарных спутников-ретрансляторов и перечень несущих частот в каждом широком фиксированном луче упомянутого спутника-ретранслятора. Далее со спутника-ретранслятора на низкоорбитальный космический аппарат в выбранном широком луче передают инструкции о несущих частотах узкого луча, выделенных для проведения сеанса связи. Определяют пространственное положение низкоорбитального космического аппарата по данным, по меньшей мере, одной спутниковой системы позиционирования. Выполняют ответную передачу в выбранном широком луче с низкоорбитального космического аппарата на спутник-ретранслятор регистрационного сигнала на осуществление связи, содержащего информацию о пространственном положении этого низкоорбитального космического аппарата. Затем наводят узкий управляемый луч спутника-ретранслятора на низкоорбитальный космический аппарат и осуществляют передачу информации в узком управляемом луче. После завершения сеанса связи в узком луче низкоорбитальный космический аппарат настраивается обратно на широкий луч.

Таким образом предложены средства, обеспечивающие надежную связь низкоорбитальных космических аппаратов с наземной станцией.

1. Способ спутниковой связи, предусматривающий проведение, по меньшей мере, одного сеанса связи между, по меньшей мере, одним низкоорбитальным космическим аппаратом и, по меньшей мере, одной наземной станцией, через группировку геостационарных спутников-ретрансляторов системы связи,
причем каждый из геостационарных спутников-ретрансляторов системы связи обеспечивает формирование глобального луча, покрывающего всю видимую подспутниковую область, совокупности широких фиксированных лучей, расположенных поверх глобального луча во всей видимой подснутниковой области, и совокупности узких управляемых лучей, расположенных поверх широких лучей во всей видимой подспутниковой области,
при этом в ходе сеанса связи выполняют:
передачу со спутника-ретранслятора на низкоорбитальный космический аппарат в глобальном луче несущей частоты и широковещательной системной информации, включающей карту узких управляемых лучей упомянутых геостационарных спутников-ретрансляторов и перечень несущих частот в каждом широком фиксированном луче упомянутого спутника-ретранслятора,
передачу со спутника-ретранслятора на низкоорбитальный космический аппарат в выбранном широком луче инструкции о несущих частотах узкою луча, выделенных для проведения сеанса связи,
определение пространственного положения низкоорбитального космического аппарата по данным, по меньшей мере, одной спутниковой системы позиционирования,
ответную передачу в выбранном широком луче с низкоорбитального космического аппарата на спутник-ретранслятор регистрационного сигнала на осуществление связи, содержащего информацию о пространственном положении этого низкоорбитального космического аппарата,
определение узкого управляемого луча спутника-ретранслятора для осуществления передачи информации на низкоорбитальный космический аппарат,
передачу информации в узком управляемом луче.

2. Система спутниковой связи, включающая
по меньшей мере, один низкоорбитальный космический аппарат, оснащенный активной фазированной антенной решеткой, и приемником сигнала, но меньшей мере, одной спутниковой системы позиционирования,
и, группировку геостационарных спутников-ретрансляторов системы связи,
причем каждый из геостационарных спутников-ретрансляторов системы связи обеспечивает формирование глобального луча, покрывающего всю видимую подспутниковую область, совокупности широких фиксированных лучей, расположенных поверх глобального луча во всей видимой подспутниковой области, и совокупности узких управляемых лучей, расположенных поверх широких лучей во всей видимой подспутниковой области,
и обеспечивающая осуществление способа спутниковой связи по п.1.

3. Бортовой радиотехнический комплекс низкоорбитального космического аппарата, включающий активную фазированную антенную решетку, бортовое устройство связи, блок управления,
причем активная фазированная антенная решетка включает
факт приема данных, содержащий последовательно расположенные блок излучателей приемных, блок фазовращателей, соединенных с платой управления, обеспечивающей управление наведением луча в соответствии со способом спутниковой связи по п.1, сумматор, блок фильтров приемных, блок малошумящего усилителя,
и тракт передачи данных, содержащий последовательно расположенные блок фильтров передающих, делитель, блок фазовращателей, соединенных с платой управления, обеспечивающей управление наведением луча в соответствии со способом спутниковой связи по п.1, блок излучателей передающих.



 

Похожие патенты:

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. .

Изобретение относится к области радиотехники, а именно к системам спутникового наземного позиционирования, и может быть использовано для определения местоположения и навигации потребителя.

Изобретение относится к области радиотехники, а именно к области связи в авиации, и может быть использовано, в частности, для обеспечения несинхронных обменов цифровыми сообщениями между информационной системой самолета и информационной системой авиационной компании на земле.

