Способ активации мембранно-электродного блока



Способ активации мембранно-электродного блока
Способ активации мембранно-электродного блока
Способ активации мембранно-электродного блока
Способ активации мембранно-электродного блока
Способ активации мембранно-электродного блока

 


Владельцы патента RU 2487442:

Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук (RU)

Активацию мембранно-электродного блока осуществляют подачей увлажненного водорода к первому электроду и увлажненного кислорода ко второму электроду, по меньшей мере одним циклическим изменением напряжения на мембранно-электродном блоке в диапазоне от величины холостого хода до 0 В при комнатной температуре. Затем продолжают активацию подачей увлажненного водорода ко второму электроду и увлажненного кислорода к первому электроду и по меньшей мере одним циклическим изменением напряжения на мембранно-электродном блоке в диапазоне от величины холостого хода до 0 В. Увеличение максимальной удельной мощности воздушно-топливных элементов (кислородно-водородных) на основе полимерных мембран является техническим результатом предложенного изобретения. 1 з.п. ф-лы, 5 ил., 4 пр.

 

Изобретение относится к области электрохимической энергетики, а именно к устройствам непосредственного преобразования химической энергии водородосодержащего топлива в электрическую энергию. Более конкретно изобретение относится к способам активации мембранно-электродных блоков (МЭБ) для воздушно(кислородно)-водородных топливных элементов (ТЭ) на основе полимерных мембран типа «Nation», используя только аппаратуру и реагенты, применяемые в процессе характеризации и работы ТЭ.

В последнее время активно ведутся разработки и формируется рынок источников тока малой и средней мощности (до 50 кВт) на основе воздушно-водородных ТЭ. Характеристики таких ТЭ и, в конечном случае, источников тока во многом определяются свойствами МЭБ с протонообменной мембраной типа «Nation». Многочисленные исследования воздушно-водородных МЭБ показали, что их эффективность в значительной степени зависит от чистоты и структурных особенностей каталитических слоев. Основной причиной такой зависимости является необходимость осуществления эффективного транспорта электронов и протонов, что требует формирования независимого контакта наночастиц катализатора с материалами, обладающими электронной и ионной проводимостями. Влияние структуры каталитических слоев на параметры ТЭ обусловлено также тем, что должны быть обеспечены как свободный подвод газов к катализатору, так и отвод молекул воды. Одновременное выполнение этих требований возможно лишь при низком газовом сопротивлении диффузионных каналов каталитических слоев и при оптимальной структурной организации сетки углеродных наночастиц и полимерного материала, формирующих остов этих слоев. Кроме того, важной задачей оптимизации характеристик МЭБ является увеличение площади эффективной поверхности катализатора и повышение его каталитической активности за счет достижения высокой чистоты каталитических слоев.

Как известно, в процессе изготовления МЭБ испытывает воздействие целого ряда вредных факторов (температуры, давления, химических соединений). В связи с этим первоначальные, сразу после изготовления, характеристики МЭБ не являются оптимальными. Это обусловлено целым рядом причин: из-за частичной блокировки транспортных каналов затруднен доступ реагентов к катализатору; иономер, присутствующий в каталитическом слое недостаточно увлажнен, что приводит к его плохой протонной проводимости; загрязнения, попадающие в слой во время формирования МЭБ, снижают активность катализатора; оксидный слой, сформированный на катализаторе в процессе изготовления МЭБ, снижает его активность; остаточные спирты ухудшают характеристики МЭБ.

В связи с этим большинство фирм изготовителей ТЭ проводят первоначальную активацию (разгонку, кондиционирование) МЭБ для повышения эффективности работы ТЭ. Активация может включать в себя активацию частиц катализатора, не участвующих в реакциях, достаточное увлажнение мембраны и электролита в каталитических слоях для обеспечения непрерывного транспорта электронов и протонов, удаление веществ, отравляющих катализатор, удаление оксидных слоев с поверхности катализатора, оптимизацию электронной структуры катализатора или комбинацию всех перечисленных операций.

Процесс активации может осуществляться химическими, электрохимическими или комплексными методами.

Известен способ активации мембранно-электродного блока (см. заявка US 20110059384, МПК Н01М 8/00, опубликована 10.03.2011), включающий обработку МЭБ спиртовым (метанол, этанол, пропанол) раствором определенной концентрации при температуре от 10°C до температуры кипения, при одновременном воздействии ультразвуком, с последующей промывкой МЭБ в деионизированной воде, осуществляемой в два этапа. Сначала раствор спирта разбавляют водой до 0,01 мас.ч., а затем промывают в деионизированной воде.

