Корреляционный измеритель временных сдвигов случайных сигналов



Корреляционный измеритель временных сдвигов случайных сигналов
Корреляционный измеритель временных сдвигов случайных сигналов
Корреляционный измеритель временных сдвигов случайных сигналов
Корреляционный измеритель временных сдвигов случайных сигналов

 


Владельцы патента RU 2500025:

Аванесян Гарри Романович (RU)

Изобретение относится к специализированным устройствам извлечения информации и служит для измерения временных сдвигов между случайными аналоговыми сигналами. Техническим результатом является структурное упрощение и повышение надежности корреляционного измерителя. Указанный измеритель временных сдвигов содержит входной аналоговый мультиплексор, аналого-цифровой преобразователь, два регистра, перемножитель, оперативное запоминающее устройство, сумматор, блок поиска экстремума и блок управления. Особенностью измерителя является применение для совместной обработки двух аналоговых сигналов только одного аналого-цифрового преобразователя, отсутствие компенсирующей линии задержки и наличие только одного сумматора многоразрядных операндов. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к специализированным устройствам извлечения информации и служит для измерения временных сдвигов между случайными аналоговыми сигналами.

Известен корреляционный измеритель (прототип), содержащий аналого-цифровой преобразователь, регистр, перемножитель, группу накапливающих сумматоров, два демультиплексора, блок поиска экстремума и блок управления, выход регистра соединен с первым входом перемножителя, выход мультиплексора подключен к информационному входу аналого-цифрового преобразователя, выход которого подключен к информационному входу первого демультиплексора, первый выход которого соединен с информационным входом регистра, второй вход перемножителя соединен с вторым выходом первого демультиплексора, выход перемножителя соединен с информационным входом второго демультиплексора, выходы которого соединены с информационными входами накапливающих сумматоров, выходы которых соединены с информационными входами блока поиска экстремума, выход которого является выходом измерителя, информационными входами измерителя являются соответственно первый и второй информационный входы мультиплексора, адресный вход которого объединен с адресным входом первого демультиплексора и подключен к первому адресному выходу блока управления, второй адресный выход которого соединен с адресным входом второго демультиплексора, первый, второй и третий тактовые выходы блока управления соединены с тактовыми входами аналого-цифрового преобразователя, регистра и накапливающих сумматоров соответственно, входы обнуления накапливающих сумматоров объединены с обнуляющим входом блока поиска экстремума и подключены к обнуляющему выходу блока управления, управляющий выход которого соединен с запускающим входом блока поиска экстремума, входами запуска и обнуления корреляционного измерителя являются соответствующие входы блока управления [Пат. RU 2229157. Опубл. 20.05.2004, Бюл. №14].

Измеритель-прототип реализует метод парных некоррелированных выборок и позволяет определять временной сдвиг между случайными аналоговыми сигналами по положению пика их взаимокорреляционной функции. Однако измеритель оказывается сложным в реализации: количество независимых сумматоров-накопителей равно количеству определяемых ординат взаимокорреляционной функции, что сдерживает его применение в ситуациях, когда требуется иметь относительно большой диапазон измеряемых временных сдвигов или высокое разрешение по времени.

Технический результат, достигаемый при использовании настоящего изобретения, заключается в структурном упрощении корреляционного измерителя.