Изобретение относится к области радиотехники, а именно к осуществлению связи между мобильным аппаратом и множеством приемопередатчиков, и может быть использовано в системе мобильной спутниковой связи.

Изобретение относится к радиотехнике, к экранированию сигналов для системы мобильной связи, в частности, на воздушном судне. .

Изобретение относится к радиоэлектронным системам связи с использованием радиоизлучения при размещении станции в наземном мобильном объекте и может быть использовано в качестве земной станции (ЗС) системы спутниковой связи.

Изобретение относится к области радиотехники, а именно к осуществлению связи между подвижным устройством и множеством приемопередатчиков, и может быть использовано в спутниковой системе связи.

Изобретение относится к технике связи, а конкретнее к способам приема на объектах радиосигналов наземной шестипунктовой передающей системы, и может быть использовано преимущественно для однозначного определения пространственных координат и других характеристик объекта, функционально связанных с его координатами, в информационно-управляющих радиотехнических системах различного назначения, в том числе в радиотехнических комплексах систем навигации.

Изобретение относится к средствам связи, а именно к организации радиолинии связи, и может быть использовано для постановки ретранслятора при организации радиолинии связи

Изобретение относится к области дистанционного управления бортовой регистрирующей аппаратурой (БРА) космических аппаратов (КА). Техническим результатом является повышение эксплуатационных возможностей за счет обеспечения возможности подключать различные детекторы. Удаленная система сбора и обработки данных для бортовой регистрирующей аппаратуры включает: блок функциональной группы буферных магистральных усилителей (ФГБМУ), программируемую логическую интегральную схему (ПЛИС), два независимых кварцевых генератора, функциональную группу коммутации (ФГК), накопительное запоминающее устройство (НЗУ), штатный и технологические узлы командно-информационного интерфейса (УКИИ), систему локальных термодатчиков, функциональная группа модулей питания (ФГМП), при этом штатный и технологический УКИИ имеют выходной интерфейс для подключения скоростного канала передачи информации (КИИ) и входной интерфейс для подключения служебного канала управления. 8 з.п. ф-лы, 2 ил.

Изобретение относится к области радиотехники, а именно к системе цифровой обработки для полезных нагрузок спутников связи, и может быть использовано в системах спутниковой связи с множеством направленных лучей. Технический результат заключается в осуществлении модульного подхода к конструкции и воплощению интегрированного процессора для систем спутниковой связи с множеством направленных лучей таким образом, что общий интегрированный процессор содержит большое количество идентичных интегрированных модулей процессора, а также в обеспечении поддержки требований к системе и трафику в широком диапазоне задач. Для этого количество модулей интегрированного процессора выбрано в соответствии с характеристиками антенны и ширины полосы восходящей линии и нисходящей линии определенной миссии, в связи с характеристиками модуля интегрированного процессора, и каждый модуль интегрированного процессора содержит каскад цифровой обработки, содержащий множество входных и выходных портов, A/D и D/A преобразователи и средство цифровой обработки. 1 з.п. ф-лы, 5 ил.

Изобретение относится к системам спутниковой связи, в частности к низкоорбитальной системе спутниковой связи, использующей легкие спутники, функционирующие на низких околоземных орбитах. Технический результат заключается в обеспечении глобальной непрерывной связи между абонентами, возможности реализации мобильной телефонии и высокоскоростной передачи данных в любых точках земного шара при использовании минимально необходимого (оптимального) количества легких спутников в системе и минимальной стоимости создания системы спутниковой связи. Для этого искусственные спутники Земли сформированы в две группировки спутников связи, одна из которых состоит из N спутников связи, где N - целое число, и расположена на n околоземных орбитах высотой менее 2000 км с наклоном 0°…30°, по N/n спутников на каждой орбите, другая группировка состоит из M спутников связи, где M - целое число, и расположена на m околоземных орбитах высотой менее 2000 км с наклоном 60°…90°, по M/m спутников на каждой орбите, при этом долготы восходящих узлов орбит внутри каждой группировки отличаются соответственно на 360/n и 360/m градусов. 3 з.п. ф-лы, 3 ил., 2 табл.

Изобретение относится к области радиотехники, а именно к сбору и передаче спутниковых данных, и может быть использовано для передачи изображений на Землю и наблюдений Земли. Технический результат заключается в обеспечении возможности сбора и передачи больших объемов данных, а также отсутствии необходимости использования центрального сервера для обработки и хранения данных. Для этого изобретение, касающееся системы для сбора и передачи спутниковых данных, содержащей спутники (1, 100) и наземные приемные станции (50, 51, 52, 53, 54), отличается тем, что содержит для каждых данных, получаемых одной из приемных станций (50, 51, 52, 53, 54), называемой принимающей станцией, с орбитального уровня: средства определения приемной станции (50, 51, 52, 53, 54), называемой станцией, предназначенной для таких данных, которая должна сохранить такие данные, и наземную цифровую сеть для передачи таких данных от принимающей станции к приемной станции, предназначенной для таких данных. 2 н. и 14 з.п. ф-лы, 5 ил.

