Устройство для борьбы с туманом на рудниках

Изобретение относится к горному делу и может быть использовано для безопасности ведения горных работ. Техническим результатом является повышение эффективности удаления тумана в горной выработке. Устройство содержит вихревую трубу с патрубком выхода теплого воздушного потока и трубопроводом отвода холодного воздушного потока, расположенным в водоотливной канавке и соединенным с патрубком выхода подогретого воздуха. При этом на внутренней поверхности патрубка выхода теплого воздушного потока расположены направляющие, кривизна которых образована по отрицательному вращению винтовой линии, закрученной против часовой стрелки, а на внутренней поверхности патрубка выхода подогретого воздуха расположены направляющие, кривизна которых образована по положительному вращению винтовой линии, закрученной по часовой стрелке, причем корпусы патрубка выхода теплого воздушного потока и патрубка выхода подогретого воздуха выполнены из биметалла. При этом материал внутренней поверхности патрубка выхода теплого воздушного потока имеет коэффициент теплопроводности в 2,0-2,5 раза выше, чем коэффициент теплопроводности материала наружной поверхности, а материал внутренней поверхности патрубка выхода подогретого воздуха имеет коэффициент теплопроводности в 2,0-2,5 раза меньше, чем коэффициент теплопроводности материала наружной поверхности, причем трубопровод отвода холодного воздушного потока выполнен из композитного трехслойного материала, включающего средний слой из металлической оплетки, а внутренний и наружный слои - из гидроизоляционного материала, кроме того, наружный слой выполнен гофрированным. 4 ил.

 

Изобретение относится к горному делу и может быть использовано для безопасности ведения горных работ.

Известно устройство для механизации способа борьбы с туманом на рудниках (см. патент РФ №2209875, МПК Е01Н 13/00, 10.08.2003), содержащее вихревую трубу с патрубком выхода теплового воздушного потока и трубопроводом отвода холодного воздушного потока, расположенным в водоотводной канавке и соединенным с патрубком выхода подогретого воздуха, причем на внутренней поверхности патрубка выхода теплого воздушного потока расположены направляющие, кривизна которых образована по отрицательному вращению винтовой линии, закрученной против часовой стрелки, а на внутренней поверхности патрубка выхода подогретого воздуха расположены направляющие, кривизна которых образована по положительному вращению винтовой линии, закрученной по часовой стрелке.

Недостатком является снижение эффективности в процессе длительной эксплуатации из-за уменьшения выходных отверстий патрубков как для выхода теплого воздуха, так и выхода подогретого воздуха из-за налипания на их внутренние поверхности загрязнений в виде ржавчины и/или окалины, образующихся при окислении движущимся сжатым воздухом, насыщенным парообразной и мелкодисперсной каплеобразной влагой, а это, в конечном итоге, препятствует более полному рассеиванию тумана в горной выработке.

Известно устройство для борьбы с туманом на рудниках (см. патент РФ №2392441 МПК E21F 3/00, Е21Н 13/00, опубл. 20.05.2010, Бюл. №17), содержащее вихревую трубу с патрубком выхода теплого воздушного потока и трубопроводом отвода холодного воздушного потока, расположенным в водоотливной канавке и соединенным с патрубком выхода подогретого воздуха, причем на внутренней поверхности патрубка выхода теплого воздушного потока расположены направляющие, кривизна которых образована по отрицательному вращению винтовой линии, закрученной против часовой стрелки, а на внутренней поверхности патрубка выхода подогретого воздуха расположены направляющие, кривизна которых образована по положительному вращению винтовой линии, закрученной по часовой стрелке, причем корпусы патрубка выхода теплого воздушного потока и патрубка выхода подогретого воздуха выполнены из биметалла, при этом материал внутренней поверхности патрубка выхода теплого воздушного потока имеет коэффициент теплопроводности в 2,0-2,5 раза выше, чем коэффициент теплопроводности материала наружной поверхности, а материал внутренней поверхности патрубка выхода подогретого воздуха имеет коэффициент теплопроводности в 2,0-2,5 раза меньше, чем коэффициент теплопроводности материала наружной поверхности.