Технический результат достигается тем, что в известный корреляционный измеритель временных сдвигов случайных сигналов, содержащий мультиплексор, аналого-цифровой преобразователь, первый регистр, перемножитель, блок поиска экстремума и блок управления, выход мультиплексора подключен к информационному входу аналого-цифрового преобразователя, первый вход перемножителя соединен с выходом первого регистра, информационными входами измерителя являются соответственно первый и второй информационный входы мультиплексора, адресный вход которого подключен к первому адресному выходу блока управления, первый тактовый выход которого соединен с тактовым входом аналого-цифрового преобразователя, второй тактовый выход блока управления соединен с тактовым входом первого регистра, управляющий выход блока управления соединен с запускающим входом блока поиска экстремума, выход которого является выходом измерителя, согласно изобретению, введены оперативное запоминающее устройство, второй регистр и сумматор, выход аналого-цифрового преобразователя соединен с информационным входом первого регистра и вторым входом перемножителя, выход которого соединен с первым входом сумматора, выход которого соединен с информационным входом второго регистра, выход которого соединен с информационным входом оперативного запоминающего устройства, выход которого соединен со вторым входом сумматора, адресный и управляющий вход оперативного запоминающего устройства соединены с соответствующими выходами блока управления, третий тактовый выход которого соединен с тактовым входом второго регистра, информационный вход блока поиска экстремума соединен с выходом оперативного запоминающего устройства, а адресный вход соединен со вторым адресным выходом блока управления.

Кроме того, технический результат достигается тем, что блок поиска экстремума реализует алгоритм определения индекса элемента с максимальным значением из массива, представляющего собой значения вычисленных ординат взаимокорреляционной функции.

Сущность изобретения поясняется функциональными схемами и временными диаграммами.

На фиг.1 показана функциональная схема корреляционного измерителя временных сдвигов; на фиг.2 приведены временные диаграммы, поясняющие измерение относительных временных сдвигов методом некоррелированных парных выборок; на фиг.3 - функциональная схема блока 9 управления (пример исполнения); на фиг.4 - временные диаграммы, иллюстрирующие работу блока 9 управления.

Функциональная схема корреляционного измерителя (фиг.1) содержит мультиплексор 1, аналого-цифровой преобразователь (АЦП) 2, регистры 3, 7, перемножитель 4, оперативное запоминающее устройство (ОЗУ) 5, сумматор 6, блок 8 поиска экстремума и блок 9 управления. Выход мультиплексора 1 подключен к информационному входу АЦП 2, выход которого подключен к информационному входу регистра 3, выход которого соединен с первым входом перемножителя 4, второй вход которого соединен с выходом АЦП 2, выход перемножителя 4 соединен с первым входом сумматора 6, второй вход которого соединен с выходом DO ОЗУ 5, информационный вход DI которого соединен с выходом регистра 7, информационный вход которого соединен с выходом сумматора 6, информационный вход блока 8 поиска экстремума соединен с выходом DO ОЗУ 5, адресный вход блока 8 поиска экстремума соединен с адресным выходом А2 блока 9 управления, адресный выход А1 которого соединен с адресным входом мультиплексора 1, тактовые входы CLK1, CLK2 и CLK3 блока 9 управления соединены с тактовыми входами АЦП 2, регистра 3 и регистра 7 соответственно, адресный вход А и управляющий вход W R ¯ / R D ОЗУ 5 соединены с выходами А2 и W R ¯ / R D соответственно, управляющий выход СO1 блока 9 соединен с запускающим входом блока 8 поиска экстремума, выход которого является информационным выходом корреляционного измерителя временных сдвигов, входами управления СО и обнуления RST которого являются соответствующие входы блока 9 управления.

Временные диаграммы по фиг.2 содержат выборки сигнала x(f) и выборки сигнала y(f), задержанного относительно x(f).

