Способ определения технического состояния контактного уплотнения гидромашины

Изобретение относится к гидромашиностроению и может быть использовано при оценке технического состояния контактных уплотнений в условиях эксплуатации. Способ определения технического состояния контактного уплотнения гидромашины включает определение допустимого диапазона изменения диагностического параметра, измерение фактического значения последнего, сравнение его со значениями из допустимого диапазона и отключение гидромашины при отклонении фактического значения диагностического параметра за пределы допустимого диапазона. В качестве диагностического параметра используют разность температур жидкости на входе и выходе из уплотнения. При измерении разности температур устанавливают режим работы гидромашины с номинальным давлением, либо приводят измеренное значение разности температур к номинальному давлению. Изобретение направлено на повышение точности контроля утечки через уплотнение за счет более точного определения технического состояния контактного уплотнения гидромашины. 1 ил.

 

Изобретение относится к гидромашиностроению и может быть использовано при оценке технического состояния контактных уплотнений.

Известен способ определения технического состояния контактного уплотнения гидромашины по разности температур жидкости на входе и выходе из уплотнения (SU 1368493 A1, 23.01.1988).

Известный способ обладает недостаточной точностью, обусловленной тем, что измеряемый перепад температур зависит также от изменяющегося во времени давления перекачиваемой жидкости (режим работы гидромашины может отличаться от номинального и изменяться во времени в зависимости от нагрузки).

Задачей заявляемого изобретения является повышение точности контроля утечки через уплотнение за счет более точного определения технического состояния контактного уплотнения гидромашины.

Решение указанной задачи достигается тем, что, согласно известному способу определения технического состояния контактного уплотнения гидромашины по разности температур жидкости на входе и выходе из уплотнения, включающему определение допустимого диапазона изменения диагностического параметра, измерение фактического значения последнего, сравнение его со значениями из допустимого диапазона и отключение гидромашины при отклонении фактического значения диагностического параметра за пределы допустимого диапазона, при этом в качестве диагностического параметра используют разность температур жидкости на входе и выходе из уплотнения, дополнительно при каждом измерении устанавливают режим работы гидромашины с одним и тем же (номинальным) давлением гидромашины, либо приводят значение разности температур к номинальному давлению. Установка режима с номинальным давлением осуществляется с помощью запорно-регулирующей арматуры (задвижки или дросселя).

Отличительной чертой изобретения является установление при каждом регулировании работы гидромашины режима с номинальным давлением или приведение значения разности температур к номинальному давлению.

На чертеже представлена схема устройства для определения технического состояния контактного уплотнения гидромашины по состоянию контактного уплотнения.

Устройство содержит сальник 1, нажимную крышку 2, датчики температуры 3 и 4, установленные соответственно в нажимной крышке 2 и перед сальником 1 со стороны, противоположной нажимной крышке 2, блок сравнения 5, пороговое устройство 6, контрольно-измерительную аппаратуру 7, блок задержки 8 и отключающее устройство 9, при этом блок сравнения 5 связан пороговым устройством 6, первый выход которого соединен с контрольно-измерительной аппаратурой 7, а второй через блок задержки с отключающим устройством 9. Контрольно-измерительная аппаратура 7 может содержать сигнализаторы 10 и 11 предельного состояния и индикатор 12 фактического состояния уплотнения.

Расположение датчика температуры 3 в нажимной крышке 2, имеющей большую площадь контакта с жидкостью, протекающей через уплотнение, позволяет более точно определять температуру жидкости на выходе из уплотнения.

Способ определения технического состояния контактного уплотнения гидромашины включает определение допустимого диапазона изменения диагностического параметра, измерение фактического значения последнего и сравнении его со значениями из допустимого диапазона. При отклонении фактического значения диагностического параметра за пределы допустимого диапазона производится отключение гидромашины. В качестве диагностического параметра используют разность температур жидкости на входе и выходе из уплотнения. Для повышения точности измерения диагностического параметра дополнительно устанавливают режим работы гидромашины с номинальным давлением, либо текущее значение разности температур приводят к номинальному давлению. Установка режима с номинальным давлением осуществляется с помощью задвижки или дросселя. Контроль давления перекачиваемой жидкости осуществляют по датчику давления (на чертеже не показан), значение которого может также использоваться для корректировки диагностического параметра.

Способ реализуется следующим образом.