Недостатком является повышенная энергоемкость при длительной эксплуатации из-за выполнения внеплановых демонтажных работ по замене трубопровода отвода холодного воздушного потока, расположенного в водоотводной канавке, что обусловлено интенсивным образованием ржавчины на используемых металлических трубопроводах, постоянно контактирующих с водой или с воздухом окружающей среды при снижении уровня жидкости в водоотливной канавке, а это еще более интенсифицирует окисление внешней поверхности трубопровода, приводя его к аварийному состоянию.

Технической задачей предлагаемого изобретения является повышение эффективности удаления тумана в горной выработке путем продления срока эксплуатации трубопровода отвода холодного воздушного потока в условиях коррозийного воздействия жидкости в водоотливной канавке за счет выполнения трубопровода из композитного трехслойного материала с покрытием металлической оплетки среднего слоя гидроизоляционными внутренним и внешним слоями, что обеспечивает механическую прочность и практически устраняет дополнительные аварийные демонтажные работы и, в конечном итоге, снижает стоимость устройства для борьбы с туманом на рудниках.

Технический результат по повышению надежности длительной эксплуатации в условиях коррозийных воздействий достигается тем, что устройство для борьбы с туманом на рудниках содержит вихревую трубу с патрубком выхода теплого воздушного потока и трубопроводом отвода холодного воздушного потока, расположенным в водоотливной канавке и соединенным с патрубком выхода подогретого воздуха, при этом на внутренней поверхности патрубка выхода теплого воздушного потока расположены направляющие, кривизна которых образована по отрицательному вращению винтовой линии, закрученной против часовой стрелки, а на внутренней поверхности патрубка выхода подогретого воздуха расположены направляющие, кривизна которых образована по положительному вращению винтовой линии, закрученной по часовой стрелке, причем корпусы патрубка выхода теплого воздушного потока и патрубка выхода подогретого воздуха выполнены из биметалла, при этом материал внутренней поверхности патрубка выхода теплого воздушного потока имеет коэффициент теплопроводности в 2,0-2,5 раза выше, чем коэффициент теплопроводности материала наружной поверхности, а материал внутренней поверхности патрубка выхода подогретого воздуха имеет коэффициент теплопроводности в 2,0-2,5 раза меньше, чем коэффициент теплопроводности материала наружной поверхности, причем трубопровод отвода холодного воздушного потока выполнен из композитного трехслойного материала, включающего средний слой из металлической оплетки, а внутренний и наружный слои из гидроизоляционного материала, кроме того, наружный слой выполнен гофрированным.

На фиг.1 показана принципиальная схема устройства для борьбы с туманом на рудниках; на фиг.2 - биметаллический патрубок выхода подогретого воздуха с направляющими, расположенными по отрицательному вращению винтовой линии, на фиг.3 - биметаллический патрубок выхода подогретого воздуха с направляющими, расположенными по положительному вращению винтовой линии, на фиг.4 - разрез трубопровода отвода холодного воздушного потока из композитного трехслойного материала.

Устройство для борьбы с туманом на рудниках включает компрессор (не показано), расположенный вне горной выработки 1 с туманом, где установлена вихревая труба 2 с одним выходом 3 теплого воздушного потока вверх и другим выходом 4 холодного потока вниз. Трубопровод 5 подачи сжатого воздуха от компрессора к вихревой трубе 2, патрубок 6 выхода теплого воздушного потока с направляющими 7, кривизна которых образована по отрицательному вращению винтовой линии, трубопровод 8, расположенный в водоотливной канавке 9, патрубок 10 выхода подогретого воздуха с направляющими 11, кривизна которых образована положительным вращением винтовой линии. Патрубки 6 и 10 выполнены из биметалла, при этом материал 12 внутренней поверхности патрубка 6 выхода теплого воздушного потока имеет коэффициент теплопроводности материала в 2,0-2,5 раза выше, чем коэффициент теплопроводности материала 13 наружной поверхности патрубка 6, а материал 14 внутренней поверхности патрубка 10 выхода подогретого воздуха имеет коэффициент теплопроводности в 2,0-2,5 раза меньше, чем коэффициент теплопроводности материала 15 наружной поверхности патрубка 10.

Трубопровод 8, расположенный в водоотливной канавке 9, выполнен из композитного материала таким образом, что внутренний слой 16 является гидроизоляционным материалом (например, стеклоэмалевые марок 105Т ВНИИСТ с коэффициентом теплопроводности до 0,52 Вт/(м·°С) ТУ 84-725-83), средний слой 17 представляет металлическую оплетку для поддержания механической прочности трубопровода 8, а наружный слой 18 также является гидроизоляционным материалом с коэффициентом теплопроводности, близким по значению коэффициенту теплопроводности жидкости в водоотливной канавке 9 (коэффициент теплопроводности воды 0,55 Вт/(м·°С), и выполнен гофрированным.