Блок 9 управления по фиг.3 содержит триггеры 17, 18, 31, делитель 19 частоты, счетчики 20 и 21, генератор 22 тактовых импульсов, элемент И 23, 32, элементы ИЛИ 24, 30, элементы 25, 26, 27, 28 и 29 задержки. Вход установки в единицу триггера 17 является запускающим входом блока 9 управления, выход триггера 17 соединен с D-входом триггера 18, выход которого соединен с первым входом элемента И 23, второй вход которого объединен с тактовым входом триггера 18 и подключен к выходу генератора 22, входы делителя 19 и элемента 25 задержки объединены с суммирующим входом счетчика 20 и подключены к выходу элемента И 23, суммирующий вход счетчика 21 соединен с выходом элемента 2 ИЛИ 30, первый вход которого через элемент 27 задержки подключен к выходу элемента 25 задержки, выход которого является первым тактовым выходом CLK1 блока 9 управления, вторым тактовым выходом CLK2 которого является выход элемента 26 задержки, вход которого соединен с выходом делителя 19 частоты, выход которого является первым адресным выходом А1 блока 9, третьим тактовым выходом CLK3 которого является выход элемента 28 задержки, вход которого соединен с выходом элемента 27 задержки, выходом W R ¯ / R D блока 9 является выход элемента 29 задержки, вход которого соединен с выходом элемента 28, обнуляющие входы триггеров 18, 31, счетчиков 20, 21 объединены с первым входом элемента ИЛИ 24 и служат обнуляющим входом RST блока 9 управления, выход переполнения счетчика 20 соединен со вторым входом элемента ИЛИ 24 и с входом установки в единицу триггера 31 и представляет собой запускающий выход СO1 блока 9, вторым адресным выходом А2 которого является информационный выход счетчика 21, выход элемента ИЛИ 24 соединен с обнуляющим входом триггера 17, выход триггера 31 соединен с первым входом элемента 2 И 32, выход которого соединен со вторым входом элемента 2 ИЛИ 30, второй вход элемента 2 И 32 соединен с выходом генератора 22 тактовых импульсов.

Временные диаграммы по фиг.4 содержат: тактовые импульсы CLK (фиг.4, а) на выходе генератора 22, логический уровень (фиг.4, б) на D-входе триггера 18, адресные импульсы А1 (фиг.4, в) на первом адресном выходе блока 9; тактовые импульсы CLK1 (фиг.4, г) на первом тактовом выходе блока 9; тактовые импульсы CLK2 (фиг.4, д) на втором тактовом выходе блока 9; тактовые импульсы «+1» (фиг.4, е) на суммирующем входе счетчика 21; тактовые импульсы CLK3 (фиг.4, ж) на третьем тактовом выходе блока 9; импульсы управления записью/чтением на выходе W R ¯ / R D блока 9 (фиг.4, з); текущий адресный код А2 (фиг.4, и) на втором адресном выходе блока 9.

Заявляемый корреляционный измеритель времени задержки служит для обработки центрированных, стационарных и эргодичных случайных процессов x(f) и y(f). В основе функционирования измерителя лежит метод измерения функции корреляции некоррелированными парными выборками. Временной сдвиг τ между сигналами x(t) и y(f) определяют по положению пика их взаимокорреляционной функции R(τ).

Корреляционный измеритель (фиг.1) работает следующим образом. Через входной аналоговый мультиплексор 1 на вход АЦП 2 поступают сигналы x(t) и y(f), при этом мультиплексор 1 коммутирует входные сигналы таким образом, что опережающий сигнал x(f) подается на вход АЦП 2 реже запаздывающего y(t) в К+1 раз, как показано на фиг.2. Но поскольку в схеме задействован только один АЦП, то при переходе к отсчетам y(f) теряется первый отсчет, например, в момент времени ti теряется отсчет y(ti), показанный на фиг.2 штриховой линией. Такая потеря вполне допустима, если исходить из того, что описываемый корреляционный измеритель предназначен для работы в условиях отличного от нуля временного сдвига τ между сигналами x(t) и y(t). В этом случае корреляции между появляющимися в один и тот же момент времени отсчетами сигналов x(t) и y(t) быть не может. Таким образом на один отсчет х(t) приходится К отсчетов y(t) (см. фиг.2). Для записи и хранения отсчетов сигнала x(t) служит регистр 3, в нем каждый отсчет x(t) хранится в течении К тактов, что позволяет за это время осуществить К операций умножения отсчета х(t) на текущие отсчеты сигнала y(t), поступающие со входа АЦП 2. То есть за указанные К тактов, образующие один цикл, будет получено К произведений вида

x(ti)y(ti+Δt),

где k - номер отсчета сигнала y(t) в цикле, k=1, 2, …, К;

Δt - период взятия отсчетов (период тактирования АЦП 2);

t1=i(K+1)Δt, i=0, 1, 2, …, I. Заметим, что произведение kΔt определяет величину искусственно вносимого временного сдвига, необходимого для вычисления ординат взаимокорреляционной функции R(τ), а значение К задает максимальный сдвиг, выраженный в количестве периодов Δt.

