Способ обезвреживания морской балластной воды



Способ обезвреживания морской балластной воды
Способ обезвреживания морской балластной воды

 


Владельцы патента RU 2500624:

ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "НАУЧНО-ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ ЭКОЛОГИЯ, НАУКА, ТЕХНИКА" (ООО "НПО ЭНТ") (RU)

Изобретение может быть использовано в области обезвреживания морской балластной воды судов. Способ включает подачу озона в количестве, обеспечивающем концентрацию не более 2 мг озона на 1 литр обрабатываемой морской воды из озоносодержащей газовой смеси или из смеси озона с пресной водой в обезвреживаемую морскую балластную воду. Озон вводится непосредственно перед подачей обезвреживаемой морской балластной воды в блок УФ-С (3) облучения и время от введения в нее озона до выхода морской балластной воды из блока УФ-С облучения (3) не превышает 10 секунд. Доза УФ-С облучения лежит в диапазоне 100-200 мДж/см2. Озоносодержащую газовую смесь подают через барботажную пластину, расположенную перпендикулярно направлению движения потока обезвреживаемой морской балластной воды. Изобретение позволяет эффективно обезвреживать морскую балластную воду за счет синергизма биоцидной обработки совместным воздействием озона и бактерицидного ультрафиолетового (УФ-С) излучения, а также обеспечить защиту прибрежных вод мирового океана от инвазивных организмов, а именно бактерий, спор, вирусов, одноклеточных фито- и зоопланктона. 2 з.п. ф-лы, 2 ил., 1 табл.

 

Изобретение относится к области обезвреживания балластных вод (БВ) судов путем использования совместного воздействия бактерицидного ультрафиолетового (УФ-С) излучения и озона на одноклеточные организмы в целях защиты местных биоценозов от инвазивных организмов. Важной и трудной задачей является то, что, в соответствии со стандартом G-8 Международной Морской Организацией (International Marine Organisation, IMO), БВ, прошедшая через фильтры с размером пор ≤50 мкм, должна быть обезврежена не только от бактерий, спор и вирусов, но и от фито- и зоопланктона.

В балластных танках судов перевозится между удаленными друг от друга районами мирового океана приблизительно 10-12 миллиардов тонн водяного балласта в год и, по крайней мере, 7000 различных видов морских организмов (данные 2009 года). Большинство из них не выживает в путешествии внутри балластного танка, остальным предстоит конкуренция с местными видами. Однако, если условия принимающей среды благоприятны для выживания и создания репродуктивного потомства вида морских организмов, он может стать агрессивным и размножаться, уничтожая местные виды. Воздействие чужеродных привнесенных видов морских организмов, в отличие от других форм загрязнения морской воды, часто необратимо, поскольку происходит изменение морских экосистем.

Внесение чужеродных организмов в прибрежные воды во всем мире происходит именно при выгрузке БВ в море. Состав морских организмов в БВ, прошедшей фильтры с размером пор ≤50 мкм: вирусы, споры, бактерии, одноклеточные зоопланктон и фитопланктон. Повышение эффективности обезвреживания указанных микроорганизмов в морской БВ, остающихся после ее фильтрации, является целью настоящего изобретения.

Известен способ обеззараживания воды озонированием и ультрафиолетовым (УФ-С) излучением. Озонирование воды проводится эжекцией, после чего вода подается в блок облучения УФ-С излучением. Недостатком этого патента, применительно к обезвреживанию БВ, является отсутствие учета взаимодействия растворенного озона с солями брома в морской воде. Этот процесс является очень быстрым и его учет необходим для получения эффекта синергизма взаимодействия УФ-С излучения и озона (CN 201342108, A61L 101/10; A61L 2/10; A61L 2/20, опубл. 2009-11-11).

Известно устройство для обеззараживания воды озонированием и УФ-С излучением, в котором для озонирования используется озон, образуемый в высокочастотном разряде в промежутке между УФ-С лампой и защитной колбой (заявка РФ 93057611, C02F 1/32, G05D 27/00, опубл. 1997-01-27). Недостатком этого устройства является тот факт, что озон имеет сильное поглощение бактерицидного УФ-С излучения. Поэтому, при применении к БВ, наличие слоя озона на пути УФ-С излучения к воде приведет к уменьшению бактерицидного облучения, тем большему, чем выше производительность по озону. Соответственно, положительный эффект совместного действия не будет реализован.