Недостатками известного способа активации мембранно-электродного блока являются возможное повреждение МЭБ, в которых используется протонпроводящая мембрана на основе полимерных соединений типа «Nafion», так как такие мембраны взаимодействуют в каталитических слоях с сильно концентрированным спиртовым раствором. Кроме того, процесс активации достаточно сложный и требует применения дополнительного оборудования и реагентов, не используемых при работе топливных элементов.

Известен способ активации мембранно-электродного блока (см. заявка РСТ WO 2011125840, МПК Н01М 8/04, опубликована 13.10.2011), включающий в циклическом вольтамперометрическом режиме (CV) подачу газообразного азота, содержащего большое количество азота без кислорода к катодному электроду и реактивного газа, содержащего большое количество водорода к анодному электроду, приложение между катодным электродом и анодным электродом электрического напряжения от стабилизированного источника напряжения и изменение величины приложенного напряжения в заданном интервале. В режиме накачки водорода подают азот без кислорода к катодному электроду и водород к анодному электроду, пропускают электрический ток от анодного электрода к катодному электроду. В генерирующем режиме водород подают к анодному электроду и кислород подают к катодному электроду и реализуют режим генерации топливным элементом электрического тока. Повторяют по меньшей мере два раза с использованием любых двух из трех перечисленных режимов.

Недостатком известного способа активации мембранно-электродного блока является необходимость использования особо чистого азота, не используемого при работе топливного элемента.

Известен способ активации мембранно-электродного блока (см. заявка РСТ WO 2007028626, МПК C08J5/22, опубликована 15.03.2007), включающий кондиционирование (активацию) МЭБ на основе различного типа полимер-электролитных мембран посредством продувки МЭБ в режиме холостого хода хотя бы одним газом (воздух, кислород, азот или благородные газы) в диапазоне температур (+80-+300)°C и наиболее предпочтительном диапазоне температуры (+140-+275)°C.

Недостатками известного способа активации мембранно-электродного блока являются необходимость применения специального оборудования для нагрева газов, не используемого при характеризации и работе ТЭ. Также при повышении температуры до ≈+90°C резко уменьшается вероятный срок службы, а при температуре ~(+100-+120)°C происходит разрушение мембраны типа «Nafion», входящей в состав активируемого МЭБ.

Известен способ активации мембранно-электродного блока (см. заявка US 20090155635, МПК Н01М 8/00, опубликована 18.06.2009), совпадающий с заявляемым решением по наибольшему числу существенных признаков и принятый за прототип. Способ-прототип включает подачу увлажненного водорода к аноду и увлажненного инертного газа или кислорода к катоду для гидратирования мембраны и электродов, и осуществление по меньшей мере одного цикла вольтамперометрического процесса циклическим изменением напряжения в диапазоне от 0 В до 3 В.

Известный способ-прототип позволяет увеличить удельную мощность в области рабочих напряжений лишь на 18%. Однако проведение циклирования в широких диапазонах напряжения (от 0 до 3 В приводит к тому, что процесс оказывается длительным; с химической точки зрения смена полярности в топливном элементе при переходе выше точки напряжения холостого хода (более 2 В) создает возможность нежелательных электрохимических процессов (например, окисление платины в каталитических слоях). Кроме того, необходимо использовать особо чистый азот, не используемый при работе 73.

Задачей настоящего изобретения являлась разработка такого способа активации мембранно-электродного блока, который бы позволил увеличить максимальную удельную мощность МЭБ на 50% и более, при использовании газов и аппаратуры, применяемых при характеризации и работе топливных элементов.

Поставленная задача решается тем, что способ активации мембранно-электродного блока включает подачу увлажненного водорода к первому электроду и увлажненного кислорода ко второму электроду, проведение измерения значения напряжения холостого хода и по меньшей мере одно циклическое изменение напряжения на мембранно-электродном блоке в диапазоне от величины холостого хода до 0 В при комнатной температуре. Затем подают увлажненный водород ко второму электроду и увлажненный кислород к первому электроду, и осуществляют по меньшей мере одно циклическое изменение напряжения на мембранно-электродном блоке в диапазоне от величины холостого хода до 0 В.

Измерение значения напряжения холостого хода может быть проведено и перед вторым циклическим изменением напряжения.