Устройство для борьбы с туманом на рудниках работает следующим образом.

Расположение трубопровода 8 из композитного трехслойного материала погруженным в жидкость водоотливной канавки S с внешним слоем 18 из гидроизоляционного материала, имеющего коэффициент теплопроводности, близкий по значению к коэффициенту теплопроводности жидкости, приводит к равномерному распределению теплового потока с практически постоянным градиентом температур, что способствует равномерному распределению теплового потока по всей длине погруженного в жидкость трубопровода, а выполнение внешнего слоя 18 с гофрированной поверхностью дополнительно интенсифицирует процесс передачи тепла за счет увеличения площади теплообмена (см., например, стр.66, Коваленко Л.Н., Глушков А.Ф. Теплообменники с интенсификацией теплоотдачи. М.: Энергоатомиздат, 1986. 240 с.). Все это в конечном итоге обеспечивает при необходимой прочности трубопровода 8 из композитного трехслойного материала (металлическая оплетка среднего слоя) эффективный процесс подогрева воздуха с выходом холодного воздушного потока из вихревой трубы 2.

По трубопроводу 5 сжатый воздух от компрессора (не показано) поступает в вихревую трубу 2, где разделяется на два потока: теплый и холодный. После этого по выходу 3 вверх теплый воздушный поток направляется в выработку 1 с туманом через патрубок 6 выхода теплого воздушного потока. При перемещении теплого воздушного потока по направляющим 7, кривизна которых образована по отрицательному вращению винтовой линии, он закручивается против часовой стрелки. Т.к. во всасываемом в компрессор атмосферном воздухе постоянно находится значительное количество как парообразной, так и мелкодисперсной влаги, то по мере движения сжатого в вихревой трубе 2 теплого воздушного потока наблюдается интенсивное окисление внутренней поверхности вихревой трубы 2 с образованием перемещающихся частиц твердых загрязнений в виде окалины и ржавчины. Все эти частицы направляются в патрубок 6 выхода теплого потока, где и залипают на внутренней поверхности 12 и, соответственно, на направляющих 7, уменьшая тем самым полезную поверхность выходного отверстия патрубка выхода теплого воздушного потока 6, что приводит к увеличению скорости потока, поступающего в выработку 1. А это приводит к возрастанию аэродинамического сопротивления патрубка 6, т.е. к дополнительным энергозатратам процесса удаления тумана при невысокой эффективности его рассеивания из-за проскока части теплого воздушного потока 3 без контакта с туманообразной массой в горной выработке 1.

Для устранения данного явления корпус патрубка 6 выполнен из биметалла таким образом, что материал внутренней поверхности 12 имеет коэффициент теплопроводности в 2,0-2,5 раза выше, чем коэффициент теплопроводности материала наружной поверхности 13. В этом случае при разности температур (температура внутренней поверхности 12 патрубка 6, контактирующей с теплым воздушным потоком, выше, чем температура внешней поверхности 13, контактирующей с воздухом окружающей среды в горной выработке 1) материалов биметалла между внутренней 12 и наружной 13 поверхностями возникает максимальный температурный градиент, направленный к внешней поверхности 12 (см., например, Нащокин В.В. Техническая термодинамика и теплопередача. М.: Наука, 1980. 469 с.). Возникающая в этом случае величина термовибрации достигает значений, обеспечивающих устранение возможности залипания твердых частиц загрязнений на внутренней поверхности 12 и на направляющих 7 патрубка 6 (см., например, Дмитриев В.П. Биметаллы. Пермь: Наука, 1991. 487 с.). В результате наблюдается поддержание нормированных размеров выходного отверстия патрубка 6, т.е. обеспечивается полное контактирование теплого воздушного потока 3 с туманообразной массой в горной выработке 1.