Известен способ обезвреживания балластных вод тепловой обработкой и применения для «добавочного» обезвреживания УФ-С и озоновые лампы (DE 102006037845, B63J 4/00, опубл. 2008-03-20). Дополнительный характер блока (УФ-С)+озон указывает на его относительно низкую эффективность при самостоятельном использовании.

Известен способ обезвреживания балластных вод, в котором озон вводится в воду в концентрации 5-8 мг/л, затем проводится биологическая обработка воды и после этого облучение УФ-С дозой*) (*)Доза, мДж/см2, определяется энергией бактерицидного УФ-С излучения, проходящей через выделенную площадь 1 см2 за время пребывания этой площади в блоке УФ-С облучения, усредненной по всем траекториям движения элементарных объемов обрабатываемой воды) 40-60 мДж/см2 (CN 101602562, C02F 1/32; C02F 1/78; C02F 3/12; C02F 9/14, опубл. 2009-12-16). Недостатками этого способа, применительно к БВ, является, во-первых, высокая концентрация растворенного в воде озона. В результате образуется большая концентрация вторичных долгоживущих токсичных продуктов, для удаления которых необходимы специальные меры. Во-вторых, предлагаемая доза УФ-С облучения, даже при такой высокой концентрации озона, недостаточна для обезвреживания инвазивных одноклеточных организмов, таких, как фито- и зоопланктон, переносимых БВ.

Наиболее близким к заявляемому способу является способ, предложенный в патенте WO 2010149638, C02F 1/32; C02F 1/78, опубл. 2010-12-29. В нем описан способ обезвреживания морской БВ, в котором озон вводится в поток БВ таким образом, что обеспечивается время «удерживания озона» в смеси с морской водой в течение времени 2-500 секунд перед вводом смеси морской воды с озоном в блок облучения ее ультрафиолетовым излучением. Недостатком способа является то, что авторы не учитывают быстрых реакций озона с содержащимися в морской воде солями брома, в результате которых, с учетом времени приготовления смеси озона с морской водой, концентрация озона в морской воде значительно уменьшится перед вводом смеси в блок ультрафиолетового облучения, даже при времени удержания озона в смеси 2 секунды, тем более при времени удержания 500 секунд. Кроме того, ни в описании, ни в формуле изобретения нет объяснения, каким методом авторы предполагают удерживать озон в смеси с морской водой в условиях указанного выше механизма его быстрого разложения.

В основу данного изобретения положена задача создания эффективного способа обезвреживания морской балластной воды, обеспечивающего эффективную защиту прибрежных вод мирового океана от инвазивных организмов, переносимых БВ судов, а именно, бактерий, спор, вирусов, одноклеточных фито- и зоопланктона. включая, путем озонирования и облучения ультрафиолетовым (УФ-С) излучением.

Технический результат изобретения достигается способом, при котором морская БВ обезвреживается путем введения озона, содержащегося или в озоновоздушной смеси, или в газовой смеси обогащенной кислородом, или в смеси с жидкой пресной водой, и облучения УФ-С излучением. При этом озон вводится в поток БВ непосредственно перед подачей БВ в блок УФ-С облучения и время обезвреживания морской БВ от введения озона до выхода озонированной морской БВ из блока УФ-С облучения, не превышает 10 секунд, при этом концентрация озона на входе в блок УФ-С облучения не более 2 мг озона на 1 литр БВ, а доза УФ-С облучения лежит в диапазоне 100-200 мДж/см2.

Организованный таким образом процесс обезвреживания БВ и сочетание концентрации озона и величины дозы УФ-С облучения, по результатам экспериментальной проверки, обеспечивает технический результат изобретения. При этом озоносодержащую смесь подают в блок УФ-С облучения через форсунки так, что величина угла между направлением движения потока БВ и направлением подачи озоносодержащей смеси лежит в диапазоне от 30° до 150°. Газовую озоносодержащую смесь могут также подавать через барбатажную пластину, расположенную по ходу потока морской БВ в торце блока УФ-С облучения. Такими техническими решениями ввода озона в морскую БВ достигается наиболее быстрое перемешивание морской БВ с озоном.

Предлагаемый способ достижения технического результата изобретения обеспечивает повышение эффективности обезвреживания морской БВ и основан на следующих свойствах раствора озона в морской воде.