Изобретение относится к области дистанционного управления бортовой регистрирующей аппаратурой (БРА) космических аппаратов (КА). Техническим результатом является повышение удобства и надежности одновременного подключения к устройству различной бортовой регистрирующей аппаратуры. Предлагаемая система управления, сбора и обработки данных с БРА КА включает, по меньшей мере, один блок БРА, связанный, по меньшей мере, двумя каналами связи с блоком управления и обработки данных (БУОД), который связан с бортовой аппаратурой КА по, по меньшей мере, одному каналу связи для последующего сброса информации на Землю. БУОД включает: устройство сопряжения, автономное таймерное устройство, одноплатный компьютер, систему принудительного охлаждения, систему термодатчиков, блок запоминающего устройства, блок синхронной передачи данных, блок вторичного питания и систему трансляции команд и распределения питания. 6 з.п. ф-лы, 2 ил.

Изобретение относится к области телекоммуникаций в авиации и, более конкретно, к системе маршрутизации сообщений адресно-отчетной системы авиационной связи (ACARS) в направлении множества передающих сред, предназначенной для установки на борту летательного аппарата, содержащей: базу данных, содержащую множество профилей маршрутизации, при этом каждый профиль представляет собой список, указывающий уровень приоритета для каждой передающей среды; средства выбора для извлечения из запроса на отправку сообщения ACARS идентификатора профиля маршрутизации и для выбора в профиле маршрутизации, хранящемся в базе данных и соответствующем указанному идентификатору, передающей среды в зависимости от уровня приоритета, после чего выбранную таким образом указанную передающую среду используют для передачи указанного сообщения. 2 н. и 7 з.п. ф-лы, 4 табл., 2 ил.

Изобретение относится к космической технике и может быть использовано в спутниковых системах связи и наблюдения. Спутниковая система связи и наблюдения содержит от 1 до 7 спутников с аппаратурой связи и наблюдения. Спутники размещены на эллиптических орбитах с критическим наклонением и апогеем орбиты в полушарии с областью наблюдения с орбитальным периодом, зависящим от длительности солнечных суток и количества спутников в системе. Изобретение позволяет уменьшить количество спутников для периодического обзора географических областей в заданное местное время. 10 ил.

Изобретение относится к области радиосвязи с применением спутников-ретрансляторов на высокой, например, геостационарной орбите и предназначено для преимущественного использования в глобальных космических системах ретрансляции и связи, осуществляющих информационный обмен с космическими и наземными абонентами. Технический результат состоит в повышении оперативности доставки информации от космических абонентов, а также обеспечении централизованного управления каналами ретрансляции и связи космической системы ретрансляции. Для этого система построена с возможностью передачи информации с космического абонента через спутники-ретрансляторы, для чего спутники-ретрансляторы содержат бортовую ретрансляционную аппаратуру для передачи информации между космическими абонентами и наземными пунктами приема и передачи информации, космические абоненты содержат аппаратуру для передачи и приема информации через спутники-ретрансляторы, наземные пункты приема и передачи информации содержат аппаратуру для информационного обмена с космическими абонентами через спутники-ретрансляторы, система построена с возможностью централизованного контроля и управления каналами ретрансляции и связи. 2 з.п. ф-лы, 6 ил.

Изобретение относится к области радиотехники, а именно к космической межспутниковой связи, и может быть использовано в космической спутниковой навигационной группировке ГЛОНАСС. Технический результат заключается в увеличении объема и достоверности передаваемой и принимаемой информации. Для этого бортовая аппаратура межспутниковых измерений (БАМИ) состоит из радиопередающего устройства, циркулятора, приемо-передающей антенны, входного усилителя приемника, радиоприемного устройства, модульного контроллера управления, формирователя радиосигнала, блока логики и коммутации, что также позволяет обеспечить автономность функционирования космической спутниковой группировки, повысить точность эфемеридного и частотно-временного обеспечения системы, оперативную доставку информации со всех навигационных космических аппаратов (НКА), передачу командно-программной и прием телеметрической информации, оперативный контроль целостности космической системы, передачу данных на НКА единой космической системы, снижение нагрузки на вычислительные средства наземного комплекса управления. 1 ил.
Наверх