Функциональную зависимость разности температур, определяемой с помощью датчиков 3 и 4 и блока сравнения 5 от степени затяжки сальника 1, определяют на основе предварительных научно-исследовательских работ или при пуско-наладочных испытаниях гидромашины при обеспечении во время испытаний величины утечки, регламентируемой техническими условиями на эксплуатацию гидромашины. В дальнейшем при эксплуатации техническое состояние уплотнения гидромашины определяют посредством регистрации температур, измеряемых датчиками 3 и 4, сигналы которых через блок сравнения 5 и пороговое устройство 6 выводят на контрольно-измерительную аппаратуру 7.

Разность температур на входе и выходе из уплотнения, определяемая в блоке сравнения 5, не зависит от температуры перекачиваемой жидкости и определяется степенью затяжки и износа сальника 1.

Допустимый диапазон разности температур задают настройкой порогового устройства 6 на соответствующие граничные значения.

В случае отклонения технического состояния уплотнения 1 за допустимые пределы пороговое устройство 6 вырабатывает сигнал на блок задержки 8 и на один из сигнализаторов 10 или 11. Блок задержки производит выдержку во времени, что исключает срабатывание отключающего устройства 9 при кратковременных колебаниях характеристик гидромашины, а также позволяет произвести необходимую регулировку уплотнения без отключения гидромашины по показаниям сигнализаторов 10 и 11 и индикатора 12.

Для повышения точности определения состояния уплотнения 1 устанавливают режим работы гидромашины с номинальным давлением, либо текущее значение разности температур приводят к номинальному давлению:

где ΔTном - разность температур жидкости на входе и выходе из уплотнения при номинальном давлении Pном гидромашины;

ΔTтек - разность температур жидкости на входе и выходе из уплотнения при рабочем давлении Pтек гидромашины.

О техническом состоянии уплотнения судят по разности температур, измеренной при номинальном давлении гидромашины, либо по текущему значению разности температур, приведенной к номинальному давлению.

Способ определения технического состояния контактного уплотнения гидромашины, включающий определение допустимого диапазона изменения диагностического параметра, измерение фактического значения последнего, сравнение его со значениями из допустимого диапазона и отключение гидромашины при отклонении фактического значения диагностического параметра за пределы допустимого диапазона, при этом в качестве диагностического параметра используют разность температур жидкости на входе и выходе из уплотнения, отличающийся тем, что при измерении разности температур устанавливают режим работы гидромашины с номинальным давлением либо приводят измеренное значение разности температур к номинальному давлению.



 

Похожие патенты:

Насос содержит трубчатый наружный кожух, перекачивающий узел, узел двигателя, аксиально вставленный в кожух, закрывающие средства 50 для изоляции камеры узла двигателя от жидкости, подаваемой перекачивающим узлом, и от жидкости, присутствующей снаружи кожуха.

Изобретение относится к газодобывающей, нефтедобывающей и другим областям промышленности. Система оснащена газодинамическими уплотнениями с двумя ступенями защиты, трубопроводной обвязкой системы газодинамических уплотнений для подвода буферного газа от станционной сети к контрольно-измерительной панели газодинамических уплотнений, включающей манометры, датчики перепада давления, счетчик газа с выводом показаний на главный щит управления, дроссельную шайбу для демпфирования, линию электрической обвязки контрольно-измерительной панели и трубопроводом отвода протечек буферного газа после первой ступени газодинамических уплотнений на свечу.

Изобретение относится к области компрессоростроения и насосостроения, а именно к торцевым уплотнениям. Техническим результатом изобретения является возможность изготовления уплотнения пакетного типа, которое устанавливается на компрессор полностью собранным и не требует доработки под фактические осевые размеры.

Изобретение относится к стояночным уплотнениям центробежных компрессоров. .

Изобретение относится к системам уплотнения поверхностей раздела между вращающимися и неподвижными элементами ротационных машин. .

Изобретение относится к машиностроению, в частности к конструкциям насосов. .

Изобретение относится к области компрессоростроения и может быть использовано в газовых центробежных компрессорных машинах, где возможны кратковременные прекращения подачи буферного газа на уплотнения.

Изобретение относится к компрессоростроению, в частности к центробежным компрессорам, может быть использовано в центробежных компрессорах высокого давления для повышения КПД путем уменьшения объемных потерь и затраченной работы сжатия центробежного компрессора.

