Способ амплитудно-фазовой модуляции высокочастотного сигнала и устройство его реализации

Изобретение относится к области радиосвязи и радиолокации и может быть использовано для амплитудной, фазовой и амплитудно-фазовой модуляции или манипуляции высокочастотных сигналов. Достигаемый технический результат - обеспечение модуляции амплитуды и фазы высокочастотного сигнала при заданных зависимостях отношения модулей и разности фаз передаточной функции модулятора в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты в заданной полосе частот. Способ характеризуется тем, что высокочастотный сигнал подают на модулятор, выполненный из резистивного четырехполюсника, управляемого двухэлектродного нелинейного элемента, источника управляющего низкочастотного сигнала и нагрузки, амплитуду и фазу высокочастотного сигнала изменяют путем изменения амплитуды управляющего низкочастотного сигнала на нелинейном элементе, при этом в заданной полосе частот выбор частотных характеристик мнимых составляющих сопротивлений нагрузки и источника высокочастотного сигнала осуществляют в соответствии с заданными математическими выражениями, которые в устройстве реализуются с помощью реактивных двухполюсников в виде параллельно соединенных двух последовательных колебательных контуров. 2 н.п. ф-лы. 4 ил.

 

Изобретения относятся к области радиосвязи и радиолокации и могут быть использованы для амплитудной, фазовой и амплитудно-фазовой модуляции или манипуляции высокочастотных сигналов.

Известен способ манипуляции (модуляции) параметров отраженного сигнала, состоящий в том, что входное сопротивление устройства манипуляции изменяют таким образом, что коэффициент отражения этого устройства изменяет фазу на π, π/2, π/4, при чем для разделения входного и отраженного сигнала используют циркулятор [Радиопередающие устройства / Под редакцией О.А. Челнокова - М.: Радио и связь, 1982, стр.152-156]. Известно устройство реализации этого способа [там же], состоящее из циркулятора, первый вход которого подключен к источнику сигнала, третий вход подключен к нагрузке, а второй подключен к отрезку разомкнутой линии передачи длиной λ/4 вначале которой включен p-i-n диод.

Если диод закрыт, то от сечения, в котором он включен, происходит отражение, отраженная волна попадает в нагрузку с сопротивлением 50 Ом. Если диод открыт, то отражение происходит от конца линии. Фаза отраженного сигнала в одном состоянии диода отличается от фазы отраженного сигнала в другом состоянии диода на π. При необходимости изменения разности фаз длина отрезка линии передачи изменяется соответствующим образом.

Недостатком этого способа и устройства его реализации является то, что в двух состояниях диода изменяется только фаза отраженного сигнала, причем заданные значения разности фаз отраженного сигнала в двух состояниях диода обеспечивается только на одной фиксированной частоте. Другим недостатком является постоянство амплитуды отраженного сигнала в двух состояниях диода, то есть отсутствие манипуляции амплитуды, что сужает функциональные возможности. Например, это не позволяет обеспечить два канала радиосвязи на одной несущей частоте (один канал можно образовать с помощью манипуляции амплитуды, а другой с помощью манипуляции фазы или не позволяет обеспечить кодировку передаваемой информации). Третьим недостатком следует считать большие массы и габариты, связанные с необходимостью использования отрезков линии передачи. Следующим важным недостатком является то, что данный способ и данное устройство не обеспечивают манипуляцию (модуляцию) амплитуды и фазы проходного сигнала. Основным недостатком является отсутствие возможности обеспечения манипуляции (модуляции) амплитуды и фазы проходного сигнала в заданной полосе частот.

Известен способ манипуляции фазы отраженного сигнала, основанный на использовании двухимпедансных устройств СВЧ [В.Г. Соколинский, В.Г. Шейнкман. Частотные и фазовые модуляторы и манипуляторы. - М.: Радио и связь, 1983, стр.146-158]. Известно устройство реализации этого способа [там же], состоящее из определенного количества реактивных элементов типа L, C параметры которых выбраны из условия обеспечения требуемой произвольной разности фаз коэффициента отражения.

По сравнению с предыдущим способом и устройством данный способ и устройство его реализации не требуют использования полупроводниковых диодов только в открытом и только закрытом состояниях. При любых состояниях диодов, определяемых двумя уровнями низкочастотного управляющего воздействия, при определенных значениях параметров типа L, С может быть обеспечено заданное значение разности фаз отраженного сигнала на фиксированной частоте. Если амплитуда управляющего низкочастотного сигнала между указанными двумя уровнями изменяется непрерывно, то обеспечивается модуляция.

Основным недостатком (как и в первом способе и устройстве) является отсутствие возможности одновременного обеспечения манипуляции (модуляции) амплитуды и фазы проходного сигнала в заданной полосе частот.

Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ [Головков А.А. Устройство для модуляции отраженного сигнала. Авт. св-во №1800579 от 09.10 1992 года], состоящий в том, что неуправляемую часть (согласующе-фильтрующее устройство) формирует из определенным образом соединенных между собой двухполюсников, сопротивление каждого двухполюсника выбирают из условия обеспечения одинакового заданного двухуровневого закона изменения амплитуды и фазы отраженного сигнала при изменении управляемого элемента из одного состояния в другое под действием управляющего низкочастотного напряжения или тока.

Известно устройство (прототип) реализации способа [там же], содержащее циркулятор, первое и третье плечи которого являются СВЧ входом и выходом, а во второе плечо включены реактивный четырехполюсник и полупроводниковый диод, подключенный к источнику низкочастотного управляющего воздействия, при этом четерехполюсник выполнен в виде Т-образного соединения двухполюсников со значениями реактивных сопротивлений, которые выбраны из условия обеспечения требуемых законов двухуровневого изменения амплитуды и фазы отраженного сигнала на двух заданных частотах. Также как и в предыдущих способе и устройстве реализации возможна модуляция фазы и амплитуды, если управляющий сигнал изменяется непрерывно.

