Шихта порошковой проволоки

Изобретение может быть использовано при наплавке рабочих поверхностей деталей металлургического оборудования, к которым предъявляются повышенные требования по твердости и износостойкости. Шихта порошковой проволоки содержит компоненты в следующем соотношении, мас.%: углерод 1-3,6; хром 6,5-14,0; молибден 5-21; вольфрам 1-8; ванадий 2-6; алюминий 1-4,5; никель 3,2-20; пыль электрофильтров алюминиевого производства 1-15; железо - остальное. Использование шихты обеспечивает повышение механических свойств наплавленного металла, в частности износостойкости и твердости, за счет снижения загрязненности стали неметаллическими оксидными включениями и эффекта дисперсионного твердения высоколегированного аустенита при отпуске, повышение устойчивости горения дуги за счет введения элементов, облегчающих ионизацию в столбе дуги, улучшение формирования наплавленного металла и исключение порообразования за счет введения фторсодержащих компонентов и создания дополнительной газовой защиты, предотвращение образования холодных трещин в процессе многослойной наплавки за счет увеличения количества стабилизированного аустенита и снижения содержания водорода в наплавленном металле, а также снижение стоимости сварочного процесса за счет оптимизации состава шихты и использования отходов производства. 3 табл.

 

Изобретение относится к сварочному производству, в частности к производству порошковой проволоки, и может быть использовано при наплавке рабочих поверхностей деталей металлургического оборудования, к которым предъявляются повышенные требования но твердости и износостойкости.

Известна выбранная в качестве прототипа [1], шихта порошковой проволоки содержащая углерод, хром, вольфрам, ванадий, кремнефтористый натрий, серу, кобальт, молибден и алюминий при соотношении компонентов, мас.%:

Углерод 1-3,6
Хром 6,5-12,0
Вольфрам 6-21
Молибден 8-17
Ванадий 2-6
Алюминий 1-4,5
Кремнефюристый натрий 0,6-3,6
Сера 0,9-3
Кобальт 12-13
Железо Остальное

Недостачами данной шихты порошковой проволоки являются;

- пониженные механические свойства наплавленного металла, в частности износостойкости и твердости, за счет повышенной загрязненности стали неметаллическими оксидными включениями и недостаточной легированости остаточного аустенита;

- плохая устойчивость горения дуги в связи с отсутствием в шихте элементов, облегчающих ионизацию в столбе дуги;

- низкое качество наплавленного металла в связи с порообразованием, связанным с повышенным содержанием водорода;

- возможность образования холодных трещин в процессе многослойной наплавки из-за недостаточного количества стабилизированного аустенита в процессе наплавки и повышенного содержания водорода;

- высокая стоимость сварочного процесса за счет использования дорогостоящих материалов в значительных количествах (вольфрама, молибдена, алюминия и кремнефтористого натрия).

Техническими результатами изобретения являются:

- повышение механических свойств наплавленного металла, в частности износостойкости и твердости, за счет снижение загрязненности стали неметаллическими оксидными включениями и эффекта дисперсионного твердения высоколегированного аустенита при отпуске;

- повышение устойчивости горения дуги за счет введения элементов, облегчающих ионизацию в столбе дуги;

- улучшение формирования наплавленного металла и исключение порообразования за счет введения фторсодержащих компонентов и создания дополнительной газовой защиты;

- предотвращение образования холодных трещин в процессе многослойной наплавки за счет увеличения количества стабилизированного аустенита в процессе наплавки и снижения содержания водорода в наплавленном металле;

- снижение стоимости сварочного процесса за счет оптимизации состава шихты и использования отходов производства.