Изобретение относится к устройству для динамической уплотнительной системы, предназначенной для погружного насоса (1), содержащему, по меньшей мере, один подводящий трубопровод (7), проходящий в направлении динамической уплотнительной системы, первое клапанное устройство (8), установленное в подводящем трубопроводе (7), и второе клапанное устройство (12), установленное таким образом, что в открытом положении оно открывает первый перепускной трубопровод (13), который проходит от точки на подводящем трубопроводе (7), расположенной между первым клапанным устройством (8) и насосом (1), и источником низкого давления, расположенным в области насоса (1), с тем, чтобы понизить давление барьерной текучей среды в уплотнительной системе.

Изобретение относится к области общего машиностроения и может быть использовано при проектировании компрессорной техники, а именно при разработке узлов бесконтактных лабиринтных уплотнений.

Изобретение относится к насосостроению, а именно к насосам для перекачивания агрессивных жидкостей. Насос выполнен одноступенчатым, консольного типа. Корпус проточной части включает проточную полость, объединенную со спиральным сборником. Корпус ходовой части выполнен охватывающим большую часть длины вала, снабжен картером и подшипниковыми опорами. Рабочее колесо выполнено в виде многозаходной крыльчатки. Основной диск колеса защищен гидрозатвором, содержащим импеллер в виде дополнительного автономного диска с лучевидными лопатками. Корпус проточной части снабжен кольцевой съемной уступообразной стенкой. Меньший из внешних радиусов указанной стенки выполнен не менее проходного радиуса колеса, радиус импеллера гидрозатвора меньше радиуса колеса. Основной диск снабжен кольцевым гребнем с внутренним радиусом меньше радиуса диска импеллера и образует со стенкой ступицы колеса кольцевой канал, сообщенный с импеллером гидрозатвора. Основной диск содержит не менее одного сквозного отверстия для сообщения на проток с объемом колеса. Покрывной диск наделен входной горловиной, внутренний заходный радиус которой выполнен не менее радиуса входного проема корпуса проточной части. Изобретение направлено на повышение защиты от протечек перекачиваемой жидкости, долговечности и надежности работы насоса, снижение загрязнения атмосферного воздуха ядовитыми испарениями. 2 н. и 20 з.п. ф-лы, 2 ил.

Изобретение относится к насосостроению, а именно к химическим горизонтальным центробежным электронасосным агрегатам. Способ производства агрегата заключается в том, что изготавливают сборный корпус насоса, ротор с валом и рабочим колесом, а также силовой узел. Корпус ходовой части насоса оснащают подшипниковыми опорами. Корпус проточной части насоса выполняют с проточной полостью, достаточной для размещения в ней рабочего колеса и спирального сборника. Рабочее колесо выполняют в виде многозаходной крыльчатки закрытого типа с основным и покрывным дисками. За основным диском располагают гидрозатвор в виде автономного диска с импеллером и обрамляющий его по контуру кольцевой съемный элемент. Радиус импеллера гидрозатвора меньше радиуса колеса. Основной диск колеса снабжают кольцевым гребнем. Гребень образует со стенкой ступицы колеса кольцевой канал, сообщенный с гидрозатвором и посредством сквозного отверстия в основном диске напроток с объемом колеса. Осуществляют сборку насоса и монтаж на опорной платформе насоса и привода с помощью силовых полумуфт. После сборки электронасосного агрегата выполняют испытания. Группа изобретений направлена на повышение ресурса, долговечности, надежности работы, защиты от протечек перекачиваемых сред и ядовитых испарений в атмосферу при пониженной трудо-, материало- и энергоемкости производства. 4 н. и 21 з.п. ф-лы, 7 ил.

Изобретение относится к насосостроению, а именно к электронасосным агрегатам, предназначенным для перекачивания химически агрессивных жидкостей. Агрегат содержит электродвигатель, центробежный насос и силовую муфту. Насос выполнен одноступенчатым, консольного типа, содержит корпус с корпусами ходовой и проточной частей. Корпус проточной части включает объединенный с напорным патрубком корпус сборника с кольцевым уступообразным гребнем, тыльную стенку из сопряженных кольцевого гребня корпуса сборника и уступообразного кольцевого элемента тыльной стенки, а также съемную заходную крышку с подводящим осевым патрубком. Корпус ходовой части снабжен картером и подшипниковыми опорами. Рабочее колесо открытого типа выполнено в виде многозаходной крыльчатки, включающей снабженный системой лопаток основной диск со ступицей и по контуру кольцевым гребнем. Гребень выполнен с внешним радиусом, конгруэнтным ответному внутреннему радиусу кольцевого уступообразного гребня. Диск наделен системой лучевидных лопаток, образующих импеллер. Насос имеет гидрозатвор в виде установленного на валу дополнительного автономного диска, снабженного импеллером с системой лучевидных лопаток. Радиус импеллера выполнен меньше радиуса рабочего колеса. Изобретение направлено на повышение защиты от протечек, долговечности и надежности работы агрегата, снижение загрязнения воздуха ядовитыми испарениями. 12 з.п. ф-лы, 5 ил.

