Способ получения композиционных покрытий методом коаксиальной лазерной оплавки

Изобретение относится к области получения на деталях наплавкой износостойких покрытий из порошковых материалов и может найти применение для изделий судостроения, авиационной промышленности, теплоэнергетического машиностроения, нефтегазодобывающей, металлургической и химической промышленности. Подвергаемые наплавке поверхности детали очищают, промывают и подвергают струйно-абразивной обработке для придания обеспечивающей адгезию с покрытием шероховатости с последующей обдувкой сжатым воздухом. Очистке и промывке дополнительно подвергают поверхности детали, прилегающие к зоне наплавки. Подготавливают порошковый материал, который затем из двух дозаторов подают на поверхность детали в зону наплавки потоком аргона и выполняют наплавку импульсным лазерным лучом в среде аргона. Из одного дозатора в поток аргона подают армирующий неметаллический дисперсный порошок агломерированного карбида вольфрама WC фракцией 80,0-150,0 мкм, а из другого дозатора - металлический порошок сплава кобальта В3К фракцией 53-106 мкм. Наплавку осуществляют по крайней мере в два слоя лазерным лучом мощностью 2 кВт при скорости его перемещения в процессе наплавки 2 м/мин. При наплавке первого слоя порошок карбида вольфрама и порошок сплава кобальта подают в соотношении 1:4, а при наплавке второго слоя устанавливают соотношение 1:5. Способ позволяет получать функционально-градиентные износостойкие покрытия с регулируемой твердостью по толщине. 4 з.п. ф-лы, 2 табл., 1 пр.

 

Изобретение относится к области получения износостойких покрытий с функционально-градиентными свойствами из порошковых материалов и может найти применение для изделий судостроения, авиационной промышленности, теплоэнергетического машиностроения, нефтегазодобывающей, металлургической и химической промышленности.

Существует целый ряд способов получения износостойких покрытий из порошковых материалов (газотермическое напыление, плазменное напыление, лазерное напыление и т.д.).Наиболее долговечными являются металлические и металлокерамические покрытия, которые позволяют обеспечить особо высокие механические и специальные защитные свойства изделий.

Известен способ газотермического напыления порошковых материалов на подложку (А. Хасуй «Технология напыления», М., Машиностроение, 1975, с. 288), в котором для получения высокой адгезии используют мелкие порошки с размерами частиц 5-200 мкм. Распыляемые порошки подвергают воздействию высокотемпературного газового потока (плазменного),нагревая их до температуры плавления, ускоряют до 100-300 м/с и формируют покрытие из расплавленных или частично расплавленных частиц на поверхности подложки.

Однако известный способ не может с успехом применяться для напыления порошков более мелких частиц, поскольку происходит их испарение и выгорание в высокотемпературных потоках, а также известный способ не позволяет наносить покрытие из композиционных порошковых материалов, распадающихся и испаряющихся при нагреве.

Известен способ нанесения наноструктурированных износостойких покрытий, включающий подачу порошковой композиции с армирующими частицами из четырех дозаторов в сверхзвуковой поток подогретого газа с образованием гетерофазного потока и нанесение порошковой композиции (RU 2362839 С1, С23С 24/04, 27.07.2009). Однако этот способ имеет ряд ограничений возможности его применения таких как образование оксидов, нитридов структурные изменения, возникновение высоких термомеханических напряжений вследствие разности коэффициентов термического расширения подложки и материала покрытия.

Наиболее близким к заявленному изобретению является известный способ получения функционально-градиентных покрытий из порошковых материалов, включающий очистку, промывку и струйно-абразивную обработку наплавляемой поверхности детали и обдувку подготовленной поверхности сжатым воздухом, подготовку порошкового материала, подачу порошкового материала из, по крайней мере, одного дозатора и транспортировку его в зону наплавки с помощью газового потока из инертного газа аргона на поверхность детали и наплавку порошка импульсным лазерным лучом в среде аргона (А.Г. Григорьянц, И.Н. Шиганов, А.И. Мисюров «Технологические процессы лазерной обработки», изд. МГТУ им. Н.Э. Баумана, М., 2006, с. 333-361).

Однако известный способ не позволяет получать покрытия с регулируемой твердостью по толщине покрытия, что снижает срок службы изделий в процессе их эксплуатации.

Задачей настоящего изобретения является создание эффективного способа получения функционально-градиентного износостойкого покрытия с регулируемой твердостью по толщине высокой износостойкостью и адгезией.

Для этого в способе получения функционально-градиентного покрытия из порошковых материалов, включающем очистку, промывку и струйно-абразивную обработку наплавляемой поверхности детали и обдувку подготовленной поверхности сжатым воздухом, подготовку порошкового материала, подачу порошкового материала из, по крайней мере, одного дозатора и транспортировку его в зону наплавки с помощью газового потока из инертного газа аргона на поверхность детали и наплавку порошка импульсным лазерным лучом в среде аргона, дополнительно осуществляют очистку и промывку поверхностей детали, прилегающих к наплавляемой зоне, в процессе струйно-абразивной обработки поверхности придают шероховатость, подачу порошковых материалов осуществляют из двух дозаторов, а наплавку осуществляют в несколько слоев, при этом из одного из дозаторов в поток транспортирующего газа вводят армирующие неметаллические дисперсные частицы агломерированного карбида вольфрама с фракцией 80,0-150,0 мкм, а и из другого дозатора металлические частицы кобальта В3К фракцией 53-Юбмкм, используют лазерный луч мощностью 2кВт и перемещают его в процессе наплавки со скоростью 2 м/мин, первый слой напыляют с подачей армирующих неметаллических дисперсных частиц агломерированного карбида вольфрама и металлических частиц кобальта в соотношении 1:4, после нанесения первого слоя изменяют соотношение подачи порошков из дозаторов до 1:5 и наносят следующий слой.

Покрытие получают на детали из углеродистой или нержавеющей стали или сплавов, выбранных из группы : титановых, магниевых и алюминиевых, или бронз или латуней.

Кроме того, очистку и промывку поверхностей детали, прилегающих к наплавляемой зоне, осуществляют на расстояние не менее 50 мм, а в процессе струйно-абразивной обработки придают шероховатость поверхности по параметру RZ не менее 20 мкм. Указанные меры позволяют обеспечить хорошее сцепление наплавленного слоя с покрываемой поверхностью и предотвратить образование трещин в покрытии.

При необходимости после наплавки второго слоя осуществляют наплавку третьего слоя с соотношением подачи порошков из дозаторов 1:5, и затем наплавляют четвертый слой с соотношением подачи порошков из дозаторов 1:6.

Экспериментально было установлено, что при соотношении подачи армирующих неметаллических дисперсных частиц агломерированного карбида вольфрама и металлических частиц кобальта в соотношении 1:4 для первого слоя, 1:5 - для второго слоя получают покрытие с переменной по толщине твердостью и соответственно высокой износостойкостью, что в свою очередь повышает срок службы полученных деталей с покрытием.

Пример реализации способа

Технологический процесс лазерной наплавки функционально-градиентного покрытия на изделие из низкоуглеродистой стали включает в себя следующие операции: подготовку порошков и их смесей; подготовку поверхности, нанесение покрытия; промежуточный контроль качества и размеров покрытия, контроль качества и размеров покрытия. Для покрытия используют порошковый материал в виде армирующих неметаллических дисперсных частиц агломерированного карбида вольфрама с фракцией 80,0-150,0 мкм и металлических частиц кобальта В3К фракцией 53-106 мкм. Перед использованием порошки просушивают и прокаливают. Сушку порошков проводят в сушильном шкафу при температуре от 130°С до 150°С в течение от 2 до 3 часов на противнях из нержавеющей стали, периодически перемешивая порошок, толщина засыпки которого должна быть не более 40 мм. Прокаливание порошка упрочняющей компоненты проводят в электропечи в течение от 2 до 3 часов при температуре от 320°С до 450°С на противнях из нержавеющей стали. Толщина засыпки слоя порошка не более 20 мм. Затем осуществляют подготовку поверхности детали, подлежащей наплавке. Для этого поверхности очищают и промывают от масла, грязи и ржавчины с помощью волосяных или металлических щеток. Очистке и промывке подлежат также поверхности, прилегающие к наплавляемым зонам на расстоянии не менее 50 мм. Кроме того, поверхности детали, подлежащей наплавке, придают шероховатость струйно-абразивной обработкой. Шероховатость по параметру Rz должна быть не менее 20 мкм по параметру Rz по ГОСТ 2789. Данная операция позволяет повысить адгезийную прочность покрытия. После обработки поверхность детали обдувают сжатым воздухом.

В дозаторы засыпают порошковые материалы, закрепляют деталь в патроне манипулятора, устанавливают соответствующие напыляемому порошковому материалу расход порошка, мощность излучения, скорость обработки. В поток транспортирующего аргона вводят армирующие неметаллические дисперсные частицы WC, фракцией от 80,0 до 150,0 мкм из первого дозатора и металлические частицы ВЗК, фракцией от 53 до 106,0 мкм из второго дозатора в процентном соотношении 1:4 для получения первого слоя. Далее поток частиц подается в ванну плавления, созданную при перемещении со скоростью 2 м/мин лазерного луча мощностью 2 кВт (таблица 1). При нанесении следующего слоя покрытия изменяют соотношение подачи из дозатора порошков до 1:5. За счет наложения нескольких слоев получается регулирование твердости по толщине покрытия с приведенными в таблице 2 свойствами.

Таблица 1. Режимы напыления
Режимы напыления Состав получаемого покрытия
WC+B3K
Расход порошка, г/мин 25
Скорость наплавки м/мин 1,9-2
Мощность излучения, Вт 2000
Расход газа, л/мин 25-30
Таблица 2.
Свойства полученных покрытий
Свойства Покрытие
WC+B3K
Твердость, HRC 65
Адгезия, МПа 180
Рабочая температура, °С не более 500
Толщина покрытия, мкм 500-2000

Данный способ позволяет получить на изделии функционально-градиентное покрытие из порошковых материалов с регулируемой твердостью по толщине высокой износостойкости, а так же высокой когезией и адгезией покрытия с поверхностью детали, без трещин и дефектов.

1. Способ получения функционально-градиентного износостойкого покрытия из порошковых материалов на детали наплавкой, включающий очистку, промывку и струйно-абразивную обработку подвергаемой наплавке поверхности детали с последующей обдувкой подготовленной поверхности сжатым воздухом, подготовку порошкового материала, его подачу на поверхность детали в зону наплавки потоком аргона и наплавку импульсным лазерным лучом в среде аргона, отличающийся тем, что очистке и промывке дополнительно подвергают поверхности детали, прилегающие к зоне наплавки, в процессе струйно-абразивной обработки подвергаемой наплавке поверхности детали придают обеспечивающую адгезию с покрытием шероховатость, порошковый материал на поверхность детали в зону наплавки подают из двух дозаторов, а наплавку осуществляют, по крайней мере, в два слоя лазерным лучом мощностью 2 кВт при скорости его перемещения в процессе наплавки 2 м/мин, при этом из одного дозатора в поток аргона подают армирующий неметаллический дисперсный порошок агломерированного карбида вольфрама WC фракцией 80,0-150,0 мкм, а из другого дозатора - металлический порошок сплава кобальта В3К фракцией 53-106 мкм, причем при наплавке первого слоя порошок карбида вольфрама и порошок сплава кобальта подают в соотношении 1:4, а при наплавке второго слоя устанавливают соотношение 1:5.

2. Способ по п.1, отличающийся тем, что покрытие наносят на детали из углеродистой или нержавеющей стали, или титановых сплавов, или магниевых сплавов, или алюминиевых сплавов, или бронз, или латуней.

3. Способ по п.1 или 2, отличающийся тем, что прилегающие к зоне наплавки поверхности детали очищают и промывают на расстоянии не менее 50 мм.

4. Способ по п.1, отличающийся тем, что в процессе струйно-абразивной обработки подвергаемой наплавке поверхности детали придают шероховатость RZ не менее 20 мкм.

5. Способ по п.1, отличающийся тем, что после наплавки второго слоя наплавляют третий слой при соотношении подачи порошка карбида вольфрама и порошка сплава кобальта 1:5, после чего наплавляют четвертый слой при соотношении 1:6.



 

Похожие патенты:
Изобретение относится к технологии нанесения металлических композиционных материалов плазменным напылением с использованием выносной электрической дугой пульсирующей мощности и может найти использование для изготовления или восстановления изношенных деталей, работающих в условиях повышенного износа и высоких контактных нагрузок в судостроительной промышленности, энергетике, прецизионном машино- и приборостроении.
Изобретение относится к области порошковой металлургии и может быть использовано для защиты теплонагруженных узлов и элементов конструкции двигательных установок от теплового и эрозионного разрушения в струе высокотемпературных продуктов сгорания топлива, содержащих, в частности, конденсированную фазу, путем плазменного напыления эрозионностойких теплозащитных покрытий.

Изобретение относится к области нанесения покрытий, а именно к электровзрывному напылению композиционных покрытий системы Al-TiB2 на алюминиевые поверхности. Технический результат - повышение износостойкости и микротвердости покрытия, увеличение его адгезии к основе.

Изобретение относится к машиностроению и может быть использовано при упрочнении абразивных кругов, работающих на повышенных скоростях, или при силовом шлифовании.

Изобретение относится к технологии нанесения защитно-декоративных покрытий. .
Изобретение относится к области машиностроения, а именно к электродуговым способам нанесения покрытий на поверхности изделий с использованием металлических проволок, в частности, ремонтном производстве при восстановлении формы и размеров деталей.

Изобретение относится к области химии. .

Изобретение относится к способу нанесения металлического покрытия, а также к элементу конструкции летательного аппарата с упомянутым покрытием. .

Изобретение относится к технологии напыления покрытий на металлические поверхности и может быть использовано в электротехнической промышленности для напыления на контактные поверхности покрытий, обладающих высокой электроэрозионной стойкостью.

Изобретение относится к реагирующему с водой алюминиевому композитному материалу, реагирующей с водой алюминиевой пленке, способу получения данной алюминиевой пленки и составляющему элементу для пленкообразующей камеры.

Способ предназначен для импульсной лазерной наплавки металлов на любые трехмерные поверхности из металлических материалов и может быть использован в различных отраслях машиностроения для восстановления изношенных деталей машин и механизмов, инструмента.

Изобретение относится к металлургии и машиностроению и может быть использовано для поверхностного упрочнения и восстановления деталей машин и механизмов. На подложку газопорошковой лазерной наплавкой наносят самофлюсующиеся порошки системы NiCrBSi, после чего осуществляют отжиг при температуре 1000-1075°C в течение 1-3 часов.

Изобретение относится к способам защиты стальных поверхностей деталей от эрозии, в том числе кавитационной, путем наплавки коррозионно-эрозионного порошка. .

Изобретение относится к способу наплавки детали из алюминиевого сплава. .

Изобретение относится к устройству лазерной наплавки и легирования материалов и может быть использовано при наплавке различных материалов лазерным излучением и в лазерной стереолитографии с применением порошковых материалов.

Изобретение относится к технологии восстановления поверхности монокристаллической или полученной направленной кристаллизацией металлической детали, имеющей толщину Ws менее 2 мм, в которой лазерный луч и поток металлического порошка, имеющего ту же природу, что и металлическая деталь, подают на деталь с помощью сопла для получения, по меньшей мере, одного слоя монокристаллического или подвергшегося направленной кристаллизации от детали металла, при этом лазерный луч имеет мощность «Р» и перемещается вдоль детали со скоростью «v», в котором луч лазера и поток порошка подают на деталь соосно и отношение P/v находится в определенном диапазоне.

Изобретение относится к способу лазерной наплавки упрочненного сварного шва на подложку конструктивного элемента из жаропрочного сплава с направленной ориентацией дендритов. Осуществляют подачу порошка и лазерного луча на наплавляемую поверхность подложки с расплавлением подаваемого порошка и поверхностного слоя подложки и получают в процессе наплавки в поверхностном слое дендриты (31), которые ориентированы в направлении (32) дендритов подложки. Параметры лазерной наплавки: скорость сканирования луча, лазерную мощность, диаметр луча, фокус порошкового пучка и/или расход порошка устанавливают из условия обеспечения локальной ориентации температурного градиента (28) на фронте (19) кристаллизации, который меньше чем 45° к направлению (32) дендритов подложки для дендритов (3 1) в подложке (4). Скорость сканирования луча устанавливают от 30 мм/мин до 100 мм/мин, предпочтительно 50 мм/мин и/или лазерную мощность устанавливают от 200 Вт до 500 Вт, предпочтительно 300 Вт, и/или диаметр лазерного луча на поверхности подложки устанавливают от 3 мм до 6 мм, предпочтительно 4 мм, и/или скорость подачи порошка устанавливают от 300 мг/мин до 600 мг/мин, предпочтительно 400 мг/мин. В результате обеспечивается одно направление роста дендритов и полное расплавление частиц порошка в расплаве. 6 з.п. ф-лы, 4 ил.

Изобретение относится к области получения на деталях наплавкой износостойких покрытий из порошковых материалов и может найти применение для изделий судостроения, авиационной промышленности, теплоэнергетического машиностроения, нефтегазодобывающей, металлургической и химической промышленности. Подвергаемые наплавке поверхности детали очищают, промывают и подвергают струйно-абразивной обработке для придания обеспечивающей адгезию с покрытием шероховатости с последующей обдувкой сжатым воздухом. Очистке и промывке дополнительно подвергают поверхности детали, прилегающие к зоне наплавки. Подготавливают порошковый материал, который затем из двух дозаторов подают на поверхность детали в зону наплавки потоком аргона и выполняют наплавку импульсным лазерным лучом в среде аргона. Из одного дозатора в поток аргона подают армирующий неметаллический дисперсный порошок агломерированного карбида вольфрама WC фракцией 80,0-150,0 мкм, а из другого дозатора - металлический порошок сплава кобальта В3К фракцией 53-106 мкм. Наплавку осуществляют по крайней мере в два слоя лазерным лучом мощностью 2 кВт при скорости его перемещения в процессе наплавки 2 ммин. При наплавке первого слоя порошок карбида вольфрама и порошок сплава кобальта подают в соотношении 1:4, а при наплавке второго слоя устанавливают соотношение 1:5. Способ позволяет получать функционально-градиентные износостойкие покрытия с регулируемой твердостью по толщине. 4 з.п. ф-лы, 2 табл., 1 пр.

Наверх