Далее в момент времени ti+1 вместо отсчета x(ti) в регистр 2 заносится отсчет x(ti+1) и операция формирования произведений вышеуказанного вида повторяется для отсчетов сигнала y(ti+1+kΔt), и так, цикл за циклом, в течение интервала наблюдения формируются произведения отсчетов, необходимые для последующего вычисления корреляционной функции.

Вычисление корреляционной функции возлагается на арифметический узел, образованный перемножителем 4, ОЗУ 5, сумматором 6 и буферным регистром 7. Произведения отсчетов с выхода перемножителя 4 поступают на один из входов сумматора 6, на другой вход которого поступает содержимое ОЗУ 5, соответствующее порядковому номеру произведения в цикле (значению k). Полученная таким образом сумма через буферный регистр 7 поступает в ОЗУ 5 для смены ранее находившегося операнда в ячейке, содержимое которой использовалось для получения настоящей суммы. Несложно понять, что если ОЗУ 5 в начале анализа будет принудительно обнулено, то вышеописанная процедура суммирования и пересылки будет являться реализацией алгоритма суммирования произведений с накоплением. При этом первое в цикле произведение записывается в ячейку ОЗУ 5 с адресом А(1), второе - в ячейку с адресом А(2), третье - в ячейку с адресом А(3) и так далее до последнего произведения, которое записывается в ячейку с нулевым адресом. Схематически соответствие адресов ОЗУ отсчетам сигналов, участвующих в формировании произведений, показано на фиг.2. По истечении интервала наблюдения, который состоит из конечного числа вышерассмотренных циклов, в ОЗУ 5 будет накоплено К сумм вида

S k = i = 0 i = I x ( t i ) y ( t i + k Δ t )

где (I+1) - число отсчетов сигнала x(ti) в течение интервала наблюдения.

Положение корреляционного пика, необходимое для оценки временного сдвига сигналов х(t) и y(t), находят путем последовательного перебора содержимого ячеек ОЗУ 5, после того как будет завершен этап формирования сумм произведений отсчетов, то есть по истечении интервала наблюдения. Выявление максимума возлагается на блок 8 поиска экстремума, на входы которого последовательно подают как накопленные суммы Sk, хранящиеся в ОЗУ 5, так и адреса ячеек, в которых хранятся указанные данные. Таким образом, поступающие в ОЗУ 5 данные индексируются, что позволяет после нахождения операнда с максимальным значением определить его адрес (значение К), а следовательно, и оценку искомого времени задержки τ*(k, Δt)=kΔt. При этом, в связи с особенностями функционирования измерителя, адреса ОЗУ 5 повторяют значения k, кроме нулевого. Нулевой адрес А(0) ОЗУ 5 соответствует максимальной задержке (см. фиг.2).

Управляет работой корреляционного измерителя блок 9 (см. фиг.3). Запуск корреляционного измерителя производится путем подачи на вход СО блока 9 управления запускающего импульса, после чего блок 9 начинает формировать управляющие сигналы согласно временным диаграммам, представленным на фиг.4. Для упрощения на временных диаграммах показан случай К=4. Принцип действия блока 9 во многом аналогичен принципу действия блока управления, описанному в прототипе [Пат. RU 2229157. Опубл. 20.05.2004, Бюл. №14].