При этом твердые частицы загрязнений, выбрасываемые из патрубка 6, являются дополнительным «ядром конденсации» мелкодисперсной и парообразной влаги, что также способствует более интенсивному рассеиванию тумана в горной выработке 1. Кроме того, под действием теплого и закрученного на выходе из патрубка 6 против часовой стрелки потока сжатого воздуха, поступающего в горную выработку 1 с туманом, рудничный воздух нагревается, а туман интенсивно рассеивается по всему пространству горной выработки 1, начиная от выходного патрубка 6 теплого воздуха. Одновременно часть холодного воздушного потока 4 после разделения в вихревой трубе 2 направляется по трубопроводу 8, расположенному в водоотливной канавке 9, нагревается и поступает в горную выработку 1 с туманом уже как поток подогретого воздуха. Подогретый воздух, поступающий в компрессор при всасывании из атмосферы и насыщенный паро- и каплеобразной влагой, интенсивно окисляет внутреннюю поверхность элементов трубопроводов между компрессором и вихревой трубой, а также внутреннюю поверхность вихревой трубы 2, образуя ржавчину и/или окалину, которые перемещаются по композитному трехслойному материалу трубопровода 8 и далее к патрубку 10, где, проходя по направляющим 11, кривизна которых образована положительным вращением винтовой линии, закручиваются по часовой стрелке, что приводит к рассеиванию тумана по выработке 1, начиная от выходного отверстия патрубка 10 выхода подогретого воздуха.

В связи с тем, что температура воды, находящейся в водоотливной канавке 9, выше, чем температура воздуха, то он нагревается. Корпус патрубка 10 выхода подогретого воздуха выполнен из биметалла таким образом, что коэффициент теплопроводности материала наружной поверхности 15 выше коэффициента теплопроводности материала внутренней поверхности 14. В этом случае в материале внутренней поверхности 15 биметаллического корпуса патрубка 10 возникает максимальный температурный градиент для данной разности температур воды и подогретого воздуха, направленный в сторону внутренней поверхности 14. Т.к. теплота от воды водоотливной канавки более интенсивно проходит материал наружной поверхности, то коэффициент теплопроводности материала наружной поверхности в 2,0-2,5 раза выше, чем коэффициент теплопроводности материала внутренней поверхности 14 патрубка 10. Соприкосновение закрученных в противоположных направлениях теплого и подогретого потоков сжатого воздуха с твердыми частицами загрязнений приводит к образованию множества отдельных микрозавихрений в рудничном воздухе по всему объемному пространству выработки 1. В результате осуществляется полное устранение образования застойных зон в выработке 1 с туманом, т.е. наблюдается более полное рассеивание тумана.

Оригинальность предлагаемого изобретения заключается в том, что повышение эффективности борьбы с туманом на рудниках осуществляется путем поддержания нормированных параметров подогретого воздуха, выходящего из трубопровода отвода холодного воздушного потока, расположенного в водоотливной канавке, за счет выполнения трубопровода в виде композитного трехслойного материала с гофрированной внешней поверхностью и обеспечивающего не только практическое устранение коррозийного износа как внутренней, так и наружной поверхностей, но и создающего условия более интенсивного процесса подогрева холодного воздушного потока жидкостью в водоотводной канавке посредством увеличения площади теплообмена и выравнивания температурных градиентов по длине трубопровода. Это обеспечивает не только снижение эксплуатационных расходов, связанных с демонтажем коррозийно разрушенного трубопровода в водоотливной канавке при длительной работе устройства для борьбы с туманом на рудниках, но и интенсифицирует удаление тумана из-за наличия более высокой температуры подогреваемого воздуха, соприкасающегося с теплым в виде противоположно закрученных потоков.

Устройство для борьбы с туманом на рудниках содержит вихревую трубу с патрубком выхода теплого воздушного потока и трубопроводом отвода холодного воздушного потока, расположенным в водоотливной канавке и соединенным с патрубком выхода подогретого воздуха, при этом на внутренней поверхности патрубка выхода теплого воздушного потока расположены направляющие, кривизна которых образована по отрицательному вращению винтовой линии, закрученной против часовой стрелки, а на внутренней поверхности патрубка выхода подогретого воздуха расположены направляющие, кривизна которых образована по положительному вращению винтовой линии, закрученной по часовой стрелке, причем корпусы патрубка выхода теплого воздушного потока и патрубка выхода подогретого воздуха выполнены из биметалла, при этом материал внутренней поверхности патрубка выхода теплого воздушного потока имеет коэффициент теплопроводности в 2,0-2,5 раза выше, чем коэффициент теплопроводности материала наружной поверхности, а материал внутренней поверхности патрубка выхода подогретого воздуха имеет коэффициент теплопроводности в 2,0-2,5 раза меньше, чем коэффициент теплопроводности материала наружной поверхности, отличающееся тем, что трубопровод отвода холодного воздушного потока выполнен из композитного трехслойного материала, включающего средний слой из металлической оплетки, а внутренний и наружный слои - из гидроизоляционного материала, кроме того, наружный слой выполнен гофрированным.



 

Похожие патенты:
Изобретение относится к горному делу и может быть применено для управления вентиляцией и охлаждением подземных месторождений при их разработке. .

Изобретение относится к горному делу, а именно к устройству для борьбы с туманом на рудниках. .

Изобретение относится к системам обогрева различных объектов и предназначено преимущественно для использования при подогреве воздуха, подаваемого в шахту. .

Изобретение относится к горной промышленности и может быть использовано в проветриваемых объектах для обеспечения комфортных, безопасных условий труда, предотвращения профессиональных заболеваний, эндогенных пожаров и связанных с ними последствий.

Изобретение относится к горной промышленности и может быть использовано в системах вентиляции шахт. .

Изобретение относится к горному делу и может быть использовано для обогрева воздухоподающих стволов шахт. .

Изобретение относится к горному делу и может быть использовано для безопасности ведения горных работ. .

Изобретение относится к вентиляции горных выработок при выделении в них вредных веществ и может быть использовано для управления тепловым режимом железнодорожных тоннелей, расположенных в районах с суровыми климатическими условиями.

Изобретение относится к области вентиляции горных выработок и может быть использовано для управления тепловым режимом железнодорожных тоннелей, расположенных в районах с суровыми климатическими условиями.

Изобретение относится к горной промышленности и может быть использовано в системах вентиляции шахт. .

Изобретение относится к системам теплоснабжения различных объектов как наземного, так и подземного назначения и предназначено для получения тепловой энергии (горячего воздуха) и подачи ее на объект

Изобретение относится к горному делу, в частности к стационарным установкам и теплообменной технике, и может быть использовано для нагрева воздуха, поступающего в шахту горнодобывающего предприятия. Техническим результатом является повышение эффективности работы калориферной установки. Установка включает калориферное помещение, выполненное в виде ограждения цилиндрической формы, с калориферами, размещенными в один ряд в два и более ярусов в помещении по периметру ограждения, боковые прямоугольные проемы в ограждении, равномерно распределенные по его периметру, входной в перекрытии и выходной в донной части проемы прямоугольного сечения, радиальные перегородки, образующие в калориферном помещении камеры, прямой и обратный трубопроводы греющего теплоносителя. Каждая камера снабжена диагональной непроницаемой шторкой, установленной поперек продольной оси камеры от перекрытия до уровня верхнего края нижнего яруса калориферов. Вокруг ограждения на вертикальных опорах установлены две кольцевые направляющие, одна выше верхнего уровня бокового прямоугольного проема, другая - ниже нижнего, в пространстве между верхней и нижней кольцевыми направляющими установлен кинематически связанный с ними гаситель скорости ветра, включающий полупроницаемый щит, плотный щит, кольцевой каркас и привод его поворота, причем полупроницаемый щит выполнен в виде сегмента и установлен на каркасе вертикально, концентрично ограждению и с зазором, плотный щит выполнен в виде сегмента и установлен на каркасе вертикально, концентрично ограждению и с зазором с диаметрально противоположной стороны, а привод поворота каркаса вокруг вертикальной оси выполнен в виде лопасти из плотного материала, установленной вертикально на каркасе и ориентированной радиально. 3 ил.

Изобретение относится к горной промышленности, а именно к шахтной вентиляции транспортных тоннелей. Техническим результатом является расширение функциональных возможностей установки, повышение ее надежности и возможности быстрого монтажа и перестановки на новое место эксплуатации. Установка включает рабочий и резервный вентиляторы, каждый из которых имеет электродвигатель, коллектор и переходник, совмещенную входную коробку с поворотной заглушкой, перекрывающей вход к рабочему или резервному вентиляторам, и поворотную створку, перекрывающую выходы рабочего или резервного вентилятора в воздухоподающий канал. Над блоком вентиляторов с вентиляторами, установленными на выкатных тележках, размещен в шумопоглощающем теплоизолированном контейнере блок подготовки воздуха, в трех унифицированных воздухозаборниках которого установлены системы шумопоглощения с поворотными лядами, имеющего систему кондиционирования, выполненную в виде фреонового воздухоохладителя и электрического калорифера, позволяющих охлаждать или подогревать воздух в зависимости от температуры окружающей среды. Воздухоподающий канал блока вентиляторов снабжен противопожарным клапаном на входе в скважину. 6 ил.

Изобретение относится к горной промышленности, а именно к системе регулирования воздухоподготовки на поземном горном предприятии. Технический результат заключается в создании высокоэффективной автоматизированной системы регулирования воздухоподготовки на подземном горнодобывающем предприятии, работающей в холодное и теплое время года за счет обеспечения надежной работы системы воздухоподготовки с использованием резервной шахтной калориферной установки. Система включает главную вентиляторную установку (ГВУ), воздухоподающий ствол, надшахтное здание, по периметру которого расположены теплообменники калориферной установки (КУ). Воздухоподающий ствол через калориферный канал связан с резервной шахтной калориферной установкой (ШКУ), которая снабжена перекрывающей ладой и нагнетательными вентиляторами. Воздухозаборные окна КУ и резервной ШКУ снабжены управляемыми шторками. Надшахтное здание выполнено со скиповыми окнами. При этом за каждым теплообменником КУ размещены датчики температуры. В калориферном канале и в околоствольном дворе воздухоподающего ствола установлены датчики температуры, давления, либо плотномеры и датчики расхода, которые связаны с микроконтроллерным блоком, выполненным с возможностью подачи управляющих сигналов на механизмы изменения теплопроизводительности КУ и резервной ШКУ. 6 ил.

Изобретение относится к области теплоэнергетики и может быть использовано для подогрева шахтного вентиляционного воздуха. Техническим результатом предлагаемого технического решения является повышение безопасности процесса подогрева шахтного вентиляционного воздуха, предотвращение окисления металлических частей оборудования (трубопроводов, деталей теплообменника, вентиляторов, клапанов и пр.), их коррозии и износа за счет пониженного содержания кислорода, повышение экономичности процессов нагрева шахтного вентиляционного воздуха за счет использования отработанных дымовых газов. Предложен способ подогрева шахтного вентиляционного воздуха, включающий нагрев атмосферного воздуха в системе шахтной вентиляции дымовыми газами, поступающими из камеры сгорания топлива в теплообменник. При этом осуществляют регулирование температуры поступающих дымовых газов на входе в теплообменник. Причем регулирование температуры поступающих в теплообменник горячих дымовых газов производится за счет вторичного использования отработанных дымовых газов путем дозированной подачи их в поток горячих дымовых газов, поступающих из камеры сгорания топлива. 1 ил.

Изобретение относится к горной промышленности и может быть использовано при проветривании подземных горнодобывающих предприятий. Согласно способу подают наружный воздух по воздухоподающему стволу за счет работы главной вентиляторной установки (ГВУ), нагревают его в шахтной калориферной установке. Нагретый воздух подают в воздухоподающий ствол, при этом в воздухоподающий ствол подсасывается и наружный воздух через надшахтное здание ствола. При нагреве определяют величину общерудничной естественной тяги в микроконтроллерном блоке с помощью данных, полученных с датчиков температуры, давления, либо плотномеров и датчиков расхода воздуха, установленных в калориферном канале. В околоствольном дворе воздухоподающего ствола, в главных вентиляционных выработках, подходящих к вентиляционному стволу, и в поверхностном комплексе главной вентиляторной установки. Теплопроизводительность шахтной калориферной установки и режим работы главной вентиляторной установки регулируются устройствами управления, на которые поступает информация с микроконтроллерного блока в зависимости от величины общерудничной естественной тяги. Отводят воздух по вентиляционному стволу на поверхность, при этом подсасывается наружный воздух через надшахтное здание вентиляционного ствола. В воздухоподающем стволе выше уровня пересечения с ним калориферного канала и в вентиляционном стволе выше уровня канала главной вентиляторной установки устанавливают воздушные завесы, которые подают воздух навстречу подсасываемым потокам воздуха. При этом режим работы воздушных завес регулируется устройствами управления, на которые поступает информация с микроконтроллерного блока в зависимости от объема подсасываемого воздуха, определяемого датчиками расхода воздуха. Технический результат заключается в снижении энергетических затрат на нагрев воздуха в шахтных калориферных установках и на работу ГВУ и обеспечении безопасности воздухоподготовки в холодное время года подземного горнодобывающего предприятия. 3 з.п. ф-лы, 3 ил.

Группа изобретений относится к системам обогрева, а именно к способу подогрева шахтного вентиляционного воздуха и устройству для его осуществления. Способ включает нагрев атмосферного воздуха дымовыми газами, поступающими из камеры сгорания топлива, подачу его в шахту через вентиляционную систему. В поток вентиляционного воздуха, непосредственно во всасывающий канал шахтного вентилятора главного проветривания, дозированно подают присадку горячего воздуха. В камере сгорания используют вторичное дутье. Вторичный воздух подогревают в конвективной рубашке боковых стенок камеры сгорания. В выходном газоходе используют поддув холодного воздуха, который направляют вверх под углом не менее 45°.Камера сгорания топлива снабжена расположенными снаружи вентиляторами вторичного дутья и выполненными в боковых стенках наклонными щелевыми форсунками. Наружная поверхность боковых стенок камеры сгорания топлива снабжена конвективной рубашкой. В потолочной части камеры сгорания топлива расположены газовые горелки. Улучшает подогрев шахтного воздуха, при исключении попадания дымовых газов в вентиляционный поток, подаваемый в шахту. Обеспечивает увеличение кпд воздухонагревательной установки за счет полного сгорания топлива, уменьшение металлоемкости воздуховода. 2 н.з. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к горной промышленности, в частности к средствам кондиционирования воздуха. Техническим результатом является повышение эффективности кондиционирования воздуха и охлаждения технологических сред оборудования. Предложен способ кондиционирования воздуха в лавах путем непосредственного охлаждения воздуха в воздухоподающей выработке с помощью теплообменных аппаратов. При этом охлаждение оборудования ведут за счет параллельной подачи теплоносителя от холодильной машины для охлаждения технологической среды, а отвод тепловыделений осуществляют с помощью холодильной машины и теплообменника для сброса тепла, который содержит два или более теплообменников для параллельного охлаждения воздуха и технологической среды, один из которых предназначен для охлаждения воздуха, а другой для охлаждения технологической среды, путем параллельной подачи теплоносителя в указанные теплообменники. 3 ил.

Изобретение относится к горной промышленности и может быть использовано для нормализации температуры воздуха в горных выработках. Технический результат - повышение эффективности и надежности охлаждения воздуха при подземном кондиционировании воздуха. Предложен способ кондиционирования воздуха при разработке месторождений полезных ископаемых подземным способом, характеризующийся тем, что в выработке последовательно устанавливают на тележках и соединяют между собой холодильную машину, агрегат подачи нагретого воздуха и воздухоохладитель. При этом агрегат подачи нагретого воздуха соединяют с воздухоохладителем, а холодильную машину подключают посредством трубопроводов к теплообменным аппаратам воздухоохладителя и посредством трубопровода к подземному техническому трубопроводу подачи хладоносителя - пожарному трубопроводу. Причем в воздухоохладителе осуществляют теплообмен рудничного воздуха с охлажденным хладоносителем, который нагретым затем подают в холодильную машину, которая передает избыточные тепловыделения хладоносителю из технического трубопровода. 2 ил.

Изобретение относится к горной промышленности и может быть использовано в системе вентиляции подземных горнодобывающих предприятий. Шахтная калориферная установка включает нагнетательные вентиляторы, ряд пластинчатых элементов, установленных в нижней части калориферного канала, прилегающего к стволу шахты, и ориентированных по потоку воздуха. При использовании в качестве теплоносителя воды или химического вещества на пластинчатых элементах закреплена система теплообменных трубок, образующая замкнутый контур циркуляции жидкого теплоносителя, включающая управляющие задвижки и регулирующие устройства для подачи теплоносителя. Пластинчатые элементы расположены в калориферном канале параллельно стенкам нижней части калориферного канала с возможностью регулирования угла их наклона относительно друг друга и нижней части калориферного канала. При этом вентиляторы расположены в поверхностном здании и/или в калориферном канале до пластинчатых элементов и/или после пластинчатых элементов. Технический результат заключается в снижении энергетических затрат на работу установки при использовании различных видов тепловой энергии и обеспечении равномерного прогрева воздуха. 4 ил.

Изобретение относится к горному делу и может быть использовано для безопасности ведения горных работ

Наверх