Для этого предлагается шихта порошковой проволоки, содержащая углерод, хром, молибден, вольфрам, ванадий, алюминий и железо, в которой дополнительно содержится никель и пыль электрофильтров алюминиевого производства при соотношении компонентов, мас.%:

Углерод 1-3,6
Хром 6,5-14,0
Молибден 5-21
Вольфрам 1-8
Ванадий 2-6
Алюминий 1-4,5
Никель 3,2-20
Пыль электрофильтров алюминиевого производства 1-15
Железо Остальное

при этом пыль электрофильтров алюминиевого производства имеет следующий состав, мас.%: Al2O3=20-48; F+=18-27; Na2O=4-16; K2O=0,4 - 6%, CaO=0,7-1,8; SiO2=0,5-2,48; Fe2O3=1,7-3,27; Cобщ=12-31, MnO=0,07-1,3, MgO=0,06-0,9, S=0,09-0,59, P=0,1-0,18.

Заявляемые пределы подобраны эмпирическим путем, исходя из качества получаемого при наплавке металла, стабильности процесса наплавки, предотвращения образования холодных трещин и требуемых механических свойств.

Стойкость наплавленного металла против образования холодных трещин можно существенно повысить путем регулирования временных напряжений за счет соответствующего выбора химического состава наплавленного металла. От него зависят коэффициент линейного расширения, характер и объемный эффект структурных превращений. Введение в состав наплавленного металла сильных аустенитообразующих элементов повышает количества остаточного аустенига, что уменьшает вероятность образования холодных трещин (закалочная гипогеза). Стойкость против образования холодных трещин повышается также при снижении в составе наплавленного металла водорода (водородная гипотеза предотвращения холодных трещин).

Заявляемая шихта порошковой проволоки дополнительно содержит никель с целью снижения вероятности образования холодных трещин в процессе многослойной наплавки. Введение никеля в состав шихты позволяет:

- понизить вероятность образования трещин за счет увеличения количества остаточного аустенита и уменьшения объемного эффекта мартенситного превращения.

Получение наплавленного металла повышенной твердости и износостойкости достигается отпуском остаточного аустенита на 580°C.

Введение в состав шихты порошковой проволоки пыли электрофильтров алюминиевого производства связано с содержанием в составе последней элементов, позволяющих:

- проводить удаление водорода за счет комплекса фторсодержащих соединений (типа Na3AlF6, Na2SiF6, NaF, KF, CFx (1≥x>0), AlF3,) разлагающихся при температурах сварочных процессов с выделением F, который в свою очередь взаимодействует с водородом, растворенным в стали с образованием газообразного соединения HF. Снижение содержания водорода в наплавленном металле уменьшает вероятность образования пор и холодных трещин наплавленном металле;

- повысить устойчивость горения дуги за счет элементов, облегчающих ионизацию в столбе дуги - калия и натрия;

- проводить интенсивное науглероживание при взаимодействии фтористого углерода CFx (1≥x>0) с карбидообразующими элементами, что позволяет увеличить количество карбидной составляющей в структуре наплавленного металла и дополнительно повысить его твердость.

Для изготовления шихта порошковой проволоки использовали пыль электрофильтров алюминиевого производства со следующим химическим составом, мас.%: Al2O3=20-48; F+=18-27; Na2O=4-16; K2O=0,4-6%, CaO=0,7-1,8; SiO2=0,5-2,48; Fe2O3=1,7-3,27; Cобщ=12-31, MnO=0,07-1,3, MgO=0,06-0,9, S=0,09-0,59, P=0,1-0,18.

Изменение содержания никеля и пыли электрофильтров алюминиевого производства в составе заявляемой шихты производилось с учетом получения высококачественного наплавленного металла (стабильное горение дуги, хорошее формирование, плотный наплавленный металл без трещин, пор и неметаллических включений), при этом учитывалось содержание остальных компонентов. Порошковая проволока изготавливалась из стальной холоднокатаной ленты 08 кп (оболочка) размером 15×0,8 мм. Шихта перемешивалась в специальном приспособлении для получения однородной массы. Порошковая проволока прокаливалась для удаления влаги при температуре 250-350°C. Коэффициент заполнения составлял 0,32-0,33, диаметр готовой проволоки - 3,7 мм. Порошковой проволокой с предложенной шихтой производилась плазменная наплавка заготовок рабочих валков с диаметром рабочей части 150 мм, длиной 425 мм. Наплавка производилась в азотсодержащей защитно-легирующей среде на следующих режимах:

Сварочный ток 160-170 А
Напряжение дуги 50-60 В
Скорость наплавки 11 м/час
Скорость подачи порошковой проволоки 47 м/час
Длина дуги 20 мм
Смещение с зенита 20 мм
Защитный газ Азот
Плазмообразующий газ Аргон

Наплавка производилась с регулируемым низкотемпературным подогревом выше температуры начала фазовых превращений и составляла 200-250°C.

В процессе наплавки проводилась экспертная оценка стабильности горения дуги, качества формирования наплавленного металла. Наличие трещин в процессе наплавки оценивали визуально, после наплавки наличие трещин, пор и неметаллических включений оценивали ультразвуковым и магнитопорошковым методами, а также на металлографических шлифах. Содержание водорода в наплавленном металле определялось методом вакуум - нагрева на установке Баталина и на эксхалографе EAH-220 фирмы «Бальцерс». Содержание водорода изменялось в пределах 0,3-0,6 см3/100 г наплавленного металла при допустимом содержании водорода в высоколегированном наплавленном металле до 2 см3/100 г металла. Твердость наплавленного металла контролировалась непосредственно после наплавки и после проведения четырехкратного часового отпуска при температуре 580°C. Твердость наплавленного металла после наплавки составляла 52-56 HRC, после четырехкратного часового отпуска при 580°C - 62-66 HRC. Дефекты (трещины, поры и неметаллические включения) при наплавке порошковой проволокой с шихтой заявляемого состава, содержащей никель и пыль электрофильтров алюминиевого производства, не обнаружены.

Исследовались 6 вариантов составов шихты (таблица 1) порошковой проволоки, масс.%: 1 - прокутил; 2 - нижний предел заявляемой шихты; 3 - среднее содержание состава заявляемой шихты; 4 - верхний предел заявляемой шихты; 5 - нижний заграничный состав; 6 - верхний заграничный состав.

Влияние изменения химического состава на технологические свойства и механические характеристики наплавленного металла приведено в таблице 2. В строке 3 указана твердость наплавленного металла после высокотемпературного отпуска.

Использование заявляемого состава шихты порошковой проволоки по сравнению с базовым составом (прототип) позволяет:

1. Повысить качество наплавленного металла за счет снижения его загрязненности неметаллическими включениями, снижения вероятности порообразования и предотвращения образования холодных трещин.

2. Уменьшить содержание водорода за счет введения фторсодержащих компонентов и создания дополнительной газовой защиты в среднем до 0,3-0,6 см3/100 г металла (против 1,2-1,5 см3/100 г металла в прототипе).

3. Улучшить формирование шва при сварке за счет стабилизации горения дуги.

4. Повысить твердость наплавленного металла до HRC 64-66.

5. Снизить себестоимость изготовления порошковой проволоки за счет снижения содержания легирующих компонентов и использования отходов алюминиевого производства в предлагаемой щихте.

Литература

1. Пат. РФ №2088392, кл. B23K 35/36.

