Способ отладки газотурбинного двигателя после восстановительного ремонта при стендовых испытаниях


 


Владельцы патента RU 2493391:

Открытое акционерное общество Конструкторско-производственное предприятие "Авиамотор" (RU)

Изобретение относится к области стендовых испытаний двухкаскадных газотурбинных двигателей, в частности к стендовым испытаниям газотурбинных двигателей после восстановительного ремонта, и предназначено для обеспечения запасов устойчивой работы компрессора высокого давления КВД и тяги (мощности) двигателя в процессе эксплуатации двигателя после восстановительного ремонта. При стендовых испытаниях двухкаскадных газотурбинных двигателей после восстановительного ремонта без разборки узлов и замены деталей проточной части отладку скольжения роторов, а также тяги на взлетном режиме (мощности на максимальном режиме) производят на значения, полученные в эксплуатации перед восстановительным ремонтом. В случае выхода значений этих параметров за границы эксплуатационного допуска отладку параметров производят на значения, соответствующие ближайшей (верхней или нижней) границе их эксплуатационного допуска.

 

Изобретение относится к области стендовых испытаний двухкаскадных газотурбинных двигателей, в частности, к стендовым испытаниям газотурбинных двигателей после восстановительного ремонта.

Двигатели, снятые с эксплуатации по различным видам дефектов, проходят капитальный ремонт при наработке в эксплуатации менее 50% гарантийного ресурса, а двигатели, наработка которых к моменту снятия с эксплуатации превышает 50% гарантийного ресурса, проходят восстановительный ремонт и направляются в эксплуатацию на доработку гарантийного ресурса [1]. В зависимости от выявленного дефекта восстановительный ремонт производится либо с разборкой узлов и заменой отдельных деталей проточной части двигателя, либо без разборки узлов и замены отдельных деталей проточной части. В первом случае характеристики двигателя, обусловленные состоянием его проточной части, в том числе скольжение роторов и тяга (мощность) двигателя, отличаются по уровню от характеристик двигателя при снятии его с эксплуатации. Во втором случае - при восстановительном ремонте без разборки узлов и замены отдельных деталей проточной части - характеристики двигателя имеют уровень, достигнутый в эксплуатации при снятии его с эксплуатации.

Известен способ индивидуальной отладки газотурбинных двухкаскадных авиационных двигателей НК-86 и НК-8-2У (вновь изготовленных, прошедших капитальный или восстановительный ремонт), в частности, отладки скольжения роторов на величину, соответствующую площадям сопловых аппаратов первой и второй ступеней турбины, и заданной для данной модификации двигателей величины тяги на взлетном режиме [2] - прототип.

Величина скольжения роторов регулируется изменением угла установки лопаток αРНА рабочего направляющего аппарата (РНА) компрессора высокого давления (КВД), а величина тяги (мощности на максимальном режиме) на взлетном режиме - настройкой соответствующего регулятора или ограничителя заданного параметра двигателя (например, максимального расхода топлива, частотой вращения ротора низкого давления и т.п.).

Известен также способ индивидуальной отладки газотурбинных двухкаскадных двигателей со свободной турбиной НК-16СТ, НК-16-18СТ (вновь изготовленных, прошедших капитальный или восстановительный ремонт), в частности отладки скольжения роторов в пределах заданного допуска. [3].

По существующему способу [2] отладка скольжения роторов на максимальном продолжительном (МП) режиме и тяги на взлетном режиме (мощности на максимальном режиме) двигателя после восстановительного ремонта производится на исходный уровень, т.е. на тот же уровень, на который производится отладка этих параметров вновь изготовленного двигателя или двигателя, прошедшего капитальный ремонт. Отладка по существующему способу производится независимо от объема восстановительного ремонта, т.е. по единой технологии как при восстановительном ремонте с разборкой узлов и заменой деталей проточной части, так и при восстановительном ремонте без разборки узлов и замены деталей проточной части. В первом случае вследствие изменения характеристик двигателя после ремонта необходима индивидуальная отладка скольжения роторов и тяги (мощности) указанных параметров в соответствии с новым состоянием проточной части по сравнению с ее состоянием до проведения восстановительного ремонта.

Недостатком данных способов отладки двигателей после восстановительного ремонта без разборки и замены деталей проточной части является то, что они не учитывают изменение в процессе наработки в эксплуатации перед восстановительным ремонтом характеристик двигателя относительно их исходного уровня [4] вследствие износа деталей его проточной части, в том числе скольжения роторов, а также тяги на взлетном режиме (мощности на максимальном режиме).

Отладка скольжения роторов двигателя после восстановительного ремонта без разборки и замены деталей проточной части на исходный уровень, соответствующий состоянию проточной части вновь изготовленного двигателя, приводит к снижению запасов устойчивой работы компрессора и ресурса двигателя в эксплуатации.

При проведении восстановительного ремонта двигателей без разборки и замены деталей проточной части двигателя устраняются выявленные в эксплуатации дефекты. Например, восстановительный ремонт проводится по устранению течей масла и других рабочих жидкостей, устранению повреждений лопаток (забоин, вмятин, царапин) ВНА и т.п.

Вследствие этого характеристики двигателя: скольжение роторов, температура газов за турбиной, часовой и удельный расходы топлива, а также тяга (мощность), определяемые состоянием его проточной части, после восстановительного ремонта без разборки узлов и замены деталей проточной части сохраняются на уровне, достигнутом в эксплуатации перед съемом двигателя для проведения восстановительного ремонта.

Экспериментальными исследованиями установлено, что установившийся в эксплуатации уровень скольжения роторов, соответствующий состоянию деталей проточной части при данной наработке, в случае, если он находится в пределах эксплуатационного допуска, превышающего допуск на отладку скольжения роторов при стендовых испытаниях, обеспечивает требуемый запас устойчивой работы компрессора. Вследствие этого отладка скольжения роторов двигателя после восстановительного ремонта на исходный уровень по существующему способу приводит к снижению запасов устойчивой работы компрессора и в ряде случаев к установке лопаток РНА на предельный по техническим условиям угол αРНА, что снижает запасы устойчивой работы компрессора высокого давления (КВД) [5] и не позволяет проводить регулировку скольжения роторов в эксплуатации в случае увеличения скольжения роторов выше эксплуатационного допуска.

Аналогично отладка тяги на взлетном режиме (мощности на максимальном режиме) после восстановительного ремонта без разборки узлов и замены деталей проточной части на исходный уровень по существующему способу приводит к завышению параметров взлетного (максимального) режима: частот вращения роторов, температуры газов за турбиной и, соответственно, увеличению центробежных и температурных нагрузок на лопатки и диски турбины и снижению ресурса двигателя.

Целью предлагаемого решения является устранение указанного недостатка и достижение нового технического результата, заключающегося в сохранении запасов устойчивой работы КВД и тяги двигателя в процессе дальнейшей эксплуатации двигателя после восстановительного ремонта.

В данном способе индивидуальную отладку при стендовых испытаниях конкретного двигателя после восстановительного ремонта без разборки узлов и замены деталей проточной части осуществляют отладкой скольжения роторов, а также тяги на взлетном режиме (мощности на максимальном режиме) производят на значения, полученные в эксплуатации перед восстановительным ремонтом, или, в случае выхода значений этих параметров за границы эксплуатационного допуска, на значения, соответствующие ближайшей (верхней или нижней) границе эксплуатационного допуска на параметр.

Новым в данном способе является то, что индивидуальную отладку при стендовых испытаниях конкретного двигателя после восстановительного ремонта без разборки узлов и замены деталей проточной части выполняют отладкой скольжения роторов, а также тяги на взлетном режиме (мощности на максимальном режиме) с учетом изменения в процессе наработки в эксплуатации перед восстановительным ремонтом характеристик двигателя вследствие износа деталей его проточной части.

Известен способ проверки и регулировки параметров двигателя в процессе эксплуатации исходя из текущего уровня параметров при наработке двигателя на момент проверки [6].

По этому способу в эксплуатации по результатам наземного опробования двигателя определяется уровень скольжения роторов и тяги на взлетном режиме при данной наработке и только в случае, если значения этих параметров не соответствуют границам эксплуатационного допуска, производится регулировка этих параметров на значения, соответствующие ближайшей (верхней или нижней) границе эксплуатационного допуска. Таким образом, при отладке (регулировке) двигателя по указанному способу учитывается изменение параметров двигателя с наработкой в эксплуатации.

Аналогично должна производиться отладка (регулировка) параметров двигателя при стендовых испытаниях после восстановительного ремонта без разборки узлов и замены деталей проточной части двигателя, т.к. техническое состояние двигателя при одной и той же его наработке идентично, независимо от того, находится двигатель в эксплуатации или прошел восстановительный ремонт без разборки узлов и замены деталей проточной части двигателя.

Литература

1. Двигатель НК-8-2У 2 серии. Технические условия на ремонт. Казань, КМПО, 1989.

2. Сдаточное и контрольное испытания. Технические условия 86.000.000-1ТУ7, 1978.

3. Двигатель НК-16СТ. Отладка системы регулирования на испытательном стенде при приемо-сдаточном испытании. Инструкция 16.000.000.ДИ5-2, 1985.

4. Двигатели НК-8-2У. Влияние наработки в летной эксплуатации на параметры двигателя. Технический отчет ТО-0737-82, 1982.

5. Двигатель НК-8-2У. Экспериментальная оценка влияния угла установки лопаток αРНА на запасы ГДУ двигателя А82У73177. Техническая справка ТС-3854-89. Казань, КПБМ, 1989.

6. А.А.Мухин, Е.Д.Нестеров, Э.Л.Симкин. Способ регулирования газотурбинного двигателя в эксплуатационных условиях. Авторское свидетельство №630956, 1978.

Способ отладки газотурбинного двигателя при стендовых испытаниях после восстановительного ремонта без разборки узлов и замены деталей проточной части двигателя, отличающийся тем, что, с целью обеспечения запасов устойчивой работы компрессора высокого давления КВД и тяги (мощности) двигателя в процессе дальнейшей эксплуатации двигателя после восстановительного ремонта, отладку скольжения роторов, а также тяги на взлетном режиме (мощности на максимальном режиме) производят на значения, полученные в эксплуатации перед восстановительным ремонтом, или, в случае выхода значений этих параметров за границы эксплуатационного допуска, на значения, соответствующие ближайшей (верхней или нижней) границе эксплуатационного допуска на параметр.



 

Похожие патенты:

Изобретение относится к области управления работой газотурбинных двигателей и может быть использовано для управления авиационными газотурбинными двигателями. .

Изобретение относится к области эксплуатации газоперекачивающих агрегатов на компрессорных станциях в системе магистральных газопроводов и может использоваться в системах автоматического управления газоперекачивающими агрегатами (САУ ГПА).
Изобретение относится к авиации. .

Изобретение относится к области газотурбинного двигателестроения и может быть использовано в электронных системах автоматического управления (САУ) газотурбинными двигателями (ГТД) со свободной турбиной, применяемыми в составе газотурбинных установок (ГТУ) для привода электрогенераторов (ЭГ) газотурбинных электростанций (ГТЭС).

Изобретение относится к области газотурбинного двигателестроения и может быть использовано в электронных системах автоматического управления (САУ) газотурбинных установок (ГТУ), используемых для привода электрогенераторов (ЭГ) газотурбинных электростанций (ГТЭС).

Изобретение относится к авиационной технике и может быть использовано для управления работой двухконтурных ГТД летательных аппаратов за счет регулирования частоты вращения ротора низкого давления ГТД.

Изобретение относится к системам автоматического управления (САУ) сложных объектов, например газотурбинных двигателей (ГТД), в которых для регулирования нескольких параметров используется одно управляющее воздействие.

Изобретение относится к области систем автоматического управления (САУ) газотурбинного двигателя (ГТД). .

Изобретение относится к авиационной технике, в частности к автоматическому управлению газотурбинными двигателями (ГТД), и может быть использовано для повышения эффективности управления ГТД.

Устройство и способ контроля насоса высокого давления в контуре питания топливом газотурбинного двигателя путем выявления открытия клапана нагнетания и отсечки, установленного на выходе клапана регулирования расхода топлива, путем измерения скорости вращения газотурбинного двигателя, соответствующей открытию клапана нагнетания и отсечки, и путем последующего отслеживания изменения величины этой скорости вращения для того, чтобы предложить замену насоса высокого давления, когда измеренная величина этой скорости вращения достигает заданного порога. Технический результат изобретений - создание простого эффективного и экономически выгодного решения по контролю насоса высокого давления. 3 н. и 6 з.п. ф-лы, 1 ил.

Изобретение относится к области теплотехники. Система теплообменника, через которую протекает жидкость, содержащая теплообменник с входом и выходом для жидкости, перепускной клапан с входом и выходом для жидкости и самоочищающийся фильтр с входом и двумя выходами для жидкости, один из которых является выходом для отфильтрованной жидкости, а второй - для неотфильтрованной жидкости, причем выход для отфильтрованной жидкости соединен с входом теплообменника, а выход для неотфильтрованной жидкости соединен с входом клапана; при этом выход теплообменника подсоединен ниже по потоку относительно выхода клапана. Технический результат - исключение засорения теплообменника. 3 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к области газотурбинного двигателестроения и может быть использовано в электронных системах автоматического управления (САУ) газотурбинными двигателями (ГТД) со свободной турбиной, применяемыми в составе газотурбинных установок (ГТУ) для привода электрогенераторов (ЭГ) газотурбинных электростанций (ГТЭС). Сущность изобретения заключается в том, что дополнительно при снижении частоты вращения свободной турбины на определенную величину значение минимально допустимого расхода топлива увеличивается на заданное время выше фактического расхода топлива на заданную величину. Технический результат - повышение надежности работы ГТЭС за счет повышения качества работы САУ ГТД. 1 ил.

Изобретение относится к энергетике. Способ работы газотурбинной установки в переходном режиме, при котором регулятор определяет значения управляющей команды для массового расхода входящего воздуха, для массового расхода топлива и для массового расхода воды или пара, если вода и пар используются, причем по меньшей мере, одно командное значение динамически компенсируют, чтобы компенсировать различную динамику систем подачи с целью синхронизации результирующих изменений массовых расходов топлива, воды, пара и воздуха горения, которые поступают в камеру сгорания, таким образом, чтобы состав топливовоздушной смеси оставался в пределах границы воспламенения. Также представлены система регулирования, предназначенная для осуществления предлагаемого способа, а также газотурбинная установка, содержащая такую систему регулирования. Изобретение позволяет обеспечить быстрое функционирование в переходном режиме со стабильным пламенем предварительно перемешанной смеси. 3 н. и 10 з.п. ф-лы, 3 ил.

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления многорежимными газотурбинными двигателями (ГТД) с форсажной камерой сгорания (ФКС) при их эксплуатации на учебных режимах для обеспечения надежного розжига топлива при включении форсажа с пониженных режимов непрогретого двигателя (ниже режима «Максимал»). По сигналу включения устройства розжига форсажной камеры увеличивают значение внутридвигательного параметра, по которому регулируют расход топлива в основную камеру сгорания на заранее выбранную величину, а после розжига пламени в форсажной камере уменьшают расход топлива в основную камеру сгорания на эту же величину. 1 ил.

Изобретение относится к способу обнаружения попадания воды или града в газотурбинный двигатель, причем упомянутый двигатель имеет, по меньшей мере, компрессор, камеру сгорания и турбину. Способ содержит следующие этапы, состоящие из: - оценки значения первого показателя, символизирующего всасывание воды или града; - оценки значения второго показателя, представляющего всасывание воды или града, причем упомянутый второй показатель отличается от первого показателя; и - вычисления значения общего показателя путем сложения вместе, по меньшей мере, упомянутого первого и второго показателей. Технический результат изобретения - повышение эффективности и быстродействия данного способа. 6 н. и 6 з.п.ф-лы, 5 ил.

Изобретение относится к энергетике. Способ определения температуры газа на выходе камеры сгорания газовой турбины, содержащий этапы, на которых: определяют массовый расход и температуру топлива, подаваемого в камеру сгорания; определяют массовый расход и температуру воздуха, подаваемого в камеру сгорания; определяют температурную зависимость удельной теплоемкости сгоревшей смеси топлива и воздуха, поданной в камеру сгорания; и определяют температуру на выходе сгоревшей смеси на выходе из камеры сгорания на основе найденного массового расхода и температуры топлива, найденного массового расхода и температуры воздуха и найденной температурной зависимости удельной теплоемкости сгоревшей смеси. Также представлены способ управления газовой турбиной, управляющее устройство, а также машиночитаемый носитель данных. Изобретение позволяет обеспечить защиту от перегрева компонентов газовой турбины. 4 н. и 14 з.п. ф-лы, 6 ил., 2 табл.

Изобретение предназначено для оптимизации регулирования впрыскивания топлива. С этой целью приводные скорости всего оборудования адаптируются путем регулирования скорости турбины TL в зависимости от мощности. Согласно изобретению способ оптимизации регулирования силовой установки со свободной турбиной TL летательного аппарата, оборудованной каскадом низкого давления ВР, вырабатывающим мощность (Pd1, Pd2,...) оборудованию (E1, E2,...) в контакте с каскадом высокого давления HP, заключается в изменении скорости каскада низкого давления ВР (Vвp) для получения минимальной скорости каскада HP (Vнp) таким образом, чтобы мощность (Pf), подаваемая оборудованием, оставалась постоянной. В частности, поскольку мощности, подаваемые оборудованием (E1, E2,...), зависят от приводной скорости каскада BP, заданная скорость каскада BP турбины TL зависит от максимального значения Max(Vmi) минимальных скоростей (Vm1, Vm2,...) оборудования (E1, E2,...), позволяющего получать оптимизированным образом соответствующие требуемые мощности, и от положительного или нулевого приращения (е), добавленного к заданному значению скорости каскада BP (Свр), чтобы минимизировать скорость каскада HP (Vнp). 3 н. и 12 з.п. ф-лы, 3 ил.

Изобретение описывает способ регулирования газовой турбины, причем величины (Mn1, Mn2) измерительного сигнала измеряются в разные моменты времени, а именно, по меньшей мере, в первый момент (n1) времени и во второй момент (n2) времени, причем первый момент (n1) времени предшествует второму моменту (n2) времени и причем демпфированные величины (Sn1, Sn2) сигнала генерируются из измеренных величин (Mn1, Mn2) измерительного сигнала, подвергая измеренные величины (Mn1, Mn2) измерительного сигнала сглаживанию с использованием коэффициента (λ) демпфирования, причем в зависимости от разницы между величиной (Mn2) измерительного сигнала во второй момент времени (n2) и демпфированной величиной (Sn1) сигнала в первый момент (n1) времени для регулирования используется неодинаковый коэффициент (λ) демпфирования. Технический результат изобретения - повышение эффективности регулирования газовой турбины. 2 з.п. ф-лы, 1 ил.
Способ регулирования авиационного турбореактивного двигателя (ТРД) относится к области авиационного двигателестроения, а именно к способам регулирования, оптимизирующим параметры ТРД. При осуществлении способа дополнительно ограничивают максимальное значение давления в камере сгорания до Рк. огр, величину которого определяют для каждого конкретного двигателя по значению полного давления за компрессором, измеренного при стендовых испытаниях двигателя в реальных атмосферных условиях, для чего предварительно устанавливают значение давления Рк. огр. предв, измеряют при этом режиме полное давление за компрессором Р*к. изм и давление в камере сгорания Рк, а величину ограничения максимального значения давления в камере сгорания определяют по следующей зависимости: Pк. огр=Pк+(Pпред. доп-P*к. изм), где Рпред. доп - предельно допустимое значение давления в камере сгорания. Осуществление способа позволяет обеспечить безопасную эксплуатацию двигателя на всех режимах его работы.
Наверх