Рассмотрим вкратце принцип формирования управляющих сигналов. Перед началом запуска последовательную логику блока 9 обнуляют, переводя его таким образом в режим ожидания запускающего импульса, кроме того, предполагается, что ячейки ОЗУ 5 также обнулены. С появлением импульса запуска СО, поступающего на S-вход триггера 17, на выходе триггера 18, синхронно с положительным фронтом очередного тактового импульса (фиг.4, а), устанавливается высокий логический уровень, разрешающий прохождение тактовых импульсов на входы делителя 19 частоты и счетчиков 20, 21. Так как согласно алгоритму измерений в буферный регистр 4 в начале цикла заносится отсчет сигнала x(t), то для формирования адресного сигнала, направляющего сигнал х(t), используется первый импульс с выхода делителя 19 (фиг.4, в). В течение действия вершины указанного импульса адресный вход мультиплексора 1 находится под воздействием высокого логического уровня, обеспечивающего коммутацию на вход регистра 3 сигнала х(ti). Информация в указанный регистр заносится по переднему фронту первого тактового импульса CLK2 (фиг.4, д). После окончания действия адресного импульса мультиплексор 1 переходит в режим коммутации сигнала y(t), дискретизируемого в такт с импульсами последовательности CLK1 (фиг.4, г). Поскольку в нашем примере k=4, то каждый цикл будет состоять из четырех тактовых импульсов. Одновременно тактовые импульсы с выхода элемента 2И 23 через элементы задержки поступают на счетный вход счетчика 21 (фиг.4, е), который выполняет функции адресного и управляет адресацией ОЗУ 5. Сигналы записи/считывания ( W R ¯ / R D ), необходимые для работы ОЗУ 5, являются смещенными во времени копиями тактовых импульсов CLK3, которые, в свою очередь, необходимы для тактирования регистра 7. Отсчет интервала наблюдения Т с дискретом Δt ведется счетчиком 20, коэффициент пересчета которого выбирается таким образом, чтобы с окончанием интервала наблюдения начал формироваться импульс переполнения, являющийся обнуляющим для триггера 17 и запускающим для триггера 31 и блока 8 поиска экстремума. Перевод триггера 31 в состояние высокого логического уровня на выходе приводит к разрешению прохождения тактовых импульсов на счетный вход адресного счетчика 21 по истечении времени Т, что необходимо для формирования адресного кода на этапе определения максимальной величины, находящейся в ОЗУ 5 и, разумеется, для работы блока 8 поиска экстремума.

Временные сдвиги, вносимые элементами 25, 26, 27, 28, 29 задержки, обеспечивают устойчивое однозначное функционирование измерителя за счет смещения во времени моментов обновления информации и моментов ее фиксации.

Блок 8 поиска экстремума представляет собой устройство, служащее для выбора максимального значения из массива поступающих на его вход индексированных величин Sk с выхода ОЗУ 5. Индекс k поступает в блок 8 одновременно с величиной Sk с адресного выхода А2 блока 9. Алгоритм работы блока 8 может быть любой, например простейший алгоритм нахождения максимума путем последовательного сравнения величин между собой с исключением меньшего из сравниваемых. Оптимальным представляется реализация блока 8 на базе универсального микропроцессора, при этом на выход блока 8, который является выходом измерителя, в зависимости от конкретных требований может подаваться как индекс k, определяющий положение взаимокорреляционного пика, так и непосредственно код τ*(k, Δt).

В отличие от прототипа, в котором используется группа накапливающих сумматоров, количество которых равно количеству вычисляемых ординат взаимокорреляционной функции, в рассмотренном измерителе все операции суммирования произведений и накоплений выполняются при помощи одного сумматора и ОЗУ, что значительно упрощает как структуру устройства, так и его стоимость, а также позволяет рационально использовать ресурсы памяти. Причем требования к быстродействию единственного в измерителе сумматора предъявляются те же, что и к сумматорам прототипа.