Сущность заявляемого способа заключается в применении циклического изменения напряжения (снятия поляризационных характеристик) в диапазоне напряжений от холостого хода до нуля при смене вида газов (водород, кислород), подаваемых на электроды. При этом удается улучшить в 1,5 и более раз характеристики МЭБ, а также достичь стабилизации работы МЭБ за короткое время.

Суть настоящего технического решения поясняется чертежом, где:

на фиг.1 показана блок-схема стенда для проведения циклирования;

на фиг.2 приведены вольтамперные и вольтмощностные характеристики МЭБ до и после активации, образец №1 (увеличение мощности МЭБ в 1,5 раза);

на фиг.3 приведены вольтамперные и вольтмощностные характеристики МЭБ до и после активации, образец №2 (увеличение мощности МЭБ в 1,73 раза);

на фиг.4 приведены вольтамперные и вольтмощностные характеристики МЭБ до и после активации, образец №3 (увеличение мощности МЭБ в 1,58 раза);

на фиг.5 приведены вольтамперные и вольтмощностные характеристики МЭБ до и после активации, образец №4 (увеличение мощности МЭБ в 2,0 раза).

Для активации мембранно-электродного блока по настоящему способу может быть использован, например, стенд (см. фиг.1), в состав которого входит измерительная ячейка 1 с МЭБ, потенциостат 2, модуль 3 преобразования сигналов, осуществляющий связь измерительной аппаратуры и компьютера, и автоматизированная система 4 регистрации и обработки данных, например, персональный компьютер, позволяющий при помощи специализированных программ задавать циклическое изменения напряжения в необходимых диапазонах и регистрировать значения токов и напряжений. МЭБ устанавливают между двумя герметизирующими прокладками в измерительной ячейке 1 с газовыми штуцерами для подвода и отвода водорода или кислорода, первый и второй электроды МЭБ соединяют с низкоомными токосъемными электродами, которые подключают к потенциостату 2. Подают на первый электрод МЭБ влажный водород, а на второй электрод влажный кислород из электролизера в режиме свободного течения газа. Потенциостатом измеряют напряжение холостого хода и циклически изменяют по меньшей мере один раз напряжение на первом и втором электродах МЭБ от величины холостого хода до 0 В и обратно при комнатной температуре (в принципе возможный интервал работы такого типа МЭБ заключен в пределах (0-+90)°C. При температуре ниже 0°C при начале замерзания воды резко уменьшается протонная проводимость мембраны типа «Nation» и снижается максимальная удельная мощность ТЭ. При повышения температуры до ≈90°C резко уменьшается вероятный срок службы] а при температуре ~(100-120)°C происходит разрушение мембраны типа «Nafion». Может быть проведено до 30 циклов, так как с каждым циклом улучшаются вольтамперные и вольтмощностные характеристики МЭБ. Изменение выходного напряжения происходит, как правило, с помощью потенциостата 2, подключенного к низкоомным токосъемным электродам измерительной ячейки 1. Сопротивление потециостата 2 при этом изменяется от бесконечности (режим холостого хода) до нуля (режим короткого замыкания). В этом случае на низкоомных токосъемных электродах ячейки 1 будет соответственно напряжение холостого хода и 0. На внутреннем сопротивлении МЭБ будет напряжение, равное 0 (режим холостого хода, отсутствие поляризации) и напряжения холостого хода (режим короткого замыкания, максимальная поляризация МЭБ). Останавливают цитирование. Подают на второй электрод МЭБ влажный водород, а на первый электрод влажный кислород из электролизера в режиме свободного течения газа. Потенциостатом 2 измеряют напряжение холостого хода и циклически изменяют по меньшей мере один раз напряжение между первым и вторым электродом МЭБ от величины холостого хода до 0 В и обратно. Может быть проведено до 30 циклов, так как с каждым циклом улучшаются вольтамперные и вольтмощностные характеристики МЭБ. Для снятия вольтамперных характеристик после активации МЭБ на первый электрод подают водород, а на второй электрод подают воздух.

Пример 1. Образец №1, МЭБ на основе твердополимерной мембраны типа «Nafion» NRE 212, изготовленный в ФТИ им. А.Ф.Иоффе РАН. Рабочая площадь МЭБ составляла 5 см2. Каталитические слои наносились методом аэрографии. В состав каталитических чернил на основе порошка марки ЕТЕК с 20% содержанием платины добавляли около 15% углеродных нанотрубок. Загрузка платины на аноде и катоде составляла соответственно (0,15 и 0,3) мкг/см2. Измерение напряжения холостого хода, цитирование и снятие нагрузочных характеристик проводилось с использованием потенциостата Р-150 производства фирмы «Элинс», г.Черноголовка. Программное обеспечение также фирмы «Элинс». Количество циклов - 30. Вольтамперные и вольтмощностные характеристики МЭБ до и после активации образца приведены на фиг.2. Увеличение максимальной удельной мощности достигло 1,5 раз (см. фиг.2).