Основным недостатком (как и в предыдущих способах и устройствах) является отсутствие возможности одновременного обеспечения манипуляции (модуляции) амплитуды и фазы проходного сигнала в заданной полосе частот по заданному закону. Следующим важным недостатком всех перечисленных способов и устройств является то, что все элементы четырехполюсников выполнены реактивными, что связано со стремлением разработчиков не вносить дополнительных потерь путем использования резистивных элементов. Однако резистивные элементы, обладая независимостью своих параметров от частоты в довольно широкой полосе частот (от самых низких частот (единицы кГц) до частот порядка 500…800 МГц), могут обеспечить достаточно широкую полосу частот амплитудно-фазовых манипуляторов при незначительном увеличении потерь, которые могут быть учтены при соответствующем параметрическом синтезе четырехполюсников. Согласование и фильтрация с помощью резистивных четырехполюсников возможно при условии, если сопротивления источника сигнала и нагрузки являются комплексными [Головков А.А. Синтез амплитудных и фазовых манипуляторов отраженного сигнала на резистивных элементах с сосредоточенными параметрами. Радиотехника и электроника, 1992 г, №9, с.1616-1622].

Техническим результатом изобретения является одновременное обеспечение модуляции амплитуды и фазы высокочастотного сигнала при заданных зависимостях отношения модулей и разности фаз передаточной функции модулятора в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты в заданной полосе частот.

1. Указанный результат достигается тем, что в способе амплитудно-фазовой модуляции высокочастотного сигналов, состоящем в том, что высокочастотный сигнал подают на модулятор, выполненный из четырехполюсника, управляемого двухэлектродного нелинейного элемента, источника управляющего низкочастотного сигнала и нагрузки, амплитуду и фазу высокочастотного сигнала изменяют путем изменения амплитуды управляющего низкочастотного сигнала на нелинейном элементе, дополнительно четырехполюсник выполняют резистивным, выход источника высокочастотного сигнала подключают к входу четырехполюсника, нелинейный элемент включают в поперечную цепь между выходом четырехполюсника и нагрузкой, заданные зависимости отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданные зависимости модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого, в заданной полосе частот обеспечивают за счет выбора частотных характеристик мнимых составляющих сопротивлений нагрузки хн и источника высокочастотного сигнала х0 с помощью следующих математических выражений:

α = a d , β = b d , γ = c d - заданные отношения элементов классической матрицы передачи a, b, c, d резистивного четырехполюсника; m, φ - заданные зависимости отношения модулей и разности фаз передаточной функции от частоты в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты в заданной полосе частот; g1,2, b1,2 - заданные зависимости действительной и мнимой составляющих проводимости двухполюсного нелинейного элемента в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты; r0, rн - заданные зависимости действительных составляющих сопротивлений источника высокочастотного сигнала и нагрузки от частоты.

2. Указанный результат достигается тем, что в устройстве амплитудно-фазовой модуляции высокочастотного сигнала, состоящем из линейного четырехполюсника, двухэлектродного нелинейного элемента, источника управляющего низкочастотного сигнала и нагрузки, дополнительно четырехполюсник выполнен в виде обратного Г-образного соединения двух резистивных двухполюсников, выход источника высокочастотного сигнала подключен к входу четырехполюсника, нелинейный элемент включен в поперечную цепь между выходом четырехполюсника и нагрузкой, причем мнимые составляющие сопротивлений нагрузки хн и источника высокочастотного сигнала х0 реализованы реактивными двухполюсниками в виде параллельно соединенных двух последовательных колебательных контуров, значения параметров которых L1k, C1k и L2k, C2k выбраны с помощью следующих математических выражений:

α = 1 + r 1 r 2 , β = r 1 , γ = 1 r 2 - заданные отношения элементов классической матрицы передачи a = 1 + r 1 r 2 , b = r 1 , c = 1 r 2 ; d=1 резистивного четырехполюсника, равные на четырех заданных частотах ωп=2πfп; п=1, 2, 3, 4 - номер частоты; r1, r2 - заданные значения сопротивлений резистивных двухполюсников обратного Г-образного соединения; mп, φп - заданные значения отношений модулей и разностей фаз передаточной функции на четырех заданных частотах в заданной полосе частот; g1п,2п, b1п,2п - заданные значения действительной и мнимой составляющих сопротивления двухполюсного нелинейного элемента в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, на четырех заданных частотах; r0п, rнп - заданные значения действительных составляющих сопротивлений источника высокочастотного сигнала и нагрузки на четырех заданных частотах; k=0, н - индекс, характеризующий действительные и мнимые составляющие сопротивлений источника высокочастотного сигнала и нагрузки; xkп - оптимальные значения мнимых составляющих сопротивлении источника высокочастотного сигнала и нагрузки на четырех заданных частотах.

На фиг.1 показана схема устройства демодуляции фазомодулированных радиочастотных сигналов (прототип).

На фиг.2 показана структурная схема предлагаемого устройства по п.2.

На фиг.3 приведена схема четырехполюсника предлагаемого устройства по п.2.

На фиг.4 приведена схема каждого из двухполюсников, формирующих мнимые составляющие сопротивлений источника высокочастотного сигнала и высокочастотной нагрузки предлагаемого устройства по п.2

Устройство-прототип содержит циркулятор 1 с входным 2, нагрузочным 3 и выходным 4 плечами, четырехполюсник из трех двухполюсников с реактивными сопротивлениямих x1k - 5, x2k - 6, х3k - 7, соединенных между собой по Т - схеме, а также полупроводниковый диод 8, подключенный параллельно к источнику сигнала модуляции 9. Двухполюсник 7 подключен к диоду 8, двухполюсник 5 - к нагрузочному плечу 3 циркулятора 1.