Таблица 1
Состав шихты
Состав шихты, мас.%: 1 2 3 4 5 6
Углерод 2,3 1.0 2,3 3,6 0,9 3,7
Хром 10,2 6,5 10,2 14,0 6,4 14,1
Молибден 13,0 5,0 13,0 21,0 4,9 21,1
Вольфрам 4,5 1,0 4,5 8,0 0,9 8,1
Ванадий 4,0 2,0 4,0 6,0 1,9 6,1
Алюминий 2,7 1 3,7 4,5 0,9 4,6
Никель - 3,2 11,5 20,0 3,1 20,1
Кремнефтористый натрий 6,3
Пыль электрофильтров алюминиевого производства 1,0 8,0 15,0 0,9 15,1
Железо 58,0 79,3 42,8 7,9 80,1 7,1
Таблица 2
Характеристики исследуемых параметров в зависимости от состава шихты
Состав шихты, вес.% 1 2 3 4 5 6
Содержание водорода [H], см3/100 г металла 1,2-1,5 0,3-0,6 0,3-0,6 0,3-0,6 1,2-1,5 1,2-1,5
Наличие трещин в наплавленном металле Единичные Отсутствуют Отсутствуют Отсутствуют Единичные Единичные
Твердость наплавленного металла, HRC 50-54 64-66 64-66 64-66 62-64 62-64

Шихта порошковой проволоки, содержащая углерод, хром, молибден, вольфрам, ванадий, алюминий и железо, отличающаяся тем, что она дополнительно содержит никель и пыль электрофильтров алюминиевого производства при следующем соотношении компонентов, мас.%:

Углерод 1-3,6
Хром 6,5-14,0
Молибден 5-21
Вольфрам 1-8
Ванадий 2-6
Алюминий 1-4,5
Никель 3,2-20
Пыль электрофильтров алюминиевого производства 1-15
Железо Остальное,

при этом пыль электрофильтров алюминиевого производства имеет следующий состав, мас.%: Al2O3=20-48; F+=18-27; Na2O=4-16; K2O=0,4-6; CaO=0,7-1,8; SiO2=0,5-2,48; Fe2O3=1,7-3,27; Cобш=12-31; MnO=0,07-1,3; MgO=0,06-0,9; S=0,09-0,59; P=0,1-0,18.



 

Похожие патенты:
Изобретение относится к пайке, а более конкретно, к флюсам для пайки и лужения особолегоплавкими припоями. .
Изобретение относится к электровакуумной, электронной и электроламповой промышленности. .
Изобретение относится к области пайки и может быть использовано при изготовлении и ремонте сопловых лопаток ГТД с дефлектором и охлаждающими отверстиями, расположенными как на пере лопатки, так и на торце бандажных полок, а также при пайке деталей, где требуется строгое ограничение растекания припоя в процессе пайки.

Изобретение относится к электродуговой сварке сталей под флюсом, в частности к флюсам, предназначенным для примешивания к плавленым флюсам. .

Изобретение относится к сварочной проволоке из нержавеющей стали с флюсовым сердечником для сварки стального оцинкованного листа. .
Изобретение относится к области сварочных материалов, а именно к составу порошковых смесей для индукционных способов наплавки твердых сплавов, и может быть использовано при наплавке деталей машин, работающих в режиме интенсивного абразивного изнашивания, ударных нагрузок и высоких контактных напряжений, в частности рабочие органы почвообрабатывающих машин.

Изобретение относится к наплавочным материалам, в частности к порошковым проволокам для дуговой наплавки в защитных газах инструмента и деталей, работающих при больших удельных давлениях и повышенных температурах.

Изобретение относится к сварочным материалам, в частности к керамическим флюсам для механизированной наплавки и сварки низкоуглеродистых и низколегированных сталей.
Изобретение может быть использовано при наплавке рабочих поверхностей деталей металлургического оборудования, к которым предъявляются повышенные требования по твердости и износостойкости. Шихта содержит компоненты в следующем соотношении, мас.%: углерод 1-3, 6; хром 6,5-14,0; молибден 5-21; вольфрам 3-24; ванадий 2-6; алюминий 1-4,5; пыль электрофильтров алюминиевого производства 3-15; железо - остальное. Использование шихты обеспечивает высокие механические свойства наплавленного металла, в частности, твердости за счет снижения загрязненности стали неметаллическими оксидными включениями, повышение устойчивости горения дуги за счет введения элементов, облегчающих ионизацию в столбе дуги, улучшение формирования наплавленного металла, исключение порообразования, а также снижение себестоимости сварочного процесса за счет оптимизации состава шихты и использования отходов производства. 3 табл.
Изобретение может быть использовано при сварке изделий, работающих при отрицательных температурах. Флюс содержит компоненты в следующем соотношении, мас.%: пылевидные отходы производства извести 33,9-44,5, пылевидные отходы производства ферросилиция 20,5-31,1, пылевидные отходы производства алюминия 22-27, жидкое стекло 8-13. Флюс обеспечивает повышение механических свойств сварного шва за счет снижения загрязненности стали неметаллическими включениями, уменьшение содержания газов за счет создания дополнительной газовой защиты в результате окисления углерода, удаление водорода за счет связывания в нерастворимые соединения с фтором, повышение устойчивости горения дуги и качества сварного шва, а также снижение стоимости сварочного процесса за счет использования отходов производства. 1 табл.
Изобретение может быть использовано при автоматической сварке или наплавке под флюсом изделий из высоколегированных коррозионно-стойких сталей аустенитного класса. Керамический флюс содержит компоненты в следующем соотношении, мас.ч.: оксид алюминия, введенный в виде глинозема и/или электрокорунда, 14-27, оксид магния 14-27, оксид натрия 0,1-4.0, оксид калия 0,1-3,0, оксид кремния 14-23, оксид кальция 0,1-6,0, фторид кальция 14-25, алюминиевый порошок 0,1-2,5, оксид циркония 0,1-9,0, оксид хрома 0,1-5,0, феррохром или металлический хром 0,1-4,0, ферромарганец или металлический марганец 0,1-4,0, ферромолибден или металлический молибден 0,1-4,0, силикат натрия - остальное. Отношение содержания оксида кремния к суммарному содержанию оксида алюминия и оксида циркония составляет 0,62-0,99, а отношение содержания оксида кремния к суммарному содержанию оксида магния и оксида натрия составляет 0,7-0,99.
Изобретение может быть использовано при получении плавленных сварочных материалов, в частности для основных покрытий сварочных электродов, используемых при электродуговой сварке конструкций из углеродистых и низколегированных сталей в нефтегазовой и других отраслях промышленности. Минеральный сплав содержит компоненты в следующем соотношении, мас.%: оксид кремния 38-39, оксид алюминия 22-24, оксид железа (III) 12-14, оксид кальция 10-12, оксид магния 9-10 и оксид натрия и/или оксид калия 3-5. Электроды с приведенным составом минерального сплава позволяют полностью исключить пористость сварного шва при легко отделяемой шлаковой корке, нетоксичны и имеют низкую стоимость. 1 табл.
Изобретение может быть использовано для сварки или наплавки изделий из 13% хромистых сталей, работающих в условиях высоких нагрузок, повышенного износа и коррозионного воздействия. Стержень электрода выполнен из стали, содержащей компоненты в следующем соотношении, мас.%: углерод не более 0,015, кремний 0,2-0,5, марганец 0,3-0,7, хром 11,5-13,5, никель 1,8-2,5, железо - остальное. Покрытие содержит компоненты в следующем соотношении, мас.%: плавиковый шпат 35-40, двуокись титана 20-30, хром металлический 1-6, кремнефтористый натрий 5-15, никель 2-8, молибден 0,5-4, оксид редкоземельного металла 0,5-6, мрамор - остальное. Жидкое стекло калиево-натриевое к массе сухой смеси 20-28. Электроды обеспечивают высокую стойкость наплавленного металла или металла сварного соединения к образованию холодных трещин и прочностные характеристики наплавленного металла или металла сварного шва на уровне свариваемых 13%-хромистых сталей аустенитно-мартенситного класса при сохранении высоких показателей пластичности и ударной вязкости. 3 табл., 1 пр.

Изобретение относится к области металлургии, в частности к электродной проволоке, применяемой в электродуговой сварке. Для стабилизации дуги и увеличения срока службы контактного конца электродная проволока для использования в электродуговой сварке содержит металлическую основу электродной проволоки и твердый проводник на поверхностях данной металлической основы электродной проволоки. Данный твердый проводник содержит электропроводящее измельченное твердое вещество, состоящее из оксида металла, который сохраняется твердым и не реакционноспособным на воздухе при 1200°C. 4 н. и 11 з.п. ф-лы, 6 ил., 5 табл., 3 пр.

Изобретение может быть использовано для ручной дуговой сварки деталей и конструкций из углеродистых и низколегированных конструкционных сталей в строительной, нефтегазовой и других отраслях промышленности. Электродное покрытие включает компоненты при следующем соотношении, мас.%: известняк 29,2-35,8, плавленый компонент 16,4-23,9, рутил или диоксид титана 13,7-14,2, плавиковый шпат 10,8-12,8, полевой шпат 6,8-8,7, ферромарганец 6,9-9,5 и каолин 5,2-6,1. Плавленый компонент представляет собой синтетический минеральный сплав и включает компоненты в следующем соотношении, мас.%: оксид кремния 38-39, оксид алюминия 22-24, оксид железа (III) 12-14, оксид кальция 10-12, оксид магния 9-10, оксид калия и/или оксид натрия 3-5. Состав электродного покрытия основного типа, разработанный на основе доступного, недефицитного и недорого минерального сырья Пермского края, обеспечивает достаточно высокий уровень сварочно-технологических свойств электродов: легкое зажигание и стабильность горения дуги, полное предотвращение пористости металла сварного шва, получение легкоотделяемой шлаковой корки, качественное формирование сварного шва в различных пространственных положениях. 2 ил., 2 табл.
Изобретение может быть использовано при изготовлении электродов для износостойкой наплавки деталей, работающих в условиях абразивного изнашивания в сочетании с интенсивными ударными нагрузками. Покрытие содержит компоненты в следующем соотношении, мас.%: карбид титана 9,4-10,0, феррохром 67,0-70,0, графит 3,2-4,0, жидкое стекло 15,0-20,0, соль щелочного металла и карбоксиметилцеллюлозы 0,4-1,0. Состав покрытия обеспечивает повышение его реологических свойств, снижение брака покрытия при производстве, транспортировке и хранении, а также снижение уровня выделения вредных веществ и повышение чистоты наплавленного металла по неметаллическим включениям. 1 табл.

Изобретение может быть использовано для термитной сварки, а также для получения термитного железа из его оксидов. Железоалюминиевый термит сформирован в виде гранул с использованием нитроцеллюлозы в качестве связующего, при этом он содержит, мас.%: алюминий 21-23, оксид железа 72-74, нитроцеллюлоза 2-6, флюс Nocolok 0,3-1,0. Термит обеспечивает спокойное протекание реакции горения без разброса исходной смеси. Применение нитроцеллюлозы в качестве связующего и флюса Nocolok позволяет улучшить процесс фазоразделения металла от шлака и увеличить выход чистого металла. 2 ил., 1 табл.
Изобретение может быть использовано при изготовлении электродов для износостойкой наплавки деталей, работающих в условиях абразивного изнашивания в сочетании с интенсивными ударными нагрузками. Электродное покрытие содержит компоненты в следующем соотношении, мас.%: плавиковый шпат 8,0-10,5, рутиловый концентрат 2,0-3,5, полевой шпат 2,5-3,5, карбид титана 20,5-22,5, графит 2,5,0-4,2, феррохром 16,0-18,0, ферромарганец 1,2-2,5, соль щелочного металла и карбоксиметилцеллюлозы 0,5-1,5, жидкое стекло 15,0-20,0, мрамор - остальное. Состав покрытия обеспечивает повышение его реологических свойств, снижение брака электродов при их производстве, транспортировке и хранении, а также снижение уровня выделения вредных веществ и повышение чистоты наплавленного металла по неметаллическим включениям. 1 табл.
Наверх