Лопатка турбины, снабженная средством регулирования расхода охлаждающей текучей среды

Лопатка турбины охлаждается внутренним потоком охлаждающей текучей среды, поступающей через отверстия, расположенные внизу хвостовой части лопатки. Лопатка включает в себя регулирующую пластину, снабженную отверстиями, расположенными в соответствии с отверстиями внизу хвостовой части лопатки. Регулирующая пластина выполнена из материала, имеющего коэффициент расширения, отличающийся от коэффициента расширения материала, из которого выполнена хвостовая часть лопатки. Регулирующая пластина установлена внизу хвостовой части лопатки с продольным направлением и закреплена с сохранением возможности относительного перемещения между отверстиями в регулирующей пластине и отверстиями в хвостовой части лопатки так, что сечение потока текучей среды увеличивается вместе с температурой. Изобретение направлено на уменьшение расхода охлаждающего воздуха во время полета на крейсерском режиме посредством пассивного регулирования расхода. 2 н. и 10 з.п. ф-лы, 3 ил.

 

Настоящее изобретение относится к лопатке турбины, охлаждаемой внутренним потоком охлаждающей текучей среды, такой как, например, воздух. В частности, настоящее изобретение относится к усовершенствованию, позволяющему осуществлять в автоматическом и пассивном режиме, т.е. без внешнего управления, регулирование расхода охлаждающей текучей среды в лопатках ротора, работающего в условиях высокого давления в турбореактивном двигателе самолета, с применением расхода охлаждающей текучей среды в зависимости от рабочей скорости турбореактивного двигателя самолета.

В турбореактивном двигателе самолета подвижные лопатки турбины, работающей в условиях высокого давления, находятся непосредственно за выходным отверстием камеры сгорания. Они подвергаются воздействию очень высоких температур. Таким образом, является необходимым их постоянное охлаждение. Обычным способом для этого является создание внутреннего потока охлаждающей текучей среды, как правило, воздуха, проистекающего из выходного отверстия компрессора высокого давления.

Следует напомнить, что такая турбина, работающая в условиях высокого давления, имеет диск, снабженный пазами, выполненными на его периферии, и в каждом из этих пазов расположена хвостовая часть лопатки. Таким образом, лопатка присоединена к диску при помощи соединения по форме, которое образовано между пазом и хвостовой частью лопатки.

В каждой лопатке имеются пустоты, в которые поступает охлаждающая текучая среда. Таким образом, воздух, идущий от компрессора высокого давления, поступает через несколько отверстий, образованных внизу хвостовой части лопатки, проходит через пустоты и уходит через многочисленные отверстия, распределенные по поверхности лопатки. Охлаждающий воздух, идущий от компрессора высокого давления, подается в пазы диска для того, чтобы он мог поступать в лопатки.

Принимая во внимание то, что охлаждающий воздух подается из потока, идущего через компрессор высокого давления, и что он не участвует в процессе сгорания в камере сгорания, является важным свести к минимуму его расход для того, чтобы повысить производительность турбореактивного двигателя и, таким образом, снизить его удельный расход топлива.

Настоящее изобретение является результатом следующего анализа.

Наивысшие температуры достигаются во время взлета и набора высоты. Таким образом, износ лопаток является наибольшим на этих стадиях.

Поэтому установленной практикой является то, что принимается в расчет наивысшая температура, достигаемая во время взлета, для того, чтобы был гарантирован предписанный срок действия лопатки. Такая температура обуславливает определенный расход охлаждающего воздуха.

Однако стадия полета с крейсерской скоростью является самой длительной, и во время этой стадии температура лопатки ниже приблизительно на 100° по Цельсию.

Поэтому, было бы предпочтительным снижать расход охлаждающего воздуха во время этой стадии, таким образом приводя к повышению температуры лопаток, т.е. к повышению, которое может быть обеспечено во время стадии полета с крейсерской скоростью. Тем не менее, новый расчетный расход охлаждающего воздуха, в данном случае, будет оставаться, практически, тем же самым при взлете и поэтому будет приводить к соответствующему повышению температуры в лопатках при взлете, таким образом значительно сокращая срок действия лопаток. Предполагается, что повышение температуры на 20 градусов при взлете и во время набора высоты будет сокращать срок действия лопаток приблизительно наполовину.