Пример 2. Образец №2, МЭБ на основе твердополимерной мембраны типа «Nafion» NRE 212, изготовленный в ФТИ им. А.Ф.Иоффе РАН. Рабочая площадь МЭБ составляла 5 см2. Каталитические слои наносились методом аэрографии. В состав каталитических чернил на основе порошка марки ЕТЕК с 20% содержанием платины добавляли около 15% углеродных нанотрубок. Загрузка платины на аноде и катоде составляла соответственно (0,15 и 0,3) мк/см2. Измерение напряжения холостого хода, цитирование и снятие нагрузочных характеристик проводилось с использованием потенциостата Р-150 производства фирмы «Элинс», г.Черноголовка. Программное обеспечение также фирмы «Элинс». Количество циклов - 30. Вольтамперные и вольтмощностные характеристики МЭБ до и после активации образца приведены на фиг.3. Увеличение максимальной удельной мощности достигло 1,73 раза (см. фиг.3).

Пример 3. Образец №3, МЭБ на основе твердополимерной мембраны типа «Nation» NRE 212, изготовленный в ФТИ им. А.Ф.Иоффе РАН. Рабочая площадь МЭБ составляла 5 см2. Каталитические слои наносились методом аэрографии. В состав каталитических чернил на основе порошка марки ЕТЕК с 20% содержанием платины добавляли около 15% углеродных нанотрубок. Загрузка платины на аноде и катоде составляла соответственно (0,15 и 0,3) мкг/см2. Измерение напряжения холостого хода, циклирование и снятие нагрузочных характеристик проводилось с использованием потенциостата Р-150 производства фирмы «Элинс», г.Черноголовка. Программное обеспечение также фирмы «Элинс». Количество циклов - 30. Вольтамперные и вольтмощностные характеристики МЭБ до и после активации образца приведены на фиг.4. Увеличение максимальной удельной мощности достигло 1,58 раза (см. фиг.4).

Пример 4. Образец №4, МЭБ на основе твердополимерной мембраны типа «Nafion» NRE 212 изготовленный фирмой BASF. Рабочая площадь МЭБ составляла 9 см2. Загрузка платины на аноде и катоде составляла (0,3 и 0,5) мкг/см2, соответственно. Измерение напряжения холостого хода, циклирование и снятие нагрузочных характеристик проводилось с использованием потенциостата Р-150 производства фирмы «Элинс», г.Черноголовка. Программное обеспечение также фирмы «Элинс». Количество циклов - 30. Вольтамперные и вольтмощностные характеристики МЭБ до и после активации образца приведены на фиг.5. Увеличение максимальной удельной мощности достигло 2,0 раза (см. фиг.5).

В настоящем способе смена вида газов (кислород, водород), подаваемых на первый и второй электроды в процессе циклического снятия поляризационных характеристик (осуществляется поляризация обоих электродов), позволяет произвести активацию обоих электродов, нет необходимости использовать напряжение до 3 В. При этом нет необходимости использовать высокочистый азот, не используемый при работе ТЭ (применяется водород и кислород, которые также используются для работы ТЭ). Процесс активации происходит при комнатной температуре, то есть не требуется применение оборудования для нагрева МЭБ. В результате удельная мощность МЭБ увеличивается в 1,5 и более раза, а в прототипе только на 18%.

1. Способ активации мембранно-электродного блока, включающий подачу увлажненного водорода к первому электроду и увлажненного кислорода ко второму электроду, измерение величины холостого хода и по меньшей мере одно первое циклическое изменение напряжения на мембранно-электродном блоке в диапазоне от величины холостого хода до 0 В при комнатной температуре, подачу увлажненного водорода ко второму электроду и увлажненного кислорода к первому электроду и по меньшей мере одно второе циклическое изменение напряжения на мембранно-электродном блоке в диапазоне от величины холостого хода до 0 В.

2. Способ по п.1, отличающийся тем, что перед вторым циклическим изменением напряжения на мембранно-электродном блоке измеряют величину холостого хода.



 

Похожие патенты:

Изобретение относится к энергетике и может использоваться в автономных, резервных, авиационных энергоустановках. .