Принцип действия устройства манипуляции и модуляции параметров сигнала (прототипа) состоит в следующем.

Высокочастотный сигнал от источника (на фигуре 1 не показан) через входное плечо 2 циркулятора 1 поступает в нагрузочное плечо (нагрузка не показана) 3. В результате взаимодействия пришедшего сигнала с реактивными элементами и диодом и благодаря специальному выбору значений реактивных элементов двухполюсников, значения фаз и амплитуд отраженных сигналов на двух частотах оказывается такими, что в результате их интерференции на выходное плечо 4 циркулятора 1 поступают сигналы, амплитуда и фаза которых в одном состоянии диода 8, определяемом одним крайним значением сигнала модуляции источника 9, отличаются от амплитуды и фазы этих сигналов в другом состоянии диода 8 на заданные величины на соответствующих двух частотах. Максимальная девиация фазы может составлять 360°, минимальная - ноль, максимальное отношение амплитуд равно ∞. Отношения модулей и разности фаз коэффициента отражения реализуются на обеих частотах одинаковыми.

Основным недостатком этого способа и устройства является отсутствие возможности одновременного обеспечения манипуляции (модуляции) амплитуды и фазы проходного сигнала в заданной полосе частот.

Структурная схемы обобщенного предлагаемого устройства по п.2 (фиг.2) состоит из резистивного четырехполюсника 11, двухэлектродного нелинейного элемента 8, источника управляющего низкочастотного сигнала 9 и нагрузки 12. Резистивный четырехполюсник выполнен в виде обратного Г-образного соединения двух резистивных двухполюсников (фиг.3), сопротивления которых могут быть выбраны произвольно или из каких-либо физических соображений. Частотные зависимости мнимых составляющих сопротивлений источника высокочастотного сигнала и нагрузки выбраны из условий обеспечения заданных зависимостей отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданных зависимостей модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого (при этом уровни выбираются из условия реализации квазилинейного участка модуляционной характеристики), в заданной полосе частот. Реализация этих зависимостей осуществлена реактивными двухполюсниками в виде параллельно соединенных двух последовательных колебательных контуров (фиг.4), значения параметров которых L1k, C1k и L2k, C2k выбраны из указанных условий с помощью определенных математических выражений. Реальные сопротивления источника высокочастотного сигнала и нагрузки могут быть чисто активными (это часто встречается на практике). В этом случае мнимые составляющие сопротивлений источника высокочастотного сигнала и высокочастотной нагрузки, реализованные указанным образом, подключаются последовательно к соответствующим активным сопротивлениям. Выполнение четырехполюсника резистивным является дополнительной возможностью увеличения квазилинейного участка модуляционной характеристики рабочей полосы частот, поскольку параметры резистивных элементов не зависят от частоты в очень большой полосе частот.

Принцип действия данного устройства состоит в том, что при подаче несущего высокочастотного сигнала от источника 10 с сопротивлением z0 в результате специального выбора значений элементов реактивных двухполюсников будут реализованы заданные зависимости отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданные зависимости. модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого, в заданной полосе частот. В результате возникают свойства формирования дискретных или аналоговых модулированных по амплитуде и фазе высокочастотных сигналов.

Докажем возможность реализации указанных свойств.

Пусть известны зависимости действительных составляющих комплексных сопротивлений нагрузки zн=rн+jxн и источника высокочастотного сигнала z0=r0+jx0 от частоты. Известна также зависимость проводимости двухполюсного управляемого нелинейного элемента y1,2=g1,2+jb1,2 в двух состояниях, определяемых двумя уровнями амплитуды низкочастотного сигнала, от частоты. Здесь и далее аргумент (частота) для простоты опущен. Таким образом, нелинейный элемент характеризуется матрицей передачи:

А н э = | 1 0 y 1,2 1 | . ( 1 )

Резистивный четырехполюсник (РЧ) описывается матрицей передачи:

А P Ч = d | α β γ 1 | , ( 2 )

где α = a d , β = b d , γ = c d ; а, b, с, d - элементы классической матрицы передачи [Фельдштейн А.Л., Явич Л.Р. Синтез четырехполюсников и восьмиполюсников на СВЧ. М.: Связь, 1965.40 с].

Общая нормированная классическая матрица передачи генератора/модулятора получается путем перемножения матриц (2) и (1) с учетом условий нормировки:

A = d | ( α + β y 1,2 ) z n z 0 β 1 z 0 z n ( γ + y 1,2 ) z 0 z n z 0 z n | . ( 3 )

Используя известную связь элементов матрицы рассеяния с элементами матрицы передачи (3) [Фельдштейн А.Л., Явич Л.Р. Синтез четырехполюсников и восьмиполюсников на СВЧ. М.: Связь, 1965. 40 с], получим выражение для коэффициента передачи модулятора S 21 I , I I в двух состояниях:

S 21 I , I I = 2 z 0 z n d [ ( z 0 + β ) ( 1 + y 1,2 z n ) + ( γ z 0 + α ) z n ] . ( 4 )

Входящий в (4) корень можно представить в виде комплексного числа a+jb, где a = ± x 2 + y 2 + x 2 ; b = ± x 2 + y 2 x 2 ; x=r0rн0хн; y=r0xн0rн.

После денормировки коэффициента передачи (4) путем умножения на z н z 0 последнее выражение изменяется а=rn; b=хn.

Денормированный коэффициент передачи связан с физически реализуемой передаточной функцией следующим образом H = 1 2 S 21 .