Рассмотрим процесс озонирования морской воды. Особенностью этого процесса, в сравнении с озонированием пресной воды, является наличие в озонированной морской воде быстрых реакций озона с содержащимися в морской воде соединениями брома. Скорость протекания этих реакций такова, что характеристическое время жизни озона в морской воде (уменьшение концентрации озона в «е» раз) составляет примерно 5 секунд. В ходе этих реакций озон тратится на образование таких соединений, как BrO, HOBr и других (они называются, общий остаточный окислитель - total residual oxidant, TRO), которые обеззараживают морскую воду, но являются менее эффективными дезинфектантами, чем сам озон. Кроме того, в результате соединения TRO с растворенной в морской воде органикой, образуются устойчивые бромсодержащие органические соединения, нежелательные с точки зрения накопления их в окружающей среде.

Совместное воздействие озона и УФ-С излучения имеет эффект синергизма, то есть взаимного усиления эффекта дезинфекции. При совместном воздействии TRO и УФ-С облучения на БВ эффекта синергизма не наблюдается.

Синергизм совместного действия УФ-С облучения и озона обусловлен следующими химическими процессами.

Во-первых, озон поглощает УФ-С излучение и при этом диссоциирует на атом кислорода и, так называемый, синглетный кислород. Атом кислорода, в реакции с водой, образует радикалы ОН, которые являются более сильными окислителями и, соответственно, более эффективными дезинфектантами, чем сам озон.

Во-вторых, образующийся при фотодиссоциации озона метастабильный синглетный кислород, с энергией возбуждения 1 электрон-вольт, при попадании в живую клетку нарушает ее функционирование.

Остаточным окислителем при совместном действии озона и УФ-С облучения является незначительное количество образующейся перекиси водорода, являющейся вторичным дезинфектантом, не наносящим вреда окружающей среде.

В целом, способ состоит в быстром перемешивании озона с морской БВ непосредственно на входе ее в блок УФ-С облучения. Введение озона в поток морской БВ производится непосредственно перед входом воды в блок УФ-С облучения, так чтобы время от начала введения озона в БВ до выхода морской БВ из блока УФ-С обеззараживания не превысило 10 сек - времени исчезновения озона в реакциях с растворенными в морской воде бромидами, а озон вводят в количестве, обеспечивающем концентрацию озона не более 2 мг озона на 1 литр обрабатываемой морской воды, при этом величина дозы УФ-С облучения лежит в диапазоне 100-200 мДж/см2, что приводит, в итоге, к достижению технического результата изобретения - повышению эффективности защиты прибрежных вод мирового океана от инвазивных организмов, переносимых БВ судов.

Схема одной реализации способа приведена на фиг.1. Озон, наработанный генератором озона озонатором 1, подается в смеситель 2 с пресной водой. В смесителе производится предварительное перемешивание озона с пресной водой, подаваемой из бака запаса пресной воды 5. Время жизни озона в пресной воде составляет десятки минут и не препятствует реализации предлагаемого способа. Озонированная пресная вода подается под давлением насосом 6 и форсункой 4 (или несколькими форсунками), вводится в блок УФ-С обеззараживания 3. Важно, что форсунка (форсунки), через которую (которые) подается озоносодержащая среда, расположена непосредственно перед входом БВ в блок УФ-С облучения 3. Обезвреженную морскую БВ получают на выходе блока УФ-С обеззараживания не более чем через 10 сек от начала ее озонирования.

Схема другой реализации способа представлена на фиг.2. Озоновоздушная, или обогащенная кислородом озоносодержащая газовая смесь нарабатывается генератором озона озонатором 1 и подается компрессором 7 под давлением в блок УФ-С облучения 3 перед входом потока морской БВ. Компрессор 7 повышает давление газовой смеси, подаваемой в узел озонирования БВ, до величины, большей давления в потоке БВ в блоке УФ облучения 3. В качестве узла озонирования БВ могут применять форсунку (форсунки) по схеме фиг.1, либо барбатажную пластину 8 (фиг.2), расположенную в торце блока УФ-С облучения 3, перпендикулярно направлению движения потока БВ. Обезвреженную морскую БВ получают на выходе блока УФ-С обеззараживания не более чем через 10 сек от начала ее озонирования.