Изобретение относится к когенерационной системе на топливных элементах, предназначенной для получения горячей воды путем рекуперации и использования бросового тепла топливного элемента.

Изобретение относится к топливным элементам. .

Изобретение относится к производству электрической энергии и получению Н2 с использованием углеродсодержащего топлива в топливных элементах. .

Изобретение относится к системе топливного элемента. .

Изобретение относится к топливному картриджу и системе топливного элемента, которые предназначены для подачи жидкого топлива в топливный элемент. .

Изобретение относится к топливным элементам (ТЭ) с испарительным охлаждением. .

Изобретение относится к энергоустановкам на топливных элементах, предназначенных для использования как в качестве источника бесперебойного питания, так и полностью автономного источника.

Изобретение относится к способу и устройству для выведения отработанных и, по меньшей мере, отчасти способных взрываться рабочих сред топливного элемента (1) в системе (20) топливных элементов с сенсорным устройством (30) для контролирования рабочих сред, выведенных из рабочего пространства (27)

Способ хранения топливного элемента включает первый этап калибровки эталонной мембраны с помощью ядерного магнитного резонанса с целью получения кривой зависимости максимальной водной нагрузки (λmaxx(T)) мембраны от температуры мембраны (3), и второй этап калибровки стандартного элемента с целью получения зависимости между электрическим сопротивлением стандартного элемента, водной нагрузкой (λ) его мембраны и его температурой (T). Способ также включает этап высушивания, зависящий от двух этапов калибровки. Обеспечение оптимальной эффективности работы топливного элемента за счет того, что мембрана каждой ячейки содержит определенное количество воды, близкое к насыщению, является техническим результатом предложенного изобретения. 6 з.п. ф-лы, 4 ил.

Предусмотрена система генерирования мощности на топливных элементах, в которой уменьшена потеря мощности в линии питания, электрически соединяющей батарею и схему преобразования мощности, тем самым достигается высокая эффективность генерирования мощности. Установка (6) для реформинга и батарея (7) расположены в блоке (2) основного корпуса. Выходные контактные зажимы (31) батареи предусмотрены на обоих концах в направлении укладки батареи (7). Схема (24) преобразования мощности расположена в блоке (2) основного корпуса и размещается в непосредственной близости к батарее (2). Входные контактные зажимы (32) схемы преобразования мощности предусмотрены на схеме (24) преобразования мощности и размещены в направлении параллельно направлению укладки батареи. Выходные линии (27) батареи электрически соединяют выходные контактные зажимы (31) батареи и входные контактные зажимы (32) схемы преобразования мощности. Снижение потери мощности в системе с топливными элементами при уменьшении ее габаритов и повышении надежности системы является техническим результатом предложенного изобретения. 4 з.п. ф-лы, 13 ил.

Система топливного элемента содержит топливный элемент (10), первую камеру (20) сгорания, первый обратный канал (17) для обогревающего газа и систему (50) подачи газа. Топливный элемент (10) включает в себя элемент с твердым электролитом с анодом (12) и катодом (13). Топливный элемент (10) вырабатывает энергию посредством реакции водородосодержащего газа и кислородсодержащего газа. Первая камера (20) сгорания избирательно подает обогревающий газ в катод (13) топливного элемента (10). Первый обратный канал (17) для обогревающего газа смешивает, по меньшей мере, часть выпускаемого газа, выпускаемого из катода (13), с обогревающим газом первой камеры (20) сгорания, так что смешанный обогревающий газ из выпускаемого газа и обогревающего газа подается в катод (13). Система (50) подачи газа соединена с первым обратным каналом (17) для обогревающего газа для подачи выпускаемого газа из катода (13) так, что он смешивается с обогревающим газом первой камеры (20) сгорания. Повышение эффективности использования газа, выпускаемого из катода, путем использования его для повышения температуры топливного элемента, а также снижение отложений углерода на аноде, является техническим результатом заявленного изобретения. 5 н. и 7 з.п. ф-лы, 12 ил.

Изобретение относится к топливным элементам. Технический результат - повышение долговечности топливных элементов путем регулирования давления на электродах. Предложена система топливного элемента, включающая в себя топливный элемент для генерирования энергии путем осуществления электрохимической реакции между газом-окислителем, подаваемым на электрод окислителя, и топливным газом, подаваемым на топливный электрод; систему (HS) подачи топливного газа для подачи топливного газа на топливный электрод; и контроллер для регулирования системы (HS) подачи топливного газа, чтобы подавать топливный газ на топливный электрод, причем контроллер осуществляет изменение давления, когда выход стороны топливного электрода закрыт, при этом контроллер периодически изменяет давление топливного газа у топливного электрода на основе первого профиля изменения давления для осуществления изменения давления при первом размахе давления (ΔР1). 2 н. и 3 з.п. ф-лы, 22 ил.

