Способ генерации перепутанных поляритонов

Способ относится к генерации перепутанных поляритонов. Способ генерации перепутанных поляритонов заключается в том, что выбираются параметры схемы атомно-оптического взаимодействия в допированной среде и за счет внешнего оптического управления происходит генерации перепутанных поляритонов. Технический результат заключается в повышении эффективности генерации перепутанных поляритонов в твердотельных средах. 2 ил.

 

Изобретение относится к области генерации неклассических поляритонов и управления их групповыми скоростями, и может быть использовано для обработки квантовой информации.

Известен способ создания источника перепутанных фотонов [US Patent Application 20070291811 - Entangled Photon Source Application 20070291811 Filed on May 26, 2006. Published on December 20, 2007, http://www.patentstorm.us/applications/20070291811/claims.html]. Способ основан на использовании нелинейных параметрических преобразований в кристалле ВВО, при котором фотон поля оптической накачки, поступающий на вход кристалла, разваливается на два производных фотона с ортогональными поляризациями. Известен также способ генерации неклассических фотонов с использованием сверхтекучего состояния поляритонов в микрорезонаторах [«Massive parallel generation of nonclassical photons via polaritonic superfluid to mott- insulator quantum phase transition», патент США 20100258746, Yun-Chung Na (Palo Alto, CA, US), Yoshihisa Yamamoto (Stanford, CA, US), http://www.faqs.org/patents/app/20100258746]. Способ основан на использовании фазового перехода от сверхтекучего состояния поляритонного газа к состоянию Мотт-инсулятора, при котором происходит формирование пар перепутанных по поляризации фотонов.

Недостатки данных способов состоят в том, что они не позволяют описать фундаментальную физику процессов генерации перепутанных фотонов внутри среды, когда они находятся в связанном с возбуждениями среды поляритонном состоянии.

Наиболее близким к предполагаемому способу является использование взаимодействия инвертированной оптической среды с пробным импульсом света и получение модифицированного спектра поляритонов в виде смыкающихся дисперсионных кривых с характерным локальным минимумом на верхней дисперсионной ветви, вблизи которого могут формироваться поляритоны с отрицательными значениями групповых скоростей [Железняков В.В., Кочаровский В.В., Кочаровский Вл.В. // УФН. 1989. Т.159. №2. С.193].

Недостатки работы заключаются в невозможности практического наблюдения эффекта модификации спектра из-за нестационарности происходящих в двухуровневой модели процессов и отсутствии анализа корреляционных свойств формируемых поляритонов, что не позволяет проследить генерацию перепутанных пар в системе.

Задача, решаемая изобретением, - обеспечение возможностей разработки и создания источника коррелированных пар поляритонов, формируемых и распространяющихся в противоположных направлениях внутри твердотельных оптических сред.

Предлагаемая задача решается тем, что в способе генерации перепутанных поляритонов, включающем взаимодействие инвертированной оптической среды с пробным импульсом света в условиях формирования модифицированного поляритонного спектра в виде смыкающихся дисперсионных кривых с характерным локальным минимумом на верхней дисперсионной ветви, использование дополнительного поля оптической накачки позволяет поддерживать во времени требуемую инверсию на нижних атомных уровнях Λ-схемы взаимодействия и определяет закон дисперсии поляритонов в виде:

Ω 1,2 ( k ) = 1 2 [ ω + + κ 2 Δ Δ 2 + γ c 2 + i Г + ± ( D + i Г ) 2 4 | λ | 2 ] , ( 1 )

где ω±ba±ωph, Г±at±γph;

Г a t = γ a + γ b + κ 2 γ c Δ 2 + γ c 2   э ф ф е к т и в н а я   с к о р о с т ь   атомной релаксации, D = ω + κ 2 Δ Δ 2 + γ c 2 - эффективная отстройка, λ = κ g Δ эффективный параметр взаимодействия, κ - частота Раби для связывающего перехода |α〉→|с〉, ωph - эффективная частота фотонного поля, ωba - разностная частота между уровнями |α〉 и |b〉, Δ - частота отстройки поля накачки от резонанса, γi (i=α,b,c) характеризуют релаксационные процессы для атомов на соответствующих уровнях, γph - скорость релаксационных процессов для поля в среде, g - константа атомно-оптического взаимодействия на переходе |b〉→|с〉, i - мнимая единица.

Технически наблюдение спектра вида (1) возможно при использовании Λ-схемы взаимодействия с одним пробным Ep и полем накачки Ec в допированном атомами 59Pr кристалле Y2SiO5 (Фиг.1) при выполнении двух физических условий: сильной связи, когда γc<λ и рамановского предела работы схемы при γc<D. Возникающий на верхней поляритонной ветви Ω 1 ( R ) = Re ( Ω 1 ) локальный минимум приводит к распространению в среде светлого поляритона с отрицательным значением групповой скорости υ 1 g ~ Ω 1 ( R ) k p в точке k1 на Фиг.2а, где k p - волновой вектор пробного поля. При этом в среде существует второй - темный поляритон той же энергии, но распространяющийся с положительной групповой скоростью для точки k2 в противоположном к первому направлении. Возникающая пара поляритонов характеризуется наличием сильных неклассических фазовых корреляций - перепутывания между светлыми и темными поляритонами при выполнении условия: V k π / 2 < 1 (на Фиг.2,б), где корреляционные параметры имеют вид:

V k π / 2 = 1 4 { Δ 2 ( Y 1, k + Y 2, k ) + Δ 2 ( X 1, k X 2, k ) } ( 2 a )

V k 0 = 1 4 { Δ 2 ( X 1, k + X 2, k ) + Δ 2 ( Y 1, k Y 2, k ) } ( 2 б )

Здесь Δ2 определяет дисперсию соответствующей величины, а сами параметры Xi,k и Yi,k задаются следующими выражениями:

X 1, k = Ф 1, k + Ф 1, k + , Y 1, k = i ( Ф 1, k Ф 1, k + ) ( 3 a , б )

X 2, k = Ф 2, k + Ф 2, k + , Y 2, k = i ( Ф 2, k Ф 2, k + ) ( 3 в , г )

которые описывают квадратуры для пары светлый Ф1,k и темный Ф2,k, поляритоны со своими бозонными операторами уничтожения:

Ф 1, k = μ f k + ν a k b k + , Ф 2, k = ν f k + + μ a k + b k , ( 4 а , б )

где fk, f k + ; ak, a k + ; bk, b k + - соответственно операторы уничтожения и рождения для фотонов пробного поля и атомов на уровнях |a〉 и |b〉 в k-й моде, а коэффициенты µ, ν (аналогично коэффициентам Хопфилда) определяют частичный вклад фотонной и атомной составляющих в формирование поляритона, удовлетворяя при этом условию µ22=1.

Пример реализации способа.

В качестве рабочей среды использовали допированный атомами 59Pr кристалл Y2SiO5, Λ-схема взаимодействия для которого представлена на Фиг.1, а параметры взаимодействия составляли: длина рабочей области в кристалле Leff=9 мм, относительная концентрация 0.007% атомов 59Pr в среде, величина расщепления между подуровнями |α〉 и |b〉 ωba=6.4·107 с-1, скорость релаксации на оптическом переходе Гat≈γc=1.47·107 с-1, интенсивность поля накачки Ip=0.96 Вт·см-2, частота отстройки поля накачки от резонанса Δ=6·104 с-1, величина атомно-оптической константы связи g=2.8·107 с-1. При выбранных параметрах в среде допированого кристалла происходит формирование перепутанных поляритонов вблизи точки k1 на Фиг.2.

Способ генерации перепутанных поляритонов, включающий взаимодействие инвертированной оптической среды с пробным импульсом света в условиях формирования модифицированного поляритонного спектра в виде смыкающихся дисперсионных кривых с характерным локальным минимумом на верхней дисперсионной ветви, отличающийся использованием дополнительного поля оптической накачки, которое позволяет поддерживать во времени требуемую инверсию на нижних атомных уровнях Λ-схемы взаимодействия и определяет закон дисперсии поляритонов в виде
Ω 1,2 ( k ) = 1 2 [ ω + + κ 2 Δ Δ 2 + γ c 2 + i Г + ± ( D + i Г ) 2 4 | λ | 2 ] ,
где ω±ba±ωph;
Г±at±γph;
Г a t = γ a + γ b + κ 2 γ c Δ 2 + γ c 2 - эффективная скорость атомной релаксации;
D = ω + κ 2 Δ Δ 2 + γ c 2 - эффективная отстройка;
λ = κ g Δ - эффективный параметр взаимодействия, κ - частота Раби для связывающего перехода |a〉→|с〉; ωph - эффективная частота фотонного поля; ωba - разностная частота между уровнями |а〉 и |b〉; Δ - частота отстройки поля накачки от резонанса; γi (i=a,b,c) характеризуют релаксационные процессы для атомов на соответствующих уровнях; γph - скорость релаксационных процессов для поля в среде; g - константа атомно-оптического взаимодействия на переходе |b〉→|с〉; i - мнимая единица.



 

Похожие патенты:

Изобретение относится к области волоконно-оптической техники связи и может быть использовано при реконструкции протяженных волоконно-оптических линий передачи. Устройство содержит строительные длины оптического кабеля, оптические волокна которых соединены последовательно в муфтах и имеют хроматическую дисперсию одного знака.
Изобретение относится к способу ограничения мощного лазерного импульсно-периодического излучения и может найти применение для защиты органов зрения и чувствительных приемников излучения от разрушающего действия высокоинтенсивного падающего излучения.

Изобретение относится к области оптической техники, а именно к ограничителям мощности приемников лазерного излучения, и может найти применение для защиты глаз, оптических систем и приемников лазерного излучения от разрушающего действия входного излучения высокой мощности.

Изобретение относится к области волоконно-оптической техники связи и может быть использовано для увеличения пропускной способности и/или протяженности усилительных или регенерационных участков волоконно-оптических линий связи.

Изобретение относится к области волоконно-оптической техники связи и может быть использовано для увеличения пропускной способности и/или протяженности усилительных или регенерационных участков волоконно-оптических линий связи.

Изобретение относится к области волоконно-оптической техники и может быть использовано для увеличения ее пропускной способности. .

Изобретение относится к области квантовой электроники оптического диапазона, в частности к разработке преобразователей излучения на основе нелинейно-оптических кристаллических сред с периодической структурой доменов, поляризованных в противоположных направлениях, и может быть использовано для создания малогабаритных лазерных источников.

Изобретение относится к нелинейной оптике и оптоэлектронике и может быть использовано в оптических системах записи и считывания информации, в волоконно-оптической связи и в лазерных проекционных системах.

Изобретение относится к оптике. .

Изобретение относится к нелинейным преобразователям частоты лазерного излучения и касается вопросов преобразования ультракоротких лазерных импульсов во вторую гармонику.

Изобретение относится к оптической технике. В способе ограничения интенсивности лазерного излучения (ЛИ), включающем подачу потока лазерного излучения на вход устройства, ограничивающего мощность лазерного излучения, подачу потока ЛИ ведут путем последовательного пропускания потока ЛИ через размещенный на входе в оптическую систему в фокальной плоскости двух сопряженных линз первый каскад, а затем через второй каскад. Первый каскад характеризуется переменным коэффициентом пропускания ЛИ, являющимся функцией величины интенсивности потока ЛИ, и содержит пропускающую ЛИ ячейку, выполненную в виде стеклянной кюветы, заполненную под давлением не более 5 атм инертным газом, например ксеноном, не имеющим полос поглощения в рабочей области спектра. Второй каскад представляет собой нелинейный ограничитель и содержит элемент, ограничивающий мощность ЛИ, выполненный в виде оптически прозрачной матрицы, например полимерной пленки или стеклянной пластинки, с введенным в нее нанодисперсным углеродсодержащим наполнителем. После второго каскада поток ЛИ направляют на светочувствительный датчик, регистрирующий величину преобразованного потока ЛИ. Технический результат заключается в обеспечении возможности повышения степени защиты оптических систем путем ограничения входного лазерного излучения повышенной мощности, а также в уменьшении потерь для защиты от потока слабого лазерного излучения. 1 ил.

Изобретение относится к области оптики и касается устройства управления параметрами лазерного излучения. Устройство включает в себя источник лазерного излучения, поляризатор, вращающийся оптический элемент и цепь обратной связи. Цепь обратной связи состоит из светоделительной пластины, дополнительного поляризатора, фотодетектора, усилителя, блока управления скоростью вращения оптического элемента и поворотного блока, на котором установлен датчик угла поворота плоскости поляризации. Технический результат заключается в обеспечении возможности управления степенью и углом поворота поляризации. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области управления интенсивностью, цветом, фазой, поляризацией или направлением света. Сущность способа состоит в том, что угловой спектр генерируемого оптического двухфотонного излучения меняют в зависимости от пространственного профиля изменения интенсивности лазерной накачки. Предлагаемый способ позволяет генерировать максимально перепутанные состояния Белла пар фотонов в двумерном подпространстве параксиальных мод с единичной четностью. Ключевой особенностью метода является использование лазерной накачки в высших пространственных модах в режиме жесткой фокусировки. Технически, метод основан на адаптивной подстройке фазового фронта лазерной накачки с помощью активного пространственного фазового модулятора света. Этот подстроенный фронт за счет условий фазового синхронизма в нелинейном кристалле генерирует форму амплитуды бифотона соответствующей пространственному состоянию Белла. 2 ил.

Изобретение относится к оптико-терагерцовым преобразователям с черенковским излучением и может быть использовано в качестве базового конструктивного узла в источниках терагерцового излучения для высокочувствительного оборудования спектроскопии, микроскопии и имиджинга. Преобразователь содержит преобразующую пластину, выполненную из анизотропного нелинейного кристалла, способного преобразовывать сфокусированные лазерные импульсы, поступающие в пластину через ее торцевую поверхность, в терагерцовое излучение с образованием черенковского конуса, и размещенную на выходе вырабатываемого терагерцового излучения оптическую призму, прозрачную в терагерцовом диапазоне частот и контактирующую одной из своих граней с указанной пластиной по всей лицевой поверхности пластины. Преобразующая пластина выполнена из упомянутого кристалла с соблюдением условия ориентации его кристаллографических осей по отношению к направлению распространения и направлению поляризации лазерных импульсов, обеспечивающего ортогональность вектора наведенной нелинейной поляризации по отношению к вектору напряженности электрического поля на одной из образующих терагерцового черенковского конуса, генерируемого вектором нелинейной поляризации. Оптическая призма расположена по отношению к преобразующей пластине противоположно указанной образующей терагерцового черенковского конуса. Технический результат - улучшение спектральных характеристик оптико-терагерцового преобразователя. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области получения сегнетоэлектрических монокристаллов фторидов, применяемых в нелинейной оптике. Получен монокристаллический материал фторида SrMgF4, обладающий способностью к преобразованию лазерного излучения в ВУФ/УФ области спектра от длины волны 0,122 мкм до 11,8 мкм с коэффициентом нелинейности для моноклинной фазы dij=0.044 пм/В и характеризующийся наличием сегнетоэластического фазового перехода при 480 K. Выращивание монокристаллического материала SrMgF4 оптического качества осуществляют методом Бриджмена из расплава SrMgF4, имеющего температуру плавления 1173 K, в вертикальной двухзонной печи с температурами 1470 K и 970 K в зонах печи при температурном градиенте в области роста 10-20 K/см, скорости опускания ампулы порядка 1 мм/день и охлаждении в режиме отключенной печи с последующим отжигом кристалла. Изобретение позволяет создавать периодические структуры, на которых возможна реализация квазифазового синхронизма, что обеспечивает увеличение КПД преобразования лазерного излучения даже при невысоких параметрах нелинейности кристалла. 2 н.п. ф-лы, 2 ил.

Изобретение относится к нелинейной оптике. Нелинейный анизотропный кристалл трибората лития LiB3O5 (LBO) применяют в качестве активной среды для генерации излучения терагерцового диапазона 0.3-10 ТГц (1000-30 мкм) путем обеспечения выполнения условий фазового синхронизма при генерации разностной частоты излучения лазеров, работающих в области максимальной прозрачности 0.155-3.2 мкм, при реализации трехчастотных взаимодействий в главной плоскости XZ, выборе соответствующих длин волн излучений первого и второго источников накачки и углового позиционирования кристалла в соответствии с результатами расчетов по дисперсионным уравнениям Технический результат заключается в обеспечении возможности получения генерации излучения в важном, с точки зрения практических приложений, спектральном диапазоне. 5 ил.

Изобретение относится к конструкции источников коррелированных по времени и перепутанных по поляризации фотонов. Схема генерации модифицированных 3- и 4-модовых ГХЦ состояний включает импульсный лазер, светоделитель, линию задержки и два оптических параметрических усилителя. Диагонально поляризованное лазерное излучение с помощью светоделителя разделяют на два пучка, которые впоследствии используются для накачки оптических параметрических усилителей. В одном из указанных усилителей возбуждается процесс спонтанного параметрического рассеяния с образованием двух ортогонально пространственно поляризованных мод с перепутанными белловскими состояниями. Далее один из рассеянных пучков направляется на вход второго усилителя одновременно с импульсом накачки, синхронизованным по времени с рассеянным импульсом с помощью линии задержки. На выходе из второго усилителя формируются две пространственные моды, причем в одной из них наблюдается двухфотонное состояние. Техническим результатом изобретения является возможность осуществления генерации многофотонных состояний, а также возможность осуществления обмена перепутыванием между источниками. 5 з.п. ф-лы, 5 ил.

Изобретение относится к конструкции лазерных источников излучения коррелированных по времени и перепутанных по поляризации фотонов. Источник поляризационно-перепутанных фотонов с максимально возможной степенью перепутанности содержит по меньшей мере один элемент, состоящий из сдвоенных нелинейных положительных или отрицательных одноосных кристаллов, параметрически рассеивающих луч накачки непрерывного или импульсного лазерного излучения в вырожденном по частоте режиме. При этом главные плоскости накачки указанных кристаллов ориентированы под определенным оптимальным углом, отличным от девяноста градусов. Техническим результатом изобретения является устранение влияния эффекта Мигдалла и, как следствие, увеличение степени перепутанности состояний фотонов. 4 з.п. ф-лы, 4 ил.
Наверх