Изобретение относится к агрегатам для перекачивания агрессивных жидкостей. Агрегат содержит электродвигатель, центробежный насос и муфту. Корпус проточной части включает проточную полость, объединенную со спиральным сборником. Корпус ходовой части выполнен охватывающим большую часть длины вала ротора, снабжен картером и подшипниковыми опорами. Вал ротора выполнен с консолями, одна из которых имеет длину, превышающую длину другой консоли не менее чем в два раза. Рабочее колесо выполнено в виде многозаходной крыльчатки с основным и покрывным дисками. Основной диск защищен гидрозатвором, содержащим импеллер в виде дополнительного автономного диска с лучевидными лопатками. Корпус проточной части снабжен кольцевой съемной уступообразной стенкой, геометрически согласованной с гидрозатвором. Меньший из внешних радиусов указанной стенки выполнен не менее проходного радиуса колеса, а радиус импеллера гидрозатвора выполнен меньше радиуса колеса. Основной диск снабжен кольцевым гребнем с внутренним радиусом меньше радиуса диска импеллера и образует со стенкой ступицы колеса кольцевой канал, сообщенный с импеллером гидрозатвора. Основной диск содержит не менее одного сквозного отверстия. Покрывной диск наделен входной горловиной, внутренний заходный радиус которой выполнен не менее радиуса входного проема корпуса проточной части. Изобретение направлено на повышение защиты от протечек, долговечности, надежности работы агрегата, снижение загрязнения воздуха ядовитыми испарениями. 2 н. и 23 з.п. ф-лы, 5 ил.

Изобретение относится к насосостроению, а именно к химическим вертикальным центробежным электронасосным агрегатам. Агрегат включает привод - электродвигатель, переходник с силовой муфтой и центробежный полупогружной насос. Корпус насоса выполнен сборным и включает размещенный над опорной плитой корпус ходовой части, а также содержит прикрепленный к опорной плите снизу корпус подвески, сблокированный с корпусом проточной части. Вал установлен в подшипниковых опорах корпуса ходовой части и нижней консолью пропущен через корпус подвески с выходом в корпус проточной части, в котором жестко съемно соединен со ступицей колеса. Верхняя консоль вала ротора заведена в силовую муфту переходника. Рабочее колесо включает основной и покрывной диски с системой криволинейных лопаток. Средний градиент угла установки оси лопатки и идентичный градиент угловой конфигурации медиальной оси межлопаточного канала составляет на длине лопатки 0÷7,0 рад/м. Основной и покрывной диски рабочего колеса защищены гидрозатворами в виде импеллера. Колесо выполнено с уширенной ступицей с открытым сверху кольцевым каналом в теле ступицы. Группа изобретений направлена на защиту от протечек перекачиваемой среды и, как следствие, снижение загрязнения атмосферного воздуха ядовитыми испарениями, а также на повышение долговечности и надежности работы агрегата и эффективности перекачивания рабочих сред. 2 н. и 20 з.п. ф-лы, 4 ил.

Изобретение относится к насосостроению, а именно к химическим вертикальным центробежным насосам. Каждый репрезентативный насос из конструктивно-технологического модельного ряда содержит однотипную конструктивную систему. Каждый насос выполнен центробежным, полупогружным, снабжен опорной плитой. Корпус каждого насоса включает размещенный над опорной плитой корпус ходовой части и сблокированный с последним прикрепленный к опорной плите снизу корпус подвески. Насос выполнен с рабочим колесом закрытого или открытого типа. Лопатки и каналы выполнены постоянной или переменной кривизны со средним градиентом угла установки лопатки и идентичным градиентом угловой конфигурации канала, значения которых для колес составляют (0÷7,0) рад/м. Диски колеса закрытого и открытого типа защищены соответственно с внешней и тыльной стороны гидрозатворами в виде импеллеров. Радиусы лопаток импеллеров выполнены удерживающими напор перекачиваемой среды в штатном режиме работы насоса на расстоянии не менее, соответственно, 0,25 длины лопатки от точки прикорневого начала лопатки импеллера и 0,45R от оси колеса. Основной диск снабжен кольцевым гребнем, образующим со стенкой ступицы колеса открытый кольцевой канал. Изобретение направлено на повышение ресурса, долговечности, надежности работы химических насосов модельного ряда, защиту от протечек рабочих сред и ядовитых испарений. 2 н. и 23 з.п. ф-лы, 5 ил.