Топливный элемент, производимый в промышленном масштабе, содержащий электролит, положительные электроды и отрицательные электроды, собранные в определенную структуру, внешние электрические соединения, внутренние каналы для подачи топлива, каналы для распределения топлива, каналы для подачи окислителя, каналы для распределения окислителя, возвратные каналы и проходы для отработанных продуктов, что позволяет сформировать простую модульную сборку, из которых можно собрать пакет. В топливном элементе могут быть использованы как твердый, так и гибкий электролит. Расположение рамы с каналами для топлива в ее центральной части обеспечивает повышение надежности электрических соединений и уплотнений для текучих сред, при этом электролит в указанном топливном элементе может быть расположен с любой стороны электрода, а электрические соединения позволяют обеспечить подключение к ним извне для обеспечения желаемой электрической мощности. 21 з.п. ф-лы, 22 ил.

Изобретение относится к энергетике, в частности к системе диагностики топливного элемента и других химических источников электроэнергии, и может использоваться в автономных, резервных, авиационных энергоустановках. Техническим результатом, достигаемым предлагаемым способом, является качественный и непрерывный контроль, позволяющий отслеживать состояние топливного элемента и предсказывать его работоспособность и длительность работы. В предложенном способе измеряют напряжение эталонного электрода, установленного на одном из рабочих электродов топливного элемента, и вычисляют степень его износа и сравнивают со значением критического износа источника тока, после чего делают вывод о пригодности или непригодности дальнейшей эксплуатации источника тока. 1 ил.

Изобретение относится к твердотельным оксидным топливным элементам со способностью к внутреннему риформингу. Твердотельный оксидный топливный элемент обычно включает катод, электролит, анод и слой катализатора, находящийся в соприкосновении с анодом. Слой катализатора может включать опорную мембрану и катализатор риформинга, который объединен с опорной мембраной. В некоторых вариантах осуществления катализатор риформинга может включать один или несколько катализаторов риформинга с частичным окислением. Заявленное изобретение также предоставляет способы изготовления и эксплуатации твердотельных оксидных топливных элементов. Техническим результатом является возможность работы топливных элементов непосредственно на нереформированном углеводородном топливе без деградации анода вследствие закоксовывания. 3 н. и 16 з.п. ф-лы, 11 ил.

Изобретение относится к способу изготовления металлического стального сепаратора для топливных элементов, который обладает коррозионной стойкостью и контактным сопротивлением не только в начальной стадии, но также и после влияния условий высокой температуры и/или высокой влажности в топливном элементе в течение длительного периода времени. Способ включает подготовку листа нержавеющей стали в качестве матрицы металлического сепаратора, формирование прерывистой покровной пленки на поверхности листа нержавеющей стали, причем покровная пленка содержит по меньшей мере одно вещество, выбранное из следующих: золото (Au), платина (Pt), рутений (Ru), иридий (Ir), оксид рутения (RuO2) и оксид иридия (IrO2),; и термическую обработку листа нержавеющей стали, содержащего прерывистую покровную пленку, для формирования оксидной пленки на части листа нержавеющей стали, на которой не сформирована покровная пленка. Также раскрыт металлический сепаратор для топливных элементов, изготовленный этим способом.2 н. и 9 з.п. ф-лы, 12 ил., 1 табл., 8 пр.

Предложена система (100) топливного элемента, включающая в себя топливный элемент (1) для генерирования энергии путем осуществления электрохимической реакции между газом-окислителем, подаваемым на электрод (34) окислителя, и топливным газом, подаваемым на топливный электрод (67); систему (HS) подачи топливного газа для подачи топливного газа на топливный электрод (67); и контроллер (40) для регулирования системы (HS) подачи топливного газа, чтобы подавать топливный газ на топливный электрод (67), причем контроллер (40) осуществляет изменение давления, когда выход стороны топливного электрода (67) закрыт, при этом контроллер (40) периодически изменяет давление топливного газа у топливного электрода (67) на основе первого профиля изменения давления для осуществления изменения давления при первом размахе давления (ДР1). Повышение однородности топливного газа и снижение напряжения, прилагаемого к топливному элементу, является техническим результатом изобретения. 4 н. и 17 з.п. ф-лы, 22 ил.
Наверх