Пусть требуется определить частотные зависимости мнимых составляющих сопротивлений нагрузки хн и источника высокочастотного сигнала х0, оптимальные по критерию обеспечению заданных зависимостей отношения модулей m и разности фаз φ передаточной функции в двух состояниях нелинейного элемента от частоты в заданной полосе частот:

S 21 I = m ( cos ( ϕ ) + j sin ( ϕ ) ) S 21 I I . ( 5 )

Подставим (4) в (5) и после несложных преобразований и разделения комплексного уравнения на действительную и мнимую части, получим систему двух алгебраических уравнений, эквивалентных заданным зависимостям отношения модулей m и разности фаз φ передаточной функции в двух состояниях от частоты:

R -m ( R 1  cos ϕ -I 1  sin ϕ ) = 0 ; I 2 m ( I 1 cos ϕ + R 1 sin ϕ ) = 0, ( 6 )

где R1=(r0+β)(1+g1rн-b1хн)+rн(α+γr0)-x0(g1xн+b1rн)-γх0хн;

I1=(r0+β)(g1xн+b1rн)+xн(α+γr0)+x0(1+g1rн-b1xн)+γх0rн;

R2=(r0+β)(1+g2rн-b2хн)+rн(α+γr0)-x0(g2xн+b2rн)-γх0хн;

I2=(r0+β)(g2xн+b2rн)+xн(α+γr0)+x0(1+g2rн-b2xн)+γх0rн.

Решение системы (6) относительно х0, хн имеет смысл зависимостей мнимых составляющих сопротивления источника сигнала и высокочастотной нагрузки от частоты, оптимальных по критерию обеспечения заданных зависимостей отношения модулей m и разности фаз φ передаточной функции в двух состояниях нелинейного элемента от частоты в заданной полосе частот (аппроксимирующих функций):

Для реализации оптимальных характеристик (7) методом интерполяции необходимо сформировать двухполюсники с сопротивлениями х0, хn из не менее, чем N (числа частот интерполяции) реактивных элементов, найти выражения для их сопротивлений, приравнять их оптимальным значениям сопротивлений двухполюсников на заданных частотах, определенным по формулам (7) и решить сформированную таким образом систему N уравнений относительно N выбранных параметров реактивных элементов. Значения параметров остальных элементов могут быть выбраны произвольно или исходя из каких-либо других физических соображений, например, из условия физической реализуемости.

В соответствии с этим алгоритмом получены математические выражения для определения значений параметров L1k, C1k и L2k, C2k реактивного двухполюсника в виде параллельно соединенных двух последовательных контуров (фиг.4), оптимальных по критерию обеспечения указанных условий совпадения реальных сопротивлений с характеристиками (7) на четырех частотах. Исходная система уравнений:

Реализация оптимальных аппроксимаций частотных характеристик (7) с помощью (8), (9) обеспечивает увеличение полосы частот, в пределах которой выполняются условия совпадения (9) реальных частотных характеристик (8) с оптимальными (7) на четырех частотах заданной полосы частот. Это позволяет при разумном выборе положений заданных частот относительно друг друга ω12, ω13, ω14, ω23, ω24, ω34 расширить полосу частот, в пределах которой обеспечиваются заданные зависимости отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданные зависимости модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого, в заданной полосе частот. При разумном выборе обоих уровней амплитуды управляющего сигнала при этом будут сформированы квазилинейные участки фазовой и амплитудной модуляционных характеристик для осуществления режима модуляции. Использование обоих уровней обеспечивает режим манипуляции.

В качестве резистивного четырехполюсника может быть выбрана любая типовая схема с известными элементами классической матрицы передачи [Фельдштейн А.Л., Явич Л.Р. Синтез четырехполюсников и восьмиполюсников на СВЧ. М.: Связь, 1965.40 с], например обратное Г-образное соединение двух резистивных двухполюсников (фиг.3), для которого:

a = 1 + r 1 r 2 , b = r 1 , c = 1 r 2 ; d=1; α = 1 + r 1 r 2 , β = r 1 , γ = 1 r 2 . ( 10 )

Значения сопротивлений r1, r2 могут быть выбраны произвольно или исходя из каких-либо других физических соображений, например из условий физической реализуемости параметров, определяемых с помощью (9), или из условия дополнительного увеличения полосы частот, в пределах которой сохраняются перечисленные функции.

Предлагаемые технические решения являются новыми, поскольку из общедоступных сведений неизвестны способ и устройство амплитудно-фазовой модуляции, обеспечивающие заданные зависимости отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданные зависимости модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого (при этом уровни выбираются из условия реализации квазилинейного участка модуляционной характеристики), в заданной полосе частот за счет специального выбора частотных зависимостей мнимых составляющих сопротивлений источника высокочастотного сигнала и нагрузки, включения нелинейного двухэлектродного элемента между выходом резистивного четырехполюсника и нагрузкой в поперечную цепь, выполнения четырехполюсника в виде обратного Г-образного соединения двух резистивных двухполюсников и реализации мнимых составляющих сопротивлений нагрузки хп и источника высокочастотного сигнала х0 реактивными двухполюсниками в виде параллельно соединенных двух последовательных колебательных контуров, значения параметров которых L1k, C1k и L2k, C2k выбраны по соответствующим математическим выражениям.

Предлагаемые технические решения имеют изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что заявленная последовательность операций (выполнение четырехполюсника резистивным в виде указанной выше схемы, включение двухполюсного нелинейного элемента между четырехполюсником и высокочастотной нагрузкой в поперечную цепь, реализация мнимых составляющих сопротивлений нагрузки и источника высокочастотного сигнала реактивными двухполюсниками в виде параллельно соединенных двух последовательных колебательных контуров, значения параметров которых L1k, C1k и L2k, C2k выбраны по соответствующим математическим выражениям) обеспечивают заданные зависимости отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданные зависимости модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого.

Предлагаемые технические решения практически применимы, так как для их реализации могут быть использованы серийно выпускаемые промышленностью полупроводниковые диоды (параметрические диоды, p-i-n диоды, ЛПД, туннельные диоды, диоды Ганна и т.д.), индуктивности и емкости, сформированные в заявленную схему реактивных двухполюсников. Значения сопротивлений реактивных двухполюсников, индуктивностей и емкостей могут быть определены с помощью математических выражений, приведенных в формуле изобретения.