1. Корреляционный измеритель временных сдвигов случайных сигналов, содержащий мультиплексор, аналого-цифровой преобразователь, первый регистр, перемножитель, блок поиска экстремума и блок управления, выход мультиплексора подключен к информационному входу аналого-цифрового преобразователя, первый вход перемножителя соединен с выходом первого регистра, информационными входами измерителя являются соответственно первый и второй информационный входы мультиплексора, адресный вход которого подключен к первому адресному выходу блока управления, первый тактовый выход которого соединен с тактовым входом аналого-цифрового преобразователя, второй тактовый выход блока управления соединен с тактовым входом первого регистра, управляющий выход блока управления соединен с запускающим входом блока поиска экстремума, выход которого является выходом измерителя, отличающийся тем, что в него введены оперативное запоминающее устройство, второй регистр и сумматор, выход аналого-цифрового преобразователя соединен с информационным входом первого регистра и вторым входом перемножителя, выход которого соединен с первым входом сумматора, выход которого соединен с информационным входом второго регистра, выход которого соединен с информационным входом оперативного запоминающего устройства, выход которого соединен со вторым входом сумматора, адресный и управляющий вход оперативного запоминающего устройства соединены с соответствующими выходами блока управления, третий тактовый выход которого соединен с тактовым входом второго регистра, информационный вход блока поиска экстремума соединен с выходом оперативного запоминающего устройства, а адресный вход соединен со вторым адресным выходом блока управления.

2. Корреляционный измеритель временных сдвигов по п.1, отличающийся тем, что блок поиска экстремума реализует алгоритм определения индекса элемента с максимальным значением из массива, представляющего собой значения вычисленных ординат взаимокорреляционной функции.



 

Похожие патенты:

Изобретения относятся к области обработки сигналов и могут быть использованы для определения взаимной корреляции между двумя сигналами. Техническим результатом является уменьшение шумов.
Изобретение относится к области обработки данных и может быть использовано для выделения гармонического сигнала на фоне помех и измерения его частоты. .

Изобретение относится к способам кодирования, декодирования и преобразования кода для обнаружения и исправления ошибок. .

Изобретение относится к специализированным средствам обработки сигналов и может быть использовано при построении систем извлечения координатно-временной информации, принцип действия которых основан на определении временного сдвига между принимаемыми сигналами.

Изобретение относится к области радиоизмерений и предназначено для интегральной оценки частотных искажений, вносимых четырехполюсниками в исходный случайный сигнал с нормальным распределением.

Изобретение относится к устройствам оптимального приема псевдошумовых сигналов с помощью согласованных фильтров. .

Изобретение относится к вычислительной технике и может быть использовано для алгоритмического диагностирования и компенсации срыва процесса автоматического сопровождения объекта телевизионным следящим устройством корреляционного типа.

Изобретение относится к области технологий компьютерного тестирования при обучении и подготовке специалистов для различных отраслей знаний и специальностей в условиях, когда обучающийся и обучающий лишены возможности прямого контакта.

Изобретение относится к области радиотехники и может применяться для обнаружения сложных сигналов в тех радиотехнических системах, в которых нет возможности быстро изменять фазу сигнала.

Изобретение относится к радиотехнике, а именно к области оптимального приема псевдошумовых сигналов. .