Необходимое время пребывания озонированной БВ в УФ-С блоке 3, при средней дозе УФ-С облучения 100-200 мДж/см2, даже для таких трудноуничтожимых объектов инвазивного вноса, как сине-зеленые водоросли, не более 10 секунд. Время жизни озона в блоке УФ-С, с приведенными выше характеристиками бактерицидного излучения, не более 5 секунд. Поэтому основная часть растворенного в БВ озона дает вклад в синергический эффект обезвреживания БВ совместным действием озонирования и УФ-С излучения.

В таблице 1 представлены экспериментальные данные, полученные при применении предлагаемого способа для инактивации водоросли Dunaliella saline, обладающей повышенной устойчивостью к неблагоприятным условиям среды обитания, в том числе, воздействию УФ-С облучения.

Таблица 1
Эффективность воздействия УФ-С облучением и озоном, отдельно и совместно, на клетки зеленой водоросли Dunaliella saline в процентах
Жизнеспособных, % Нежизнеспособных, %
УФ-С - 130 мДж/см2 20 80
Озон - 1,2 мг/л 29 71
УФ-C (130 мДж/см2) + озон (1,2 мг/л) 0 100

1. Способ обезвреживания морской балластной воды путем введения в воду озона и облучения ее УФ-С излучением, отличающийся тем, что озон вводят из озоносодержащей газовой смеси или из смеси озона с пресной водой в обезвреживаемую морскую балластную воду непосредственно перед подачей морской балластной воды в блок УФ-С облучения, а озоносодержащую газовую смесь подают через барботажную пластину, расположенную перпендикулярно направлению движения потока обезвреживаемой морской балластной воды, при этом время от введения озона в поток морской балластной воды до выхода морской балластной воды из блока УФ-С облучения не превышает 10 с, а озон вводят в количестве, обеспечивающем концентрацию не более 2 мг озона на 1 л обрабатываемой морской воды, при этом доза УФ-С облучения озонированной морской балластной воды в блоке УФ-С облучения лежит в диапазоне 100-200 мДж/см2.

2. Способ по п.1, отличающийся тем, что озоносодержащую газовую смесь или смесь озона с пресной водой подают в поток обезвреживаемой морской балластной воды под углом к направлению его движения через форсунки, расположенные в потоке морской балластной воды на входе в блок УФ-С облучения.

3. Способ по п.1, отличающийся тем, что величина угла между направлением движения потока обезвреживаемой балластной воды и направлением подачи озоносодержащей газовой смеси или смеси озона с пресной водой из помещенных в этот поток форсунок лежит в диапазоне от 30° до 150°.



 

Похожие патенты:
Изобретение относится к сорбционным технологиям очистки сточных вод от ионов металлов и может быть использовано в различных отраслях промышленности. Способ включает использование сорбента, состоящего из смеси гидроксида и карбоната магния, обработку воды сорбентом путем их перемешивания с получением дисперсии и образованием в результате обработки продуктов в виде практически нерастворимых частиц гидроксидов хрома, железа и меди и растворимой соли магния.

Изобретение относится к области химии. Отходы серной кислоты при синтезе 2,2'-дихлордиэтилформаля производства полисульфидного полимера, содержащие примеси этиленхлоргидрина и параформальдегида, обрабатывают гидроксидом магния до получения среды с кислотностью рН=6,5-7,0, из которой декантацией отделяют примеси этиленхлоргидрина и параформальдегида с возможностью рециклирования их в синтезе 2,2'-дихлордиэтилформаля.
Изобретение относится к области санитарии и гигиены, в частности к обеззараживанию различных типов вод. Дезинфицирующее средство для обеззараживания воды включает соединение полигуанидина-фосфат поли-(4,9-диоксадодекангуанидина), или хлорид поли-(4,9-диоксадодекангуанидина), или, глюконат поли-(4,9-диоксадодекангуанидина), или цитрат поли-(4,9-диоксадодекангуанидина), или бензоат поли-(4,9-диоксадодекангуанидина, или цитрат полигексаметиленгуанидина или глюконат полигексаметиленгуанидина, или бензоат полигексаметиленгуанидина, или фосфат полигексаметиленгуанидина или хлорид, полигексаметиленгуанидина; гидроксиэтилцеллюлозу, гуанидин гидрохлорид и воду при следующем соотношении компонентов, мас.%: соединение полигуанидина - 0,5-8,0; гидроксиэтилцеллюлоза - 0,1-2,0; гуанидин гидрохлорид - 0,001-0,02; вода - остальное.

Изобретение относится к области сорбционной техники и может быть использовано для реактивации отработанных активных углей без их выемки с целью их дальнейшего применения в системах водоочистки.

Устройство для термодистилляционной очистки воды может быть использовано для опреснения морской воды, очистки промышленных стоков с высоким содержанием солей жесткости, выпарки растворов до получения сухого остатка.
Изобретение относится к противомикробным композициям. Синергетическая противомикробная композиция содержит: (а) замещенное гидроксиметилом фосфорсодержащее соединение, которое выбрано из группы, включающей соли тетракис(гидроксиметил)фосфония и трис(гидроксиметил)фосфин; и (б) трис(гидроксиметил)нитрометан.
Изобретение относится к магнитной жидкости на основе нефти и нефтепродуктов, предназначенной для очистки водоемов от нефти. Магнитная жидкость на основе нефти получена смешением 24 г хлорной или сернокислой соли трехвалентного железа с 12 г хлорной или сернокислой соли двухвалентного железа, свободных от механических примесей.

Изобретение относится к способам обезвоживания осадков бытовых и промышленных сточных вод и может быть использовано в процессе обработки стоков и обезвоживания осадка на биологических очистных сооружениях.

Изобретение относится к технике водоподготовки и может быть использовано для озонирования питьевой воды систем централизованного водоснабжения. Устройство содержит трубопровод подвода воды с фильтром грубой очистки, трубопровод отвода воды, трубопровод подачи озона от генератора озона, соединенного с эжектором, средство для отвода отработанного озоносодержащего газа, отводящий промывной трубопровод, обводной трубопровод с обратным клапаном, гидрозатвор, насос, контактно-фильтровальную емкость с размещенным в ее нижней части насыпным фильтром, дренажную систему, датчик уровня, первое, второе, третье и четвертое запорные устройства, блок управления, соединенный с датчиком уровня и с цепями управления генератора озона, насоса, гидрозатвора и первого, второго, третьего и четвертого запорных устройств, причем трубопровод подачи озона от генератора озона соединен с эжектором, средство для отвода отработанного озоносодержащего газа выполнено в виде деструктора озона, установленного в верхней части контактно-фильтровальной емкости и соединенного с ним через воздухоотделительный клапан, отводящий промывной трубопровод соединен с отводом из верхней части контактно-фильтровальной емкости через гидрозатвор, третье запорное устройство установлено в трубопроводе подвода воды за фильтром грубой очистки и соединяет его с эжектором и обводящим трубопроводом с обратным клапаном, который через второе запорное устройство и насос соединен с выходом дренажной системы, а через установленное за вторым запорным устройством четвертое запорное устройство соединен с трубопроводом отвода воды, а первое запорное устройство, установленное в отводе от трубопровода подвода воды за фильтром грубой очистки, соединяет его с дренажной системой, насыпной фильтрующий элемент - катализатор, выполненный в виде гранулированного наноструктурированного сорбента на основе природного глауконита, терморасширенного графита без стороннего связующего, распыляющие устройства, установленные в верхней части контактно-фильтровальной емкости, которые соединены трубопроводом с запорным устройством и насосом, автоматически синхронно управляемым датчиком блока управления одновременно с генератором озона, причем форсунки распыляющего устройства расположены: одна в центре, остальные по концентричным кругам, лежащим в одной плоскости, количество которых определяется расчетным путем.

Изобретение относится к технике обработки воды озонированием и может быть использовано, в частности, для обеззараживания питьевой воды в системах водоснабжения городов и населенных пунктов, для дезинфекции оборотной воды бассейнов.

Изобретение относится к способу электрохимической обработки воды дезинфектантами, который может быть использован для обработки питьевой воды, бытовых и промышленных сточных вод, воды плавательных бассейнов. Способ включает введение в обрабатываемую воду дезинфектантов, получаемых путем прямого электролиза в проточном режиме обрабатываемой воды, содержащей хлорид натрия, при этом используют воду, содержащую 0,1÷20 мг/л хлорида натрия. Также изобретение относится к устройству для электрохимической обработки воды дезинфектантами, которое содержит корпус с входными и выходными патрубками, изменяющие полярность титановые электроды, средство подвода тока к электродам, при этом изменение полярности происходит с паузой от нескольких секунд до нескольких часов, причем межэлектродное расстояние составляет менее 1 мм. Техническим результатом изобретения является возможность безреагентного управления свойствами воды с низким содержанием хлоридов, приводя к непосредственной дезинфекции. 2 н. и 1 з.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к способам обезвреживания токсичных отходов гальванического и радиоэлектронного производства и может быть использовано для обезвреживания отработанных растворов гальванических и химических покрытий металлами, содержащих анион 1-гидроксиэтан-1,1-дифосфоновой кислоты, а также для нейтрализации отработанных растворов травления печатных плат, содержащих пероксодисульфат аммония. Способ заключается во взаимной нейтрализации двух видов жидких отходов производства в результате окисления пероксодисульфатом аниона 1-гидроксиэтан-1,1-дифосфоновой кислоты до нетоксичных химических веществ. Способ позволяет превратить в ортофосфат более 99% аниона 1-гидроксиэтан-1,1-дифосфоновой кислоты, снизить материальные затраты на нейтрализацию токсичных отходов производства гальванических покрытий и печатных плат и расширить арсенал способов утилизации отработанных растворов травления печатных плат, содержащих пероксодисульфат аммония. 10 з.п. ф-лы, 4 ил., 4 пр.

Изобретение относится к способу электролиза с управлением процессом электрохимической обработки водных растворов, который может быть использован для получения дезинфицирующих и моющих растворов, а также для обработки питьевой воды, бытовых и промышленных сточных вод. Способ заключается в том, что между моментом отключения электропитания и моментом включения с противоположной полярностью присутствует пауза от нескольких секунд до нескольких часов. Техническим результатом является устранение зарастания межэлектродного пространства осадком отложений солей жесткости на электродах электролизных устройств и увеличение ресурса работы этих устройств. 1 ил.
Изобретение относится к медицине, а именно к ветеринарии, и может быть использовано для лечения кожных заболеваний у овец. Для этого осуществляют подготовку пораженных участков кожного покрова. Пораженные участки кожного покрова предварительно обрабатывают раствором этилового спирта при концентрации 70%. Далее осуществляют обработку пораженных участков электрохимически активированной водой с помощью распылителя сначала кислой фракцией с pH 3,0 в количестве 20-30 мл на 10 см2 поверхности в течение 10-15 секунд с расстояния 15-20 см. Затем проводят выдержку в течение 25-30 минут с последующей обработкой щелочной фракцией с pH 11,0, в количестве 20-30 мл на 10 см2 поверхности в течение 10-15 секунд с расстояния 15-20 см. Обработку проводят два раза в сутки. Способ обеспечивает повышение эффективности лечения, сокращение сроков лечения и, соответственно его себестоимости. 1 з.п. ф-лы, 2 табл., 1 пр.

Изобретение относится к способам отслеживания и контроля коррозии, образования отложений и потребления воды в испарительных рециркуляционных системах водного охлаждения. Система измерения и контроля в общем случае включает набор измерений, средство обеспечения управляющей логики и набор контрольных действий, включающих активацию ионообменного устройства для обработки подпиточной воды. Измерения могут включать физические измерения скоростей потока, химические измерения состава воды и измерения параметров, связанных с производительностью, таких как коррозионная активность воды или ее способность к образованию отложений. Предпочтительно измерения включают измерения одного или более из следующих параметров: pH, проводимость, жесткость, основность, коррозионная активность, способность к образованию отложений, дозировка добавок для обработки и остаточное содержание добавок для обработки в подпиточной воде и рециркулирующей воде. Помимо понижения коррозионной активности воды и ее способности к образованию отложений способ устраняет или понижает выброс из системы, не создавая каких-либо локальных условий для образования отложений или коррозии в результате обработки. 4 н. и 10 з.п. ф-лы, 7 пр., 5 табл., 4 ил.
Изобретение относится к способам активации воды и может быть использовано в системах активации и обогащения питьевой воды. Способ приготовления электроактивированной воды включает обработку воды путем электролиза для получения двух фракций воды: щелочной - католита, насыщенной ионами OH-, и кислотной - анолита, насыщенной ионами H+. Водород, выделившийся в течение процесса электролиза, собирают в емкость объемом не более 5 л и барботируют им образовавшийся католит с pH 7,5-8 из расчета (6-8)·10-4 моль/л до полного его растворения в католите. Технический результат - упрощение способа с возможностью использования его в быту, получение католита с оптимальными показателями pH и окислительно-восстановительного потенциала.

Изобретение относится к области обработки подземных вод с повышенным содержанием железа и может быть использовано в процессах водоподготовки для питьевых и технических целей. Устройство для обезжелезивания воды включает не менее двух емкостей, представляющих собой вертикально расположенные корпусы цилиндрической формы из диэлектрика, на внутренней поверхности которых расположены инертные аноды 7 в виде спирали, а в центре - железные катоды 8 в виде круглых стержней, к входам в корпусы подсоединены электрифицированные задвижки 9, соединенные с подающей трубой насоса 3, в верхних частях корпусов расположены воздушные вантузы 10, соединенные с вентиляционными трубами 11, на выходах из корпусов расположены трубы для отвода чистой воды 12 с электрифицированными задвижками 13 и отвода промывной воды 14 с электрифицированными задвижками 15. На трубе отвода чистой воды расположены датчик расхода воды 16 и датчик содержания в воде железа 17. Труба промывной воды подсоединена к тангенциальному входу гидроциклона 18, верхний выход которого соединен с трубой сброса промывной воды 19 в канализацию, а нижний выход направлен в емкость для утилизации гидроксида железа 21. Блок управления 5 соединен проводниками с источником постоянного тока 4, всеми электрифицированными задвижками, датчиком расхода воды и датчиком содержания в воде железа. Технический результат - повышение надежности процесса обезжелезивания воды, гарантированное качество очищенной воды. 1 ил., 4 табл., 3 пр.
Изобретение может быть использовано для обеззараживания различных типов вод - питьевой воды, городских и промышленных сточных вод, воды плавательных бассейнов и системы охлаждения оборудования, а также для защиты трубопроводов и сооружений от патогенных бактерий и биологического обрастания. Состав включает соединение полигуанидина на основе поли-(4,9-диоксадодекангуанидина) или полигексаметиленгуанидина и гидроксиэтилцеллюлозу при следующем соотношении компонентов, мас.%: соединение полигуанидина - (0,1-8,0), гидроксиэтилцеллюлоза (0,1-3,0) и вода - остальное. Техническим результатом заявленного состава является повышение степени эффективности дезинфекции воды, снижение токсических свойств препарата, в том числе его аллергической активности. 3 табл., 1 пр.

Группа изобретений относится к статическому декантатору и водоочистной установке, использующей этот декантатор, и может использоваться для предварительного сгущения жидкого ила при очистке сточных вод. Декантатор содержит наклонное дно 8, насос 3 для подачи жидкого ила, устройство инжекции полимера в жидкий ил, слив верхнего продукта 23 и насос 26 для откачки предварительно сгущенного ила из декантатора. Декантатор содержит также средства для ускорения декантации ила, средства регулирования концентрации взвешенных веществ в загущенном иле на выходе, способные удерживать постоянной концентрацию предварительно загущенного ила, извлекаемого из декантатора, несмотря на колебания концентраций на входе, и средства регулирования уровня взвеси ила, способные сохранять этот уровень как можно более низким. Технический результат состоит в повышении степени предварительного сгущения ила, исключающей дополнительную обработку ила перед устройством сгущения ила. 2 н. и 10 з.п. ф-лы, 6 ил.
Изобретение может быть использовано на предприятиях цветной и черной металлургии, в химических и машиностроительных производствах для очистки сточных вод от цианидов и при получении золота цианидным способом. Способ очистки сточной воды от цианид-ионов включает ее обработку сульфатом двухвалентного железа в количестве 293 мас.ч. на 100 мас.ч. CN-ионов в присутствии в воде сорбента в виде фибриллированных целлюлозных волокон, содержащих в мас.% не менее 54% волокон с длиной не более 0,63 мм и не менее 94% волокон с длиной не более 1,23 мм, с образованием продукта реакций в виде нерастворимых частиц цианистого железа. Продукт реакции получают в виде композиционного материала, состоящего из целлюлозных волокон с сорбированными на них частицами цианистого железа. Продукт обработки выводят из воды с использованием напорной флотации. Изобретение позволяет упростить процесс очистки, снизить расход сульфата железа, повысить степень очистки и обеспечить возможность проведения очистки в непрерывном режиме. 1 з.п. ф-лы, 3 пр.
Наверх