Основная мысль, на которой основывается настоящее изобретение, состоит в уменьшении расхода охлаждающего воздуха (относительно параметров, определенных в действующих правилах), но только во время полета на крейсерской скорости, и сделать это с помощью пассивного регулирования расхода, т.е. без внешнего управления, можно полностью путем использования разницы температур лопатки между ее температурой во время полета на крейсерской скорости и ее температурой при других скоростях двигателя, в особенности, во время взлета.

В частности, изобретением обеспечивается лопатка турбины, охлаждаемая внутренним потоком охлаждающей текучей среды, поступающей через отверстия, расположенные внизу хвостовой части лопатки, при этом лопатка отличается тем, что она включает в себя регулирующую пластину, снабженную отверстиями, расположенными в соответствии с отверстиями внизу хвостовой части лопатки, тем, что регулирующая пластина выполнена из материала, имеющего коэффициент расширения, отличающийся от коэффициента расширения материала, из которого выполнена хвостовая часть лопатки, и тем, что регулирующая пластина установлена внизу хвостовой части лопатки с продольным направлением и укреплена с сохранением возможности относительного перемещения между отверстиями в регулирующей пластине и отверстиями в хвостовой части лопатки так, что сечение потока текучей среды увеличивается вместе с температурой.

Лопатка, о которой идет речь, может быть подвижной лопаткой ротора турбины, в особенности, лопаткой ротора турбины, работающей в условиях высокого давления, в турбореактивном двигателе самолета.

В предпочтительном варианте осуществления изобретения регулирующая пластина выполнена из керамического материала, имеющего коэффициент расширения, который является небольшим по сравнению с коэффициентом расширения хвостовой части лопатки.

Известным образом в нижней части хвостовой части лопатки имеется металлическая калибровочная пластина с вышеуказанными отверстиями, выполненными в ней. Таким образом, эти отверстия частично совпадают с отверстиями в вышеуказанной регулирующей пластине. Металлическая пластина, например, может быть приварена внизу хвостовой части лопатки.

Предпочтительно, регулирующая пластина присоединена только одним из ее концов к хвостовой части лопатки, позволяя, таким образом, хвостовой части лопатки свободно расширяться относительно пластины.

В одном из вариантов осуществления пластина входит в зацепление с прямолинейной направляющей, прикрепленной к хвостовой части лопатки для того, чтобы предотвращать поворачивание пластины относительно хвостовой части лопатки.

Для того чтобы получить наибольшие преимущества от использования амплитуды изменений длины хвостовой части лопатки (т.е. калибровочной пластины), отверстия, расположенные внизу хвостовой части лопатки, могут иметь треугольную форму.

Согласно другому предпочтительному отличию отверстия в регулирующей пластине могут иметь квадратную или прямоугольную форму.

В настоящем изобретении также предлагается турбина, включающая в себя диск с лопатками, присоединенными к его периферии, при этом каждая лопатка соответствует приведенному выше определению.

Настоящее изобретение может быть лучше понято, и его другие преимущества будут более ясны в свете последующего описания, которое дается с приводимыми примерами и ссылками на сопроводительные чертежи, в которых:

Фиг.1 является трехмерным разделенным перспективным видом лопатки согласно настоящему изобретению вместе с частью диска ротора.

Фиг.2 является схематическим изображением снизу хвостовой части лопатки во время взлета.

Фиг.3 является местным, схематичным видом снизу хвостовой части лопатки, изображающим изменение уровня охлаждающего потока.

Здесь можно увидеть подвижную лопатку турбины, состоящую из части с аэродинамической поверхностью 12 и из хвостовой части 14. Часть с аэродинамической поверхностью отделена от хвостовой части платформой 15. Колесо турбины состоит из диска 17 и множества таких лопаток. По периферии диск 17 имеет пазы 19. Каждый паз имеет профиль, соответствующий профилю хвостовой части 14 лопатки так, чтобы каждая лопатка присоединялась к диску при помощи определенного соединения по форме между пазом и хвостовой частью лопатки. Платформы 15 воспроизводят внутренние стенки сечения для потока горячего газа, выбрасываемого из камеры сгорания турбореактивного двигателя. Такой тип расположения известен и не описывается более подробно. Также известно, что необходимо охлаждать лопатки, потому что турбина приводится в действие при использовании потока горячего газа. С этой целью каждая лопатка является полой и включает в себя полости 20, наполняемые через калибровочные отверстия 22, которые расположены внизу хвостовой части лопатки. Таким образом, внутренний поток охлаждающей текучей среды удерживается внутри каждой лопатки. Точнее говоря, воздух проистекает из компрессора высокого давления, который, в основном, служит для питания окислителя камеры сгорания. Этот воздух подводится по каналам к пазам 19 в диске 17 и далее поступает через отверстия 22, находящиеся внизу хвостовых частей лопаток, и протекает вдоль внутренних полостей 20 так, чтобы выходить через многочисленные отверстия, выполненные на аэродинамической поверхности 12 лопаток.

Для того чтобы калибровать расход охлаждающего воздуха, металлическая калибровочная пластина 25 прикрепляется, в основном, приваривается к внутренней поверхности хвостовой части 14 лопатки. Эта калибровочная пластина 25 имеет форму узкой прямоугольной шпонки, которая имеет определенное число отверстий, устанавливающих размер и форму отверстий 22 внизу хвостовой части лопатки. Коэффициенты расширения хвостовой части 14 лопатки и пластины 25 являются идентичными, так что они расширяются вместе в зависимости от температуры. В контексте настоящего изобретения, термическое расширение используется для изменения уровня потока охлаждающего воздуха.

В качестве дополнительной особенности предусмотрено то, что регулирующая пластина 27 выполнена из материала, имеющего коэффициент расширения, который отличается от коэффициента расширения материала, образовывающего хвостовую часть 14 лопатки и калибровочную пластину 25, при этом регулирующая пластина включает в себя отверстия 29, расположенные в точном соответствии с отверстиями 22 в калибровочной пластине. Регулирующая пластина 27, как правило, имеет форму узкой прямоугольной шпонки, сравнимой по форме с калибровочной пластиной.

Вышеуказанная регулирующая пластина 27 установлена внизу хвостовой части лопатки, в данном случае, с совпадением отверстий и в контакте с калибровочной пластиной 25, снабженной продольным направлением (образованным линейными направляющими 33), с использованием способа крепления, который позволяет сохранять возможность относительного перемещения между отверстиями 29 в регулирующей пластине и отверстиями 22 в хвостовой части лопатки (в данном случае, в калибровочной пластине), таким образом, чтобы размер сечения входного отверстия для охлаждающего потока увеличивался бы с увеличением температуры.

Точнее говоря, регулирующая пластина 27 выполнена из керамического или композитного материала, имеющего коэффициент расширения, который является очень небольшим по сравнению с коэффициентом расширения хвостовой части лопатки и калибровочной пластины, которые выполнены из металла.

Впускные отверстия 22, выполненные внизу хвостовой части лопатки, совпадают с отверстиями 29 в регулирующей пластине 27. Регулирующая пластина прикреплена только с одного из своих концов к вышеуказанной хвостовой части лопатки посредством крепежного элемента 31. Регулирующая пластина 27 удерживается в линейных направляющих 33, прикрепленных к хвостовой части 14 лопатки или к калибровочной пластине 25. Она прижимается к калибровочной пластине посредством центробежной силы.

Таким образом, при взлете подвижная лопатка 11, температура которой, естественно, повышается, расширяется до предельного значения. В хвостовой части 14 лопатки может быть заметно изменение совпадения между отверстиями 22 в калибровочной пластине и отверстиями 29 в регулирующей пластине 27, так как регулирующая пластина вообще почти не удлиняется. Как изображено на фиг.2, это относительное изменение приводит к образованию максимально доступного размера сечения входного отверстия для охлаждающего воздуха при взлете. Этого достаточно для калибровки размеров данного сечения так, чтобы температура при взлете достигала предельного значения, которое гарантирует предписанный срок службы лопатки. В отличие от этого, во время полета с крейсерской скоростью сжимание хвостовой части лопатки, которое является результатом снижения ее температуры, приводит к уменьшению размера сечения входного отверстия для охлаждающего воздуха (фиг.3) и, следовательно, к поступлению меньшего количества воздуха от компрессора. Это повышает эффективность всей работы турбореактивного двигателя во время полета на крейсерской скорости. Если уровень охлаждающего потока снижается только во время полета на крейсерской скорости, то срок действия лопатки укорачивается, но немного, порядка 15%. Это может быть компенсировано просто способом небольшого увеличения уровня охлаждающего потока во время стадий взлета и набора высоты. В качестве итога, предписанный срок службы лопаток сохраняется по мере увеличения эффективности работы турбореактивного двигателя, таким образом снижая его удельный расход топлива во время полета на крейсерской скорости.

Для того чтобы сделать изменение расхода охлаждающего потока наиболее оптимальным в зависимости от различия в расширении между хвостовой частью лопатки и регулирующей пластиной, отверстия в калибровочной дозирующей пластине имеют треугольную форму, и отверстия в регулирующей пластине имеют квадратную или прямоугольную форму.

В данном примере, каждое отверстие 22 внизу хвостовой части лопатки имеет площадь 3,5 квадратных миллиметра (мм2). К каждому из отверстий в калибровочной пластине обращено квадратное или прямоугольное отверстие 29 в регулирующей пластине. Край отверстия совпадает с поперечной стороной треугольника, когда хвостовая часть лопатки имеет температуру при взлете в 580°C.

После взлета хвостовая часть лопатки сжимается, таким образом частично закрывая треугольное отверстие в месте расположения его поперечного основания. Во время полета турбореактивного самолета с крейсерской скоростью температура хвостовой части лопатки опускается до 450°C. Хвостовая часть лопатки, как это видно по керамической пластине, сжимается на 0,025 миллиметров (мм). Это приводит к уменьшению сечения входного отверстия для охлаждающего потока на 2,8%. Уменьшение уровня охлаждающего потока, потребляемого двигающейся лопаткой при крейсерской скорости полета, является пропорциональным уменьшению площади сечения входного отверстия для охлаждающего потока.

1. Лопатка турбины, охлаждаемая внутренним потоком охлаждающей текучей среды, поступающей через отверстия (22), расположенные внизу хвостовой части (14) лопатки, отличающаяся тем, что она включает в себя регулирующую пластину (27), снабженную отверстиями (29), расположенными в соответствии с отверстиями (22) внизу хвостовой части лопатки, при этом регулирующая пластина (27) выполнена из материала, имеющего коэффициент расширения, отличающийся от коэффициента расширения материала, из которого выполнена хвостовая часть лопатки, причем регулирующая пластина установлена внизу хвостовой части лопатки с продольным направлением и закреплена (31) с сохранением возможности относительного перемещения между отверстиями в регулирующей пластине и отверстиями в хвостовой части лопатки так, что сечение потока текучей среды увеличивается вместе с температурой.

2. Лопатка турбины по п.1, отличающаяся тем, что лопатка является подвижной лопаткой.

3. Лопатка турбины по п.1, отличающаяся тем, что регулирующая пластина (27) выполнена из материала, имеющего коэффициент расширения, который меньше коэффициента расширения материала, из которого выполнена хвостовая часть лопатки.

4. Лопатка турбины по п.1, отличающаяся тем, что регулирующая пластина (27) выполнена из керамического материала, имеющего коэффициент расширения, который является небольшим по сравнению с коэффициентом расширения хвостовой части лопатки.

5. Лопатка турбины по п.1, отличающаяся тем, что регулирующая пластина (27) выполнена из композитного материала, имеющего коэффициент расширения, который является небольшим по сравнению с коэффициентом расширения хвостовой части лопатки.

6. Лопатка турбины по п.1, отличающаяся тем, что хвостовая часть лопатки содержит у своего основания металлическую калибровочную пластину (25), имеющую вышеупомянутые отверстия (22), выполненные в ней в соответствии с отверстиями в регулирующей пластине (27).

7. Лопатка турбины по п.1, отличающаяся тем, что регулирующая пластина (27) закреплена (31) только одним из своих концов к лопатке турбины.

8. Лопатка турбины по п.7, отличающаяся тем, что пластина входит в зацепление с прямолинейной направляющей (33), прикрепленной к хвостовой части (14) лопатки или к калибровочной пластине (25).

9. Лопатка турбины по п.1, отличающаяся тем, что отверстия (22), расположенные внизу хвостовой части лопатки турбины, имеют треугольную форму.

10. Лопатка турбины по п.1, отличающаяся тем, что отверстия (29) в регулирующей пластине имеют квадратную или прямоугольную форму.

11. Турбина, включающая в себя диск (17) и лопатки (11), причем диск снабжен на своей периферии пазами (19), при этом в каждом пазу размещена хвостовая часть (14) лопатки турбины, при этом поток воздуха подводится по каналам к пазам, отличающаяся тем, что каждая лопатка (11) выполнена по п.1.

12. Турбина по п.11, отличающаяся тем, что она является турбиной турбореактивного самолета, работающей в условиях высокого давления.



 

Похожие патенты:

Ротор газовой турбины включает расположенные на диске турбины охлаждаемые рабочие лопатки, каждая из которых имеет ножку лопатки, расположенную в осевом пазу для ее фиксации.

Ротор газотурбинного двигателя содержит диск с осевыми гнездами, выполненными на ободе диска для индивидуального крепления лопаток. На одной стороне обода устанавливают кольцо.

Изобретение может быть использовано при изготовлении моноблочного лопаточного диска (блиска), преимущественно, для ротора газотурбинного двигателя. Получают лопатку с выступом, параметры которого обеспечивают присоединение к диску посредством линейной сварки трением.

Изобретение относится к области лопаточных машин, в частности к конструкции композиционных лопаток осевых вентиляторов и компрессоров авиадвигателей. Лопатка лопаточной машины содержит профилированное перо, комлевую часть, а также хвостовик типа «ласточкин хвост» и выполнена из ориентированных слоев композиционного материала, соединенных между собой связующим материалом.

Ротор турбины турбореактивного двигателя содержит диск турбины с размещенными на нем рабочими лопатками и уплотнительным кольцом, установленным на ободе диска с помощью байонетного соединения.

Изобретение относится к области двигателестроения, точнее к осевым турбинам и компрессорам газотурбинных двигателей, а конкретно к способу изготовления биметаллических блисков с охлаждаемыми лопатками, в том числе высокотемпературных газотурбинных двигателей большого ресурса.

Ротор компрессора газотурбинного двигателя содержит, по меньшей мере, два коаксиальных диска, на которых расположены лопатки и которые соединены между собой, по существу, цилиндрической коаксиальной стенкой вращения, и средства центробежного забора воздуха.

Изобретение относится к области газотурбинного двигателестроения, а именно к охлаждаемым турбинам ГТД. .

Изобретение относится к нанесению алюминиевого покрытия на металлическую деталь, а именно на полую деталь, содержащую внутреннюю рубашку, а также к рубашке для циркуляции охлаждающего воздуха, алюминированной полой лопатке газотурбинного двигателя и направляющему сопловому аппарату газотурбинного двигателя.

Изобретение относится к системам регулирования расхода воздуха на охлаждение турбины одноконтурных и двухконтурных двигателей. .

Объектом настоящего изобретения является узел из диска турбины газотурбинного двигателя и опорной цапфы опорного подшипника. Диск турбины содержит радиальный кольцевой крепежный фланец, неподвижно соединенный с радиальной кольцевой частью цапфы при помощи болтов. Болты последовательно проходят через крепежные отверстия, выполненные в радиальном кольцевом крепежном фланце диска турбины и в радиальной кольцевой части цапфы. Радиальная кольцевая часть цапфы содержит сквозные отверстия для циркуляции воздуха между входом и выходом цапфы. Отверстия выполнены между крепежными отверстиями цапфы. Другим объектом настоящего изобретения является контур охлаждения диска турбины в газотурбинном двигателе, содержащий канал удаления на выходе диска турбины, проходящий через упомянутые отверстия, описанные выше. Изобретение позволяет пропускание вентиляционного воздуха между входом и выходом цапфы. 2 н. и 8 з.п. ф-лы, 6 ил.
Наверх