Изобретение относится к специализированным устройствам извлечения информации и служит для измерения временных сдвигов между случайными аналоговыми сигналами. Техническим результатом является структурное упрощение корреляционного измерителя. Корреляционный измеритель содержит входной аналоговый мультиплексор, аналого-цифровой преобразователь, два регистра, перемножитель, цифровой мультиплексор, оперативное запоминающее устройство, сумматор, блок сравнения, блок управления и связи между элементами. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области моделирования нефтегазовых месторождений. Сущность: определяют решетку модели с заданным шагом и предельно допустимой величиной на координатной сетке (1). Задают управляющие параметры поверхностей относительно шага решетки (2). Определяют набор поверхностей решетки относительно ее шага (3). Определяют область, в которой определена поверхность, и добавляют узлы решетки, в которых поверхность не определена (4). Задают параметры кубов сейсмических атрибутов - p, q, задают координаты вновь добавленного узла - X, Y, задают координаты соседнего узла - x, y, в котором поверхность определена, и задают параметр глубины поверхности в этом узле - z (x, y) (5). Упорядочивают глубины поверхностей в указанном узле решетки по возрастанию и назначают глубину i-й поверхности в этом узле равной i-й по порядку глубине (6). Определяют поверхности для обработки (7). Определяют функционалы и градиенты поверхностей для обработки (8). Определяют величину текущего шага смещения вдоль градиента (9). Определяют для каждой обрабатываемой поверхности с помощью величины шага смещения градиента, для какого по счету шага достигается минимальное значение функционала (10). Когда для каждой обрабатываемой поверхности минимальное значение функционала меньше шага смещения градиента, то производят смещение вдоль градиента на найденное количество шагов (11). Сохраняют в памяти величину сделанного смещения и определяют максимум сделанных смещений (12). Исключают временно из обработки поверхности, для которых достигнуто уменьшение функционала (13). Определяют поверхности, для которых не удалось уменьшить функционал, и, когда такие поверхности определены, то повторяют этапы 7-13 (14). Повторно упорядочивают глубины определенных на указанном узле решетки поверхностей по возрастанию и назначают глубину i-й поверхности в этом узле равной i-й по порядку глубине (15). Определяют значения текущих шагов решетки по обновленным данным поверхностей (16). Итеративно повторяют все этапы способа до тех пор, пока не будет получена модель с заданными на этапах 1 и 2 параметрами (17). Технический результат: повышение точности построения геолого-гидродинамической модели нефтегазового месторождения. 3 н.п.ф-лы, 8 з.п.ф-лы, 4 ил.

Изобретение относится к способу, устройству и машиночитаемому носителю данных, предназначенным для построения геологической модели нефтяного или иного месторождения, в частности, для определения коэффициентов корреляции для комплекса кривых ГИС и нахождения положений глубин маркера, для которых значение коэффициента корреляции является максимальным. Техническим результатом является повышение точности вычислений параметров, используемых при построении геологической модели расположения нефтяных или иных месторождений. Метод позволяет для маркера, уже имеющего отметки на некоторой, называемой опорной, группе скважин, вычислить их для скважин из другой группы. Для каждой скважины W, на которой ищется значение глубины маркера, выбираются скважины опорной группы, отстоящие от скважины W на заданном расстоянии, и среди них выбирается скважина с наибольшим значением коэффициента корреляции, при этом точка, в которой этот максимум достигается, назначается искомой отметки маркера. С помощью проверяющих тестов осуществляют поиск скважин, в которых функция корреляции меньше, чем максимальное значение коэффициента корреляции, а коэффициент качества корреляции больше, чем максимальное значение коэффициента корреляции. После чего добавляют найденную скважину к опорной группе скважин. 3 н. и 5 з.п. ф-лы, 9 ил.

Изобретение относится к способу, устройству и машиночитаемому носителю данных, используемых при построении геологической модели нефтяного или иного месторождения. Технический результат - повышение точности вычислений параметров, используемых при построении геологической модели расположения нефтяных или иных месторождений. Изобретение позволяет для маркеров, выбранных в качестве начального решения, вычислить такие глубины маркера на каждой скважине, которые обеспечивают наилучшую суммарную корреляцию. Для каждого маркера, входящего в набор, определяется функционал, представляющий собой сумму коэффициентов корреляции комплекса методов ГИС для пар скважин, расположенных не далее заданного расстояния друг от друга. Для этого функционала вычисляются частные производные ,и полученный таким образом вектор сглаживается и используется для нахождения большего значения функционала на некотором отрезке вдоль этого вектора. Если большего значения не найдено, то последнее положение отметок маркера считается решением задачи, а если найдено, то производится сглаживание точки решения и процесс повторяется снова. На каждой итерации алгоритма производится сортировка глубин маркеров. 3 н.п. ф-лы, 9 ил.

Изобретение относится к корреляционному устройству. Технический результат заключается в повышении быстродействия определения времени задержки. Корреляционное устройство содержит два регистра сдвига, блок сравнения, два триггера, счетчик, элемент ИСКЛЮЧАЮЩЕЕ ИЛИ, элемент И, генератор тактовых импульсов и двухканальный трехразрядный мультиплексор. 1 ил.

Изобретение относится к технике цифровой связи и может быть использовано для синхронизации канала управления динамического мультиплексора с временным или кодовым разделением каналов. Техническим результатом является сокращение интервала времени входа в синхронизм канала управления динамического мультиплексора с временным или кодовым разделением каналов за счет параллельного обнаружения команд канала управления, а именно синхрослова, команд включения и выключения каналов, команд активности каналов, при динамическом изменении длины цикла синхронизации канала управления. Устройство содержит схемы ИЛИ, триггер, регистры, регистры сдвига, генератор тактовой частоты, схемы сложения по модулю два, программируемый счетчик, контроллер, счетчики. 2 ил.

Изобретение относится к области медицины, в частности эпидемиологии, и предназначено для определения границ природных очагов биогельминтозов с использованием генетических маркеров. На обследуемых территориях отлавливают рыбу из различных районов речного бассейна. Из выловленной рыбы производят забор мышечной ткани в области спинного плавника. Мышечную ткань гомогенезируют до получения однородной массы, отбирают супернатант, проводят разделение белков методом вертикального электрофореза и выявляют полиморфные белковые фракции. По каждой выявленной полиморфной белковой фракции проводят расчет популяционно-генетических параметров и определяют генетический маркер и показатель индекса генетического подобия (или сходства Нея), одновременно в исследуемых особях выявляют наличие гельминтов, а также определяют уровень инвазии. По сходству и различию популяционно-генетических параметров в пределах обследуемых территорий отслеживают возможные границы природных очагов биогильментозов. Изобретение позволяет эффективно определять границы природных очагов биогельминтозов и осуществлять противоэпидемические мероприятия среди населения. 8 з.п. ф-лы, 1 ил., 3 пр.

Изобретение относится к средствам обработки функции автокорреляции для измерения основного тона речевого сигнала и может быть использовано в области обработки сигналов, в системах распознавания речи. Технический результат заключается в повышении надежности измерения частоты основного тона речевого сигнала. Подчеркивают главный пик в автокорреляционной функции с помощью вычитания из автокорреляционной функции, полученной для сегмента сигнала, меньшей по амплитуде сглаженной функции автокорреляции для модуля сигнала на том же сегменте и обнуления отрицательных разностей. 1 з.п. ф-лы, 3 ил.

Изобретение относится к вычислительной технике и предназначено для вычисления на основе корреляционного принципа доплеровских сдвигов фазы пассивных помех; может быть использовано в адаптивных устройствах режектирования пассивных помех для вычисления тригонометрических функций текущих значений доплеровской фазы многочастотных пассивных помех. Достигаемый технический результат - повышение точности измерения текущего значения доплеровской фазы многочастотных пассивных помех. Вычислитель доплеровской фазы пассивных помех содержит блок оценивания фазы, блок комплексного умножения, блок задержки, синхрогенератор, первый умножитель, первый функциональный преобразователь, второй умножитель, второй функциональный преобразователь, первый блок памяти, комплексный сумматор, дополнительный вычислитель фазы, второй блок памяти, дополнительный блок оценивания фазы, третий и четвертый функциональные преобразователи, дополнительный блок комплексного умножения, дополнительный блок задержки. 9 ил.

Изобретение относится к вычислительной технике и может быть использовано в автоматизированных когерентно-импульсных системах для выделения сигналов движущихся целей на фоне пассивных помех при вобуляции периода повторения зондирующих импульсов. Техническим результатом является повышение эффективности режектирования пассивной помехи и выделения сигналов движущихся целей. Устройство содержит блоки задержки, комплексные перемножители, блок измерения фазы, весовые блоки, блок весовых коэффициентов, сумматоры, синхрогенератор, коммутатор. 15 ил.
Наверх