Изобретение относится к насосостроению, а именно к конструкциям химических горизонтальных центробежных насосов с рабочим колесом открытого типа, предназначенных для перекачивания химически агрессивных жидкостей. Предлагаемый насос выполнен одноступенчатым, консольного типа, содержит ходовую и проточную части. Корпус проточной части включает объединенный с напорным патрубком корпус сборника с кольцевым уступообразным гребнем, тыльную стенку, состоящую из сопряженных кольцевого гребня корпуса сборника и уступообразного кольцевого элемента тыльной стенки, а также съемную выполненную с подводящим осевым патрубком заходную крышку. Корпус ходовой части насоса снабжен картером и не менее чем двумя радиально-упорной и радиальной подшипниковыми опорами. Рабочее колесо открытого типа выполнено в виде многозаходной крыльчатки, включающей снабженный системой лопаток основной диск со ступицей и по контуру кольцевым гребнем. Гребень выполнен с внешним радиусом, конгруэнтным ответному внутреннему радиусу кольцевого уступообразного гребня в корпусе сборника. Основной диск наделен гидродинамической защитой в виде образующей импеллер системы лучевидных лопаток. Гидродинамическая защита усилена гидрозатвором с импеллером. Радиус импеллера выполнен меньше радиуса рабочего колеса. Кольцевой элемент тыльной стенки корпуса проточной части геометрически согласован внутренним радиусом уступа с радиусом гидрозатвора. Технический результат, достигаемый изобретением, состоит в повышении защиты от протечек химически агрессивной перекачиваемой жидкости и, как следствие, в снижении загрязнения атмосферного воздуха ядовитыми испарениями, а также в повышении долговечности и надежности работы насоса. 1 н. и 10 з.п. ф-лы, 2 ил.

Изобретение относится к насосостроению, а именно к вертикальным насосам для перекачивания химически агрессивных жидкостей. Насос выполнен центробежным полупогружным, содержит корпус, в котором установлен ротор с валом и рабочим колесом закрытого типа, и снабжен опорной плитой. Корпус насоса выполнен сборным и включает размещенный над опорной плитой корпус ходовой части с подшипниковыми опорами и прикрепленный к опорной плите снизу корпус подвески, сблокированный с корпусом проточной части. Рабочее колесо включает основной и покрывной диски с системой криволинейных лопаток. Средний градиент угла установки оси лопатки и идентичный градиент угловой конфигурации медиальной оси межлопаточного канала составляет на длине лопатки (0÷7,0) рад/м. Основной и покрывной диски колеса защищены с внешней стороны гидрозатворами, каждый в виде импеллера. Корпус проточной части снабжен уступообразной тыльной стенкой, меньший из внешних радиусов которой выполнен не менее проходного радиуса колеса. Внешний радиус ступицы колеса принимают из условия обеспечения конгруэнтности с внутренним радиусом проема в тыльной стенке с образованием щелевого уплотнения и с возможностью выполнения открытого сверху кольцевого канала в ступице. Изобретение направлено на повышение долговечности и надежности работы насоса, защиты от протечек перекачиваемой жидкости и снижение загрязнения атмосферного воздуха ядовитыми испарениями 13 з.п. ф-лы, 3 ил.

Изобретение относится к насосостроению. Агрегат включает привод в виде электродвигателя, переходник с силовой муфтой и центробежный полупогружной насос. Корпус насоса выполнен сборным и включает размещенный над опорной плитой корпус ходовой части, а также прикрепленный к опорной плите снизу корпус подвески, сблокированный с корпусом проточной части. Вал насоса установлен в подшипниковых опорах и нижней консолью пропущен через корпус подвески с выходом в корпус проточной части, в котором жестко съемно соединен со ступицей рабочего колеса. Верхняя консоