Способ определения работающих интервалов и источников обводнения в горизонтальной нефтяной скважине



Способ определения работающих интервалов и источников обводнения в горизонтальной нефтяной скважине
Способ определения работающих интервалов и источников обводнения в горизонтальной нефтяной скважине
Способ определения работающих интервалов и источников обводнения в горизонтальной нефтяной скважине
Способ определения работающих интервалов и источников обводнения в горизонтальной нефтяной скважине
Способ определения работающих интервалов и источников обводнения в горизонтальной нефтяной скважине
Способ определения работающих интервалов и источников обводнения в горизонтальной нефтяной скважине

 


Владельцы патента RU 2490450:

Общество с ограниченной ответственностью "Газпромнефть Научно-Технический Центр" (ООО "Газпромнефть НТЦ") (RU)

Изобретение относится к технологиям нефтедобычи, а именно к способам проведения, интерпретации и анализа результатов промыслово-геофизических исследований в горизонтальных скважинах. Технический результат направлен на повышение точности определения работающих интервалов и источников обводнения в условиях эксплуатации горизонтальных скважин. Способ включает доставку в окончание скважины хвостовика с набором пакеров и штуцеров, глубинного геофизического комплексного прибора на кабеле. Закачку в скважину жидкости, содержащей термоконтрастирующие и нейтроноконтрастирующие вещества, и периодическое выполнение замеров. Закачку контрастной жидкости производят несколькими порциями, объемы которых составляют не менее внутреннего объема горизонтальной части ствола, поочередно подключая к работе разные, перекрытые пакерами, интервалы пласта путем управления открытием и закрытием пропускных штуцеров. В качестве контрастной жидкости вместо воды используют нефть. Движение контрастной жидкости по стволу при закачке отслеживают с помощью модулей гамма-каротажа, резистивиметра или термокондуктивного расходомера. 4 з.п. ф-лы, 6 ил.

 

Изобретение относится к технологиям нефтедобычи, а именно к способам проведения, интерпретации и анализа результатов промыслово-геофизических исследований в горизонтальных скважинах (ГС).

Известны технологии проведения промыслово-геофизических исследований, включающие доставку в ствол скважины глубинного геофизического прибора и последующую регистрацию температуры и давления (например, заявки на изобретения РФ №2004100732, 08.01.2004 или №2005127125, 29.08.2005).

В случае исследований ГС этими способами невозможно оценить профиль распределения по стволу расходных фазовых параметров и выявить место преимущественного поступления воды в ствол, из-за того, что скважина имеет синусоидальную траекторию, компоненты продукции скважины расслаиваются в стволе под действием гравитации и ствол скважины заполняется неравномерно в зависимости от угла его наклона. Поэтому при исследовании ГС этими способами наблюдается несоответствие истинных и расходных профилей притока, что, в свою очередь, не позволяет проводить эффективные ремонтно-восстановительные работы в скважине.

Известен способ контроля продуктивности углеводородосодержащих интервалов (АС СССР №1805213, 27.01.1989), при котором в скважину закачивают жидкость, содержащую термоконтрастирующие и нейтронноконтрастирующие вещества, с помощью которых по термическим и нейтронным аномалиям вдоль ствола скважины судят об обводненности и продуктивности пласта.

Однако эффективность данного способа в горизонтальной скважине является низкой. Это связано, во-первых, с невозможностью обеспечить равномерное поглощение закачиваемой жидкости из-за большой длины ствола, и, во-вторых, со сложностью в определении интервала времени, когда жидкость достигнет исследуемого интервала.

Указанный недостаток может быть устранен при применении способа одновременно-раздельной и поочередной эксплуатации и освоения нескольких пластов одной скважиной (патент РФ №2350742, 21.05.2007). Данный способ является наиболее близким к предлагаемому и включает доставку в окончание скважины хвостовика с набором пакеров и пропускных штуцеров между ними, что способствует выравниванию профиля притока (поглощения). Однако качество выравнивания не всегда бывает удовлетворительным из-за невозможности непосредственной дистанционной (в процессе проведения работ на скважине) регулировки расхода и отсутствия оперативного контроля распределения притекающего (поглощаемого флюида) по длине хвостовика.

Задачей изобретения является повышение точности определения работающих интервалов и источников обводнения в условиях эксплуатации ГС.

Для решения указанной задачи предлагается способ, включающий доставку в окончание скважины хвостовика с набором, пакеров и штуцеров, глубинною геофизического комплексного прибора на кабеле, закачку в скважину жидкости, содержащей термоконтрастирующие и нейтронноконтрастирующие вещества, и периодическое выполнение замеров на режимах: закачки, отбора продукции скважины и остановки, при этом закачку контрастной жидкости производят несколькими порциями, объемы которых составляют не менее внутреннего объема горизонтальной части ствола, что обеспечивается за счет поочередной работы перекрытых пакерами интервалов пласта, управляемых путем открытия и закрытия пропускных штуцеров.

Предлагаемый способ имеет следующие дополнительные особенности.

1) В качестве контрастной жидкости вместо воды используют нефть, что дает возможность сохранить первоначальные свойства нефтенасыщенного коллектора и обеспечить более выраженный эффект выделения обводненных интервалов.

2) С целью последующей интерпретации учет движения контрастной жидкости по стволу при закачке отслеживают с помощью модулей гамма-каротажа, резистивиметра или термокондуктивного расходомера.

3) Потенциальные интервалы обводнения и интенсивности поглощения в пласт оценивают с помощью модулей гамма-каротажа, термометра и импульсного (или стационарного) нейтронного каротажа;

4) Для измерений при закачке, остановке или вызове притока вместо геофизического прибора на кабеле применяют распределенный оптоволоконный датчик теплового поля.

На представленных иллюстрациях показаны схемы работы по способам, выбранным в качестве аналогов и предлагаемого способа.

Фиг.1 иллюстрирует случай, когда в горизонтальном стволе, в который производится закачка контрастной жидкости, отсутствует специальное оборудование.

На схеме обозначены: 1 - насосно-компрессорные трубки, 2 - насос, 3 - ствол скважины, в который опущен хвостовик с фильтром, 4 - пласт, I - распределение контрольного геофизического параметра по длине ствола, свидетельствующее, что контрастная жидкость распределяется по стволу и поступает в пласт неравномерно.

Фиг.2 соответствует случаю, когда в окончание ствола скважины доставлен хвостовик с набором пакеров и штуцеров.

На схеме обозначены: 1 - насосно-компрессорные трубки, 2 - насос, 3 - ствол скважины, в который опущен хвостовик с фильтром, 4 - пласт, 5 - пакеры, разделяющие ствол скважины на секции, 6', 6'', 6''' - штуцеры (мандрели) соответственно первой, второй и третьей секций, находящиеся при технологическом режиме работы скважины в открытом положении, 7 - распределение контрольного геофизического параметра по длине горизонтального ствола.

Предварительной регулировкой открытия штуцеров достигают более равномерного распределения контрастной жидкости по длине ствола. Однако качество выравнивания неудовлетворительно из-за невозможности непосредственной дистанционной регулировки расхода и отсутствия оперативного контроля распределения флюида по длине хвостовика.

Степень выравнивания зависит от особенностей настройки мандрелей. Поскольку оперативный контроль распределения флюида по длине хвостовика отсутствует, выравнивание расхода также является неудовлетворительным, что иллюстрируется неравномерным по пластам распределением контрольного геофизического параметра (7 на фиг.2).

Фиг.3 иллюстрирует реализацию заявляемого способа.

На схеме обозначены: 1 - насосно-компрессорные трубки, 2 - насос, 3 - ствол скважины, в который опущен хвостовик с фильтром, 4 - пласт, 5 - пакеры, разделяющие ствол скважины на секции, 6', 6''' - мандрели первой и третьей секций, находящиеся при технологическом режиме работы скважины в закрытом положении, 6" - мандрели второй (средней) секции, 7 - система геофизических приборов на кабеле, 8-16 - распределение контрольных геофизических параметров по длине ствола.

В этом случае к работе поочередно подключают разные части пласта. Состояние мандрелей оперативно регулируют с поверхности по результатам геофизических измерений.

В данном примере ствол разделен на три секции. Мандрели первой и третьей секции (6',6''' на фиг.3) закрыты. Мандрели второй (средней) секции (6'' на фиг.3) открыты. Именно через них осуществляется сообщение пласта и ствола скважины. Дистанционный контроль движения констрастной жидкости осуществляют с помощью системы геофизических приборов на кабеле, размещаемых под приемом насоса (7 на фиг.3).