Технико-экономическая эффективность предложенного устройства заключается в одновременном обеспечении заданных зависимостей отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданные зависимости модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого, что способствует формированию модулированных или манипулированных по амплитуде и (или) по фазе высокочастотных сигналов в большей полосе частот.

1. Способ амплитудно-фазовой модуляции высокочастотного сигнала, состоящий в том, что высокочастотный сигнал подают на модулятор, выполненный из четырехполюсника, управляемого двухэлектродного нелинейного элемента, источника управляющего низкочастотного сигнала и нагрузки, амплитуду и фазу высокочастотного сигнала изменяют путем изменения амплитуды управляющего низкочастотного сигнала на нелинейном элементе, отличающийся тем, что четырехполюсник выполняют резистивным, выход источника высокочастотного сигнала подключают к входу четырехполюсника, нелинейный элемент включают в поперечную цепь между выходом четырехполюсника и нагрузкой, заданные зависимости отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданные зависимости модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого, в заданной полосе частот обеспечивают за счет выбора частотных характеристик мнимых составляющих сопротивлений нагрузки хн и источника высокочастотного сигнала х0 с помощью следующих математических выражений:
х n = Y ± Y 2 4 X Z 2 X ; x 0 = [ ( х n Е 1 + r n С 1 ) c o s ϕ + ( A 1 x n C 1 ) s i n ϕ ] m r n С 2 х n Е 2 ( х n D 1 + B 1 ) s i n ϕ + ( b 1 х n 1 r n D 1 ) c o s ϕ ] m + r n D 2 + 1 x n b 2 ,
где A1=(r0+β)(1+g1rn)+rn(α+γr0); B1=b1rn; С1=(r0+β)b1; D1=g1+γ; Е1=(r0+β)g1+α+γr0;
A2=(r0+β)(1+g2rn)+rn(α+yr0); B2=b2rn; С2=(r0+β)b2; D2=g2+γ; Е2=(r0+β)g2+α+γr0;
Х=m2(E1D1+b1C1)+E2D2+b2C2+(D2C1+b1E2-D1C2-b2E1)msinφ-(E2D1+b2C1+E1D2+b1C2)mcosφ;
Y=m2(E1B1-C1-b1A1)+E2B2-C2-b2A2+Bssinφ+Bccosφ; Bc=b1A2+b2A1+C1+C2-B2E1-B1E2;
Bs=rн(E1D2-E2D1+b1C2-b2C1)+E1-E2+B2C1-B1C2+A2D1-A1D2; Z=m2[rn(D1A1+B1C1)+A1]+rn(D2A2+B2C2)+A2+Csmsinφ-Ccmcosφ;
C s = r n 2 ( D 2 C 1 D 1 C 2 ) + r n ( C 1 C 2 ) + A 2 B 1 A 1 B 2 ; Cc=A1+A2+rн(D2A1+D1A2+C2B1+C1B2);
α = a d , β = b d , γ = c d - заданные отношения элементов классической матрицы передачи a, b, c, d резистивного четырехполюсника; m, φ - заданные зависимости отношения модулей и разности фаз передаточной функции от частоты в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты в заданной полосе частот; g1,2, b1,2 - заданные зависимости действительной и мнимой составляющих проводимости двухполюсного нелинейного элемента в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты;
r0, rn - заданные зависимости действительных составляющих сопротивлений источника высокочастотного сигнала и нагрузки от частоты.

2. Устройство амплитудно-фазовой модуляции высокочастотного сигнала, состоящее из линейного четырехполюсника, двухэлектродного нелинейного элемента, источника управляющего низкочастотного сигнала и нагрузки, отличающееся тем, что четырехполюсник выполнен в виде обратного Г-образного соединения двух резистивных двухполюсников, выход источника высокочастотного сигнала подключен к входу четырехполюсника, нелинейный элемент включен в поперечную цепь между выходом четырехполюсника и нагрузкой, причем мнимые составляющие сопротивлений нагрузки xn и источника высокочастотного сигнала х0 реализованы реактивными двухполюсниками в виде параллельно соединенных двух последовательных колебательных контуров, значения параметров которых L1k, C1k и L2k, C2k выбраны с помощью следующих математических выражений:
С 1 k = e 1 x k 2 + h 1 x k 1 ω 1 ω 2 x k 1 x k 2 ( ω 1 2 ω 2 2 ) ( B A ) ; С 2 k = e 2 x k 2 + h 2 x k 1 ω 1 ω 2 x k 1 x k 2 ( ω 1 2 ω 2 2 ) ( B A ) ; L 1 k = A C 1 k ; L 2 k = B C 2 k ,
где A = a 1 B + b 1 ω 1 ω 2 ω 3 ( c 1 B + d 1 ) ; B = y ± y 2 4 x z 2 x ;
х=а 1с2ω4-а 2с1ω3; y=(a 1d2+b1c24-(a 2d1+b2c13; z=b1d2ω4-b2d1ω3;
e 1 = [ 1 ( A + B ) ω 1 2 + A B ω 1 4 ] ω 2 ( 1 A ω 2 2 ) ; h 1 = [ 1 ( A + B ) ω 2 2 + A B ω 2 4 ] ω 1 ( 1 A ω 1 2 ) ; e 2 = [ 1 ( A + B ) ω 1 2 + A B ω 1 4 ] ω 2 ( B ω 2 2 1 ) ; h 2 = [ 1 ( A + B ) ω 2 2 + A B ω 2 4 ] ω 1 ( 1 B ω 1 2 ) ;
a 1 = x k 2 x k 3 ω 1 2 ω 2 ω 3 ( ω 2 2 ω 3 2 ) + x k 1 x k 3 ω 1 ω 2 2 ω 3 ( ω 3 2 ω 1 2 ) + x k 1 x k 2 ω 1 ω 2 ω 3 2 ( ω 1 2 ω 2 2 ) ; b 1 = x k2 x k3 ω 2 ω 3 ( ω 3 2 ω 2 2 ) + x k1 x k2 ω 1 ω 2 ( ω 2 2 ω 1 2 ) + x k1 x k3 ω 1 ω 3 ( ω 1 2 ω 3 2 ) ;
с 1 = [ õ k2 õ k3 ω 1 3 ( ω 2 2 ω 3 2 ) + õ k1 õ k3 ω 2 3 ( ω 3 2 ω 1 2 ) + õ k1 õ k2 ω 3 3 ( ω 1 2 ω 2 2 ) ] ;
d 1 = [ õ k2 õ k3 ω 1 ( ω 3 2 ω 2 2 ) + õ k1 õ k3 ω 2 ( ω 1 2 ω 3 2 ) + õ k1 õ k2 ω 3 ( ω 2 2 ω 1 2 ) ] ;
a 2 = x k 2 x k 4 ω 1 2 ω 2 ω 4 ( ω 2 2 ω 4 2 ) + x k 1 x k 4 ω 1 ω 2 2 ω 4 ( ω 4 2 ω 1 2 ) + x k 1 x k 2 ω 1 ω 2 ω 4 2 ( ω 1 2 ω 2 2 ) ;
b 2 = x k2 x k4 ω 2 ω 4 ( ω 4 2 ω 2 2 ) + x k1 x k4 ω 1 ω 4 ( ω 1 2 ω 4 2 ) + x k1 x k4 ω 1 ω 2 ( ω 2 2 ω 1 2 ) ;
с 2 = [ õ k2 õ k4 ω 1 3 ( ω 2 2 ω 4 2 ) + õ k1 õ k4 ω 2 3 ( ω 4 2 ω 1 2 ) + õ k1 õ k2 ω 4 3 ( ω 1 2 ω 2 2 ) ] ;
d 2 = [ õ k2 õ k4 ω 1 ( ω 4 2 ω 2 2 ) + õ k1 õ k4 ω 2 ( ω 1 2 ω 4 2 ) + õ k1 õ k2 ω 4 ( ω 2 2 ω 1 2 ) ] ;
x н n = Y ± Y 2 4 X Z 2 X ; x 0 n = [ ( x н n Е 1 + r н n С 1 ) cos φ n + ( A 1 x н n C 1 ) sin φ n ] m n r н n С 2 х н n Е 2 ( х н n D 1 + B 1 ) sin φ n + ( b 1 n х н n 1 r н n D 1 ) cos φ n ] m п + r н n D 2 + 1 x н n b 2 n ,
где A1=(r0n+β)(1+g1nrнn)+rнn(α+γr0n); B1=b1nrнn; С1=(r0n+β)b1n; D1=g1n+γ; Е1=(r0n+β)g1n+α+γr0n; A2=(r0n+β)(1+g2nrнn)+rнn(α+γr0n); B2=b2nrнn; С2=(r0n+β)b2n; D2=g2n+γ; Е2=(r0n+β)g2n+α+γr0n;
X = m n 2 ( E 1 D 1 + b 1 C 1 ) + E 2 D 2 + b 2 C 2 + ( D 2 C 1 + b 1 n E 2 D 1 C 2 b 2 n E 1 ) m n sin φ n ( E 2 D 1 + b 2 n C 1 + E 1 D 2 + b 1 n C 2 ) m n cos φ n ;
Y = m n 2 ( E 1 B 1 - C 1 - b 1 n A 1 ) + E 2 B 2 - C 2 - b 2 n A 2 + B s s i n ϕ n + B c cos ϕ n ; Bc=b1nA2+b2nA1+C1+C2-B2E1-B1E;
Bs=rнn(E1D2-E2D1+b1nC2-b2nC1)+E1-E2+B2C1-B1C2+A2D1-A1D2;
Z = m n 2 [ r н n ( D 1 A 1 + B 1 C 1 ) + A 1 ] + r н n ( D 2 A 2 + B 2 C 2 ) + A 2 + C s m sin φ n С с m n cos φ n ;
C s = r н n 2 ( D 2 C 1 D 1 C 2 ) + r н n ( C 1 C 2 ) + A 2 B 1 A 1 B 2 ; Cc=A1+A2+rнn(D2A1+D1A2+C2B1+C1B2);
α = 1 + r 1 r 2 , β = r 1 , γ = 1 r 2 - заданные отношения элементов классической матрицы передачи a = 1 + r 1 r 2 , b = r 1 , c = 1 r 2 ; d=1 резистивного четырехполюсника, равные на четырех заданных частотах ωn=2πfn; n=1, 2, 3, 4 - номер частоты; r1, r2 - заданные значения сопротивлений резистивных двухполюсников обратного Г-образного соединения; mn, φn - заданные значения отношений модулей и разностей фаз передаточной функции на четырех заданных частотах в заданной полосе частот; g1n,2n, b1n,2n - заданные значения действительной и мнимой составляющих сопротивления двухполюсного нелинейного элемента в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, на четырех заданных частотах; r0n, rнn - заданные значения действительных составляющих сопротивлений источника высокочастотного сигнала и нагрузки на четырех заданных частотах; k=0, н - индекс, характеризующий действительные и мнимые составляющие сопротивлений источника высокочастотного сигнала и нагрузки; xkn - оптимальные значения мнимых составляющих сопротивлений источника высокочастотного сигнала и нагрузки на четырех заданных частотах.



 

Похожие патенты:

Изобретения относятся к области радиосвязи и радиолокации и могут быть использованы для амплитудной, фазовой и амплитудно-фазовой модуляции или манипуляции высокочастотных сигналов.

Изобретение относится к области радиосвязи, радиолокации, радионавигации и радиоэлектронной борьбы и может быть использовано для обеспечения амплитудной, фазовой и частотной модуляции.

Изобретение относится к областям радиосвязи, радиолокации, радионавигации и радиоэлектронной борьбы и может быть использовано для обеспечения амплитудной, фазовой и частотной модуляции.

Изобретение относится к областям радиосвязи, радиолокации, радионавигации и радиоэлектронной борьбы и может быть использовано для обеспечения амплитудной, фазовой и частотной модуляции.

Изобретение относится к радиосвязи и может быть одновременно использовано для формирования требуемых амплитудно-манипулированных или амплитудно-модулированных сигналов, а также для демодуляции указанных типов сигналов.

Изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации высокочастотных сигналов на заданном количестве частот, что позволяет формировать сложные сигналы и создавать эффективные компактные средства радиосвязи с заданным количеством радиоканалов.

Изобретение относится к устройствам, формирующим сложные сигналы, и может быть использовано в радиосвязи и радионавигации. .

Изобретение относится к области радиосвязи и радиолокации и может быть использовано для амплитудной, фазовой и амплитудно-фазовой модуляции или манипуляции высокочастотных сигналов. Достигаемый технический результат - обеспечение модуляции амплитуды и фазы высокочастотного сигнала при заданных зависимостях отношения модулей и разности фаз передаточной функции модулятора в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты в заданной полосе частот. Способ характеризуется тем, что высокочастотный сигнал подают на модулятор, выполненный из резистивного четырехполюсника, управляемого двухэлектродного нелинейного элемента, источника управляющего низкочастотного сигнала и нагрузки, амплитуду и фазу высокочастотного сигнала изменяют путем изменения амплитуды управляющего низкочастотного сигнала на нелинейном элементе, при этом в заданной полосе частот выбор частотных характеристик мнимых составляющих сопротивлений нагрузки и источника высокочастотного сигнала осуществляют в соответствии с заданными математическими выражениями, которые в устройстве реализуются с помощью реактивных двухполюсников в виде параллельно соединенных двух последовательных колебательных контуров. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области радиосвязи и радиолокации и может быть использовано для амплитудной, фазовой и амплитудно-фазовой модуляции или манипуляции высокочастотных сигналов. Достигаемый технический результат - обеспечение модуляции амплитуды и фазы высокочастотного сигнала при заданных зависимостях отношения модулей и разности фаз передаточной функции модулятора в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты в заданной полосе частот. Способ характеризуется тем, что высокочастотный сигнал подают на модулятор, выполненный из резистивного четырехполюсника, управляемого двухэлектродного нелинейного элемента, источника управляющего низкочастотного сигнала и нагрузки, амплитуду и фазу высокочастотного сигнала изменяют путем изменения амплитуды управляющего низкочастотного сигнала на нелинейном элементе, при этом в заданной полосе частот выбор частотных характеристик мнимых составляющих сопротивлений нагрузки и источника высокочастотного сигнала осуществляют в соответствии с заданными математическими выражениями, которые в устройстве реализуются с помощью реактивных двухполюсников в виде параллельно соединенных двух последовательных колебательных контуров. 2 н.п. ф-лы, 4 ил.

Изобретение относится к радиосвязи и может быть использовано для формирования фазоманипулированных, а также фазомодулированных сигналов или их демодуляции. Технический результат заключается в повышении помехоустойчивости приемника. Устройство генерации и частотной модуляции высокочастотных сигналов состоит из источника постоянного напряжения и низкочастотного управляющего сигнала, трехполюсного нелинейного элемента, цепи прямой передачи, цепи обратной связи и нагрузки, при этом цепь прямой передачи выполнена из трехполюсного нелинейного элемента, в качестве цепи обратной связи использована внешняя обратная связь в виде произвольного четырехполюсника, соединенного с трехполюсным нелинейным элементом по последовательно-параллельной схеме, трехполюсный нелинейный элемент выходным и общим электродами подключен к нагрузке, выполненной в виде первого двухполюсника с комплексным сопротивлением, к управляющему и общему электродам трехполюсного нелинейного элемента подключен второй двухполюсник с комплексным сопротивлением, мнимая составляющая сопротивления нагрузки и мнимая составляющая сопротивления источника входного высокочастотного сигнала генератора и частотного модулятора в режиме усиления реализованы из двух последовательно соединенных параллельных контуров с параметрами. 2 н.п. ф-лы, 3 ил.

Предлагаемое устройство относится к области радиотехники и может быть использовано в радиопередающих устройствах в диапазоне частот от 1 до 4000 МГц в качестве задающего генератора. Технический результат заключается в возможности перекрытия большего диапазона частот, улучшении шумовых характеристик, а также уменьшения сетки частот. Устройство формирования сигналов содержит устройство распределения сигналов (5), первый, второй, третий и четвертый синтезаторы частот (1, 6, 10, 11), опорный генератор (3), первый, второй, третий, четвертый, пятый модуляторы (9, 12, 13, 14, 15), умножитель частоты (7), первое, второе, третье коммутационные устройства (16, 17, 18), делитель частоты (4), цифровой вычислительный синтезатор (2), формирователь частот (8), первый (20), второй (21), третий (22), четвертый (23) и пятый (24) блоки фильтров, аттенюатор (19). 2 ил.

Изобретение относится к области связи и может использоваться в области передачи данных в сети беспроводной связи. Достигаемый технический результат - улучшение пропускной способности. Предложена сеть глобальной системы мобильной связи (GSM), которая поддерживает режим работы с несколькими несущими на нисходящей линии связи и/или восходящей линии связи для подвижной станции, подвижная станция принимает назначение множества несущих для первой линии связи в сети GSM, принимает назначение по меньшей мере одной несущей для второй линии связи в сети GSM и обменивается данными с сетью GSM через множество несущих для первой линии связи и по меньшей мере через одну несущую для второй линии связи, первая линия связи может быть нисходящей линией связи, а вторая линия связи может быть восходящей линией связи или наоборот, подвижная станция может принимать данные на множестве несущих одновременно для режима работы с несколькими несущими на нисходящей линии связи, подвижная станция может передавать данные на множестве несущих одновременно для режима работы с несколькими несущими на восходящей линии связи. 5 н. и 36 з.п. ф-лы, 7 ил., 1 табл.

Способ формирования сигналов квадратурной амплитудной манипуляции относится к радиотехнике и может использоваться на линиях многоканальной цифровой связи. Достигаемый технический результат - снижение величины пик-фактора формируемого сигнала за счет уменьшения различий амплитудных значений векторов сигнального созвездия, что приведет к повышению помехоустойчивости. Способ формирования сигналов квадратурной амплитудной манипуляции характеризуется тем, что генерируют синусоидальный сигнал, из которого формируют исходные значения напряжения синфазной и квадратурной составляющих, которые манипулируют в зависимости от значений первого, второго, третьего и четвертого битов информационного битового потока, фазы синфазной и квадратурной составляющих изменяют на 180° при значениях соответственно первого и второго информационных битов, равных единице, после чего манипулированные синфазную и квадратурную составляющие суммируют, при этом весь поступающий информационный битовый поток разделяют на блоки по четыре бита, причем синфазную и квадратурную составляющие в зависимости от значений каждого третьего и четвертого информационных символов в каждом из блоков манипулируют по амплитуде, уменьшая ее в три раза или на одну шестую от первоначального значения. 2 ил.

Изобретение относится к области радиосвязи и радиолокации. Технический результат изобретения заключается в обеспечении модуляции амплитуды и фазы высокочастотного сигнала при заданных зависимостях отношения модулей и разности фаз передаточной функции модулятора в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты в заданной полосе частот за счет оптимизации схемы и значений параметров комплексного четырехполюсника. Способ амплитудно-фазовой модуляции высокочастотного сигнала состоит в том, что сигнал подают на модулятор, выполненный из четырехполюсника, управляемого двухэлектродного нелинейного элемента, источника управляющего низкочастотного сигнала и нагрузки, амплитуду и фазу сигнала изменяют путем изменения амплитуды управляющего низкочастотного сигнала на нелинейном элементе, выход источника высокочастотного сигнала подключают к входу четырехполюсника. Заданные зависимости отношения модулей и разности фаз передаточной функции модулятора и заданные зависимости модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала в заданной полосе частот обеспечивают за счет выбора зависимости элемента матрицы сопротивлений комплексного четырехполюсника от частоты. 2 н.п. ф-лы, 4 ил.

Изобретение относится к технике связи и может быть использовано в цифровых системах передачи. Технический результат - повышение качества передачи информационных аналоговых сигналов и уменьшение скорости цифрового сигнала. Для этого в способе осуществляют разбиение информационного аналогового сигнала на n полос и формирование с помощью преобразования Гильберта из каждого полосового аналогового сигнала квазипостоянных и переменных аналоговых сигналов, связанных с параметрами мгновенной частоты и гильбертовской амплитудной огибающей полосового аналогового сигнала. Затем из переменных аналоговых сигналов на второй и третьей ступенях модуляционного разложения снова формируются квазипостоянные и переменные аналоговые сигналы, связанные с параметрами мгновенной частоты и гильбертовской амплитудной огибающей этих переменных аналоговых сигналов. Выделенные на первой, второй и третьей ступенях модуляционного разложения параметры после оцифровки передаются на приемную сторону, где по ним осуществляется восстановление аналогового сигнала. 2 н.п. ф-лы, 8 ил.

Изобретение относится к области радиосвязи и радиолокации. Технический результат изобретения заключается в обеспечении модуляции амплитуды и фазы высокочастотного сигнала при заданных зависимостях отношения модулей и разности фаз передаточной функции модулятора в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты в заданной полосе частот за счет оптимизации схемы и значений параметров комплексного четырехполюсника. Способ амплитудно-фазовой модуляции высокочастотного сигнала состоит в том, что сигнал подают на модулятор, выполненный из четырехполюсника, управляемого двухэлектродного нелинейного элемента, источника управляющего низкочастотного сигнала и нагрузки, амплитуду и фазу сигнала изменяют путем изменения амплитуды управляющего низкочастотного сигнала на нелинейном элементе, нелинейный элемент включают в продольную цепь между источником высокочастотного сигнала и входом четырехполюсника, к выходу которого подключают нагрузку. Заданные зависимости отношения модуля и фазы передаточной функции модулятора обеспечивают за счет выбора зависимости элемента матрицы сопротивлений комплексного четырехполюсника от частоты. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области радиосвязи и может быть использовано для создания устройств генерации высокочастотных сигналов. Технический результат изобретения заключается в увеличении квазилинейного участка частотной модуляционной характеристики, что позволяет создавать эффективные устройства генерации и частотной модуляции. Способ генерации высокочастотных сигналов основан на преобразовании энергии источника постоянного напряжения в энергию высокочастотного сигнала, взаимодействии высокочастотного сигнала с цепью прямой передачи, выполненной из трехполюсного нелинейного элемента и четырехполюсника, нагрузкой и цепью внешней обратной связи, выполнении условий возбуждения в виде баланса амплитуд и баланса фаз, определяющих соответственно амплитуду и частоту генерируемых высокочастотных сигналов, условий согласования нагрузки с управляющим электродом трехполюсного нелинейного элемента, при этом нагрузку выполняют в виде первого двухполюсника с комплексным сопротивлением, в качестве цепи внешней обратной связи используют произвольный комплексный четырехполюсник, подключенный к трехполюсному нелинейному элементу по параллельно-последовательной схеме. 2 н.п. ф-лы, 3 ил.
Наверх