Таким образом, регулируя движение контрастной жидкости, обеспечивают необходимое качество ее выравнивания.

В качестве контрастной жидкости используют нефть, что повышает точность контроля движения контрастной жидкости с помощью геофизических приборов. Точность контроля увеличивается также, за счет того, что при каждом измерении работает только одна из мандрелей, а не все три одновременно.

Движение нефти при закачке отслеживается с помощью методов гамма-каротажа (для привязки к разрезу), резистивиметра или термокондуктивного расходомера.

Включение в комплекс методов геофизических исследований гамма каротажа связано с небходимостью детальной привязки к разрезу горизонтальной части ствола (кривая 8 на фиг.3).

Включение в комплекс геофизических исследований резистивиметра связано с необходимостью контролировать интервал движения контрастной жидкости в стволе. Контроль возможен из-за аномально низкой проводимости нефти по сравнению с другими заполнителями ствола и пластовыми флюидами (кривая 9 на фиг.3).

Включение в комплекс геофизических исследований термоанемометра связано с необходимостью контролировать интервал поступления контрастной жидкости в пласт (кривая 10 на фиг.3).

Потенциальные интервалы обводнения и интенсивности поглощения контрастной жидкости в пласт оценивают в остановленной скважине с помощью модулей гамма каротажа (для привязки к разрезу), термометра и импульсного (или стационарного) нейтронного каротажа.

Включение в комплекс геофизических исследований термометра и нейтронного каротажа связано с необходимостью контролировать работающие толщины пласта, поглотившие контрастную жидкость (кривые 11-15 и 16 на фиг.3).

Стандартная технология термических исследований предусматривает серию дискретных измерений, отличающихся временем, прошедшим после остановки скважины и режимом работы скважины. В примере практической реализации способа это фоновая термограмма (11), термограмма в процессе закачки (12), простаивающей после закачки скважине (13), в процессе отбора (14) и после прекращения отбора (15).

Эффективность данного метода термических исследований в условиях применения предлагаемого способа низка из-за слабого различия между термограммами вследствие малой продолжительности закачки (отбора). Поэтому для этой цели используют распределенный оптоволоконный датчик. Преимущество данного датчика в том, что температура может измеряться практически непрерывно, то есть с максимальной достоверностью.

В результате за счет обеспечения более равномерной работы ствола и контроля притока (поглощения) повышается точность определения работающих интервалов и источников обводнения в условиях эксплуатации ГС.

Техническая возможность проведения исследований в горизонтальном стволе и управления секциями по предлагаемому способу подтверждается работой способов, выбранных в качестве аналогов и прототипа.

Эффективность отсечения водоносных интервалов, обнаруженных путем поочередного подключения к работе разных частей пластов, разделенных секциями, подтверждена результатами цифрового гидродинамического моделирования.

На фиг.4 представлены геометрические особенности модели. На рисунке обозначены: 1 - ствол моделируемой эксплуатационной горизонтальной скважины, 2 - распределение коллекторов во вскрытом скважиной пласте (интенсивность цвета характеризует величину коэффициента пористости), I, II, III - интервалы поочередной раздельной закачки, оборудованные согласно заявляемому способу.

Фиг.5 иллюстрирует эффект отсечения водоносного интервала в подошве залежи. На данном рисунке: 1 и 2 - соответственно дебит жидкости и нефти при стандартном способе эксплуатации скважины, 1* и 2* - то же при отсечении интервалов, диагностированных, как водоносные. Видно, что в последнем случае производительность скважины падает во времени менее резко, повышается количество добытой нефти и снижается дебит жидкости.

При этом падает обводненность продукции. Этот факт иллюстрирует фиг.6, где 1 и 1* обводненности до и после интервалов притока воды.

1. Способ определения работающих интервалов и источников обводнения в горизонтальной нефтяной скважине, включающий доставку в окончание скважины хвостовика с набором пакеров и штуцеров, глубинного геофизического комплексного прибора на кабеле, закачку в скважину жидкости, содержащей термоконтрастирующие и нейтронноконтрастирующие вещества, и периодическое выполнение замеров на режимах: закачки, отбора продукции скважины и остановки, отличающийся тем, что закачку контрастной жидкости производят несколькими порциями, объемы которых составляют не менее внутреннего объема горизонтальной части ствола, поочередно подключая к работе разные, перекрытые пакерами, интервалы пласта путем управления открытием и закрытием пропускных штуцеров.

2. Способ по п.1, отличающийся тем, что в качестве контрастной жидкости используют нефть.

3. Способ по п.1, отличающийся тем, что движение контрастной жидкости по стволу при закачке отслеживают с помощью модулей гамма-каротажа, резистивиметра или термокондуктивного расходомера.

4. Способ по п.1, отличающийся тем, что потенциальные интервалы обводнения и интенсивности поглощения в пласт оценивают с помощью модулей гамма-каротажа, термометра и импульсного (или стационарного) нейтронного каротажа.

5. Способ по п.1, отличающийся тем, что при выполнении измерений во время закачки, остановки или вызова притока применяют распределенный оптоволоконный датчик теплового поля.



 

Похожие патенты:

Изобретение относится к определению нейтральной точки буровой колонны при бурении скважины на основании гидравлического фактора и/или факторов скручивающих и осевых нагрузок.

Изобретение относится к области геофизических исследований в нефтегазовых скважинах. .

Изобретение относится к области геофизических исследований скважин и предназначено для обеспечения контакта электровводов с обсадной колонной в многоэлектродном скважинном зонде электрического каротажа через металлическую колонну.

Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяной залежи. .

Изобретение относится к технике и технологии добычи углеводородов и может быть использовано для добывающих насосных скважин для одновременно-раздельного исследования и эксплуатации нескольких пластов одной скважины.

Изобретение относится к нефтегазодобывающей отрасли и может использоваться в скважинных установках электроцентробежных насосов - УЭЦН для контроля текущих характеристик погружных электродвигателей - ПЭД и нефтяных пластов.

Изобретение относится к нефтяной промышленности и может найти применение при определении нефтенасыщенных пластов в разрезе скважины. .
Изобретение относится к нефтяной промышленности и может найти применение при определении продуктивности пластов в процессе бурения скважин. .

Изобретение относится к способу и системе регистрации, измерения и управления нагрузкой в буровой скважине. .

Изобретение относится к газовой и нефтяной промышленности и может быть использовано, в частности, при выявлении газогидратов в низкотемпературных породах (НП) при строительстве и эксплуатации скважин в НП

Изобретение относится к области изучения физических свойств пористых неоднородных материалов и может быть использовано для определения характеристик порового пространства и теплопроводности образцов горных пород и минералов

Изобретение относится к оценке уровня жидкости в нефтяных скважинах и может быть использовано для определения и контроля статического и динамического уровней скважинной жидкости, например, в нефтяной скважине. Технический результат направлен на определение уровня жидкости в скважине с высокой температурой, добывающей высоковязкую нефть. Способ включает размещение оптоволоконного кабеля в эксплуатационной колонне, определение температуры по стволу скважины, построение графика зависимости температуры от глубины скважины, выделение на графике скачка температуры минимум на 10 градусов, ближайшего к устью скважины, определение глубины уровня жидкости в скважине как соответствующего глубине выделенного скачка температуры. 1 ил.

Изобретение относится к геофизическим исследованиям в скважине и может быть применено при электромагнитной дефектоскопии многоколонных конструкций стальных труб. Способ заключается в излучении зондирующих импульсов с помощью генераторного соленоида, расположенного внутри исследуемых труб, ось которого совпадает с осью исследуемых труб, и измерении ЭДС, наведенной в приемных катушках процессом спада электромагнитного поля. При этом измеряют магнитный поток, вызванный зондирующими импульсами генераторного соленоида, с помощью датчиков, расположенных по периметру прибора на расстоянии r от оси зонда, напротив торца генераторного соленоида, по N секторам, в радиальном направлении. Технический результат заключается в расширении области применения и повышении качества дефектоскопии труб. 10 ил.

Изобретение относится к геофизической технике и может быть использовано при проведении геофизических исследований и ремонтно-изоляционных работ в горизонтальных и наклонно-направленных действующих нефтяных, газовых и гидротермальных скважинах. Техническим результатом является улучшение эксплуатационных характеристик прибора и расширение сферы его применения. Прибор содержит составной корпус, в котором установлены датчики - локатора муфт (ЛМ), гамма - каротажа (ГК), давления (Р), температуры (Т), влагомера (W), термокондуктивного расходомера (СТИ) и резистивиметра (РИ), размещенные последовательно сверху вниз, в герметичной части составного корпуса - датчики ГК, ЛМ и Р, причем чувствительная мембрана датчика Р соединена с окружающей средой гидропроводным каналом, а в герметичных полостях негерметичной части составного корпуса - датчики Т, W, СТИ и РИ. Причем датчики Т и W смещены относительно продольной оси прибора на равные расстояния и установлены в месте корпуса, на котором выполнены две пары взаимоперпендикулярных, разных по ширине сквозных окон, снабженных поперечными перемычками, причем прибор снабжен модулем расходомера, содержащим центратор, хвостовик, корпус и установленную по оси корпуса турбинку с датчиками оборотов и направления вращения. В верхней части прибора дополнительно установлен датчик усилий F, между прибором и модулем расходомера дополнительно установлены стыковочный узел с фиксатором и двухшарнирный взаимоперпендикулярный электропроводный узел с осевым смещением осей вращения относительно продольной оси прибора, а прибор снабжен дополнительным объемным модулем или влагомера (W), или термовлагомера (T-W), или вискозиметра (В). 5 з.п. ф-лы, 3 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для добычи углеводородов и проведения исследований и скважинных операций в скважине без подъема насосного оборудования. Байпасная система скважинной насосной установки для одновременно-раздельной эксплуатации скважины, имеющей, по меньшей мере, два пласта, состоит из установленного на колонне труб Y-образного блока, к нижней части которого параллельно присоединены насосная установка и колонна байпасных труб с посадочным ниппелем для установки съемной глухой пробки. Ловильная головка расположена при установке съемной глухой пробки в ниппель в Y-образном блоке над колонной байпасных труб, а последняя скреплена с насосной установкой при помощи хомутов. Посадочный ниппель выполнен с возможностью установки в нем геофизической пробки вместо съемной глухой пробки. В скважине ниже байпасной системы с насосной установкой установлены, по меньшей мере, два пакера механического, гидромеханического или гидравлического действия. Каждый из пакеров установлен над соответствующим пластом скважины, а между ними на уровне пластов установлено, по меньшей мере, по одной скважинной камере с установленным в ней штуцером или регулятором расхода, или стационарной оправкой или управляемым клапаном с гидравлическим, электрическим или механическим управлением с возможностью регулирования проходного сечения или имеющие две позиции открыто и закрыто. Над верхним пакером установлен разъединитель колонны труб, на который в разъединенном состоянии установлен адаптер. На нижнем конце колонны труб установлена заглушка или ниппель-воронка. Кроме того, в байпасной системе скважинной насосной установки посадочный ниппель выполнен с возможностью установки в нем геофизической пробки на место съемной глухой пробки, снизу на колонне байпасных труб закреплена ниппель-воронка. Выше последней колонна байпасных труб и насосная установка соединены между собой посредством опорного элемента. Под посадочным ниппелем на колонне байпасных труб установлен телескопический патрубок. Съемная глухая пробка выполнена в верхней части со сдвижной юбкой для выравнивания давления и в нижней части с наконечником для закрепления проволоки или каната. Способ байпасирования проводят путем спуска в скважину прибора на геофизическом кабеле с установленной на геофизическом кабеле геофизической пробкой. На геофизическом кабеле устанавливают два молотка с фрикционной вставкой или внутренней поверхностью с зубчатой насечкой. Нижний молоток устанавливают на 10-20 м выше геофизического прибора. Верхний - на расстоянии большем или равном расстоянии от места установки геофизической пробки в Y-образном блоке до нижней границы исследуемого пласта. Геофизическую пробку выполняют с внутренней сдвижной втулкой для выравнивания давления. В результате достигается повышение надежности работы скважинного оборудования при проведении исследований в скважинах в эксплуатационной колонне ниже насосной установки, за счет безаварийного извлечения съемной глухой и геофизической пробок в процессе проведения исследований. 3 н. и 2 з.п. ф-лы, 9 ил.

Изобретение относится к способу и системе коррекции траектории ствола скважины. Техническим результатом является использование данных, полученных в режиме реального времени, для уточнения модели напряжений для данного региона, так что траекторию можно непрерывно корректировать для достижения оптимального соотношения с измеренными характеристиками напряжений данного региона. Способ включает стимулирование напряжения в пласте вокруг ствола скважины для образования в нем характерной особенности, связанной со стимулированным напряжением. Проведение измерений, отражающих геометрию ствола скважины, с использованием компоновки низа бурильной колонны (КНБК), вращаемой в стволе скважины, геометрия которого отображает стимулированные напряжения в пласте. Создание изображения ствола скважины на основании проведенных измерений его геометрии. Оценку азимутальной вариации стимулированного напряжения в пласте по глубине скважины. Изменение параметра режима бурения для КНБК с использованием оценки азимутальной вариации по глубине скважины стимулированного напряжения в пласте. 3 н. и 18 з.п. ф-лы, 1 табл., 12 ил.

Изобретение относится к нефтегазодобывающей промышленности. Предложен способ оптимизации добычи в скважине, в котором управляют системой искусственного подъема в стволе скважины, отслеживают множество параметров добычи на поверхности и в стволе скважины. Строят модель скважины с вычисленными параметрами данных. Затем сравнивают измеренные данные на забое и поверхности скважины с данными модели и проверяют достоверность измеренных данных. Далее диагностируют расхождение между измеренными данными и смоделированными, по результатам которого осуществляют регулировку работы механизма искусственного подъема. Способ направлен на обеспечение расширения объема анализа скважины и компонентов системы добычи для эффективной оптимизации добычи в целом. 2 н. и 5 з.п. ф-лы, 16 ил.
Изобретение относится к геофизическим способам исследования скважин: каротаж-активация-каротаж, в частности к определению низко проницаемых пластов в бурящейся скважине. Технический результат, на достижение которого направлено изобретение, заключается в определении низко проницаемых пластов. Данный технический результат достигается следующим образом - проводят фоновый гамма-каротаж, закачивают в открытый ствол «меченый» буровой раствор, проводят расхаживание бурового оборудования. В интервал исследования, после расхаживания бурового оборудования (НКТ), закачивают 0,5 м3 бурового раствора с концентрацией радона не менее 0,175 ГБк на 100 м интервала, дополнительно продавливают его. Проводят промывку интервала исследования двумя циклами циркуляции, после чего проводят гамма-каротаж. Полученный результат сопоставляют с фоновым замером.

Группа изобретений относится к нефтедобывающей промышленности, а именно к пакерам с электронным измерительным прибором и способам для их реализации. Обеспечивает повышение эффективности эксплуатации скважины. Пакер с электронным измерительным прибором включает ствол с уплотнительными элементами, разделительным элементом между ними, а также подвижными и неподвижными элементами. Пакер снабжен электронным измерительным прибором с датчиком для контроля состояния герметичности уплотнительных элементов в процессе эксплуатации скважины. По первому варианту электронный измерительный прибор с датчиком или датчик электронного измерительного прибора расположен в герметичном пространстве с постоянным давлением между уплотнительными элементами. По второму варианту электронный измерительный прибор с датчиком или датчик электронного измерительного прибора расположен вне уплотнительных элементов или в уплотнительных и разделительных элементах, при этом датчик электронного измерительного прибора гидравлически связан с герметичным пространством с постоянным давлением между уплотнительными элементами. Способ эксплуатации пакера с электронным измерительным прибором включает спуск в скважину колонны труб с указанным пакером, замер и передачу параметров на поверхность скважины. Электронный измерительный прибор с датчиком или датчик электронного измерительного прибора устанавливают с возможностью гидравлического сообщения с пространством между уплотнительными элементами для контроля состояния герметичности уплотнительных элементов, при этом осуществляют запакеровку пакера и образуют герметичное пространство с постоянным давлением между уплотнительными элементами в виде гидравлической камеры. После посадки пакера электронным измерительным прибором с датчиком замеряют параметры в указанном пространстве. 3 н. и 21 з.п. ф-лы, 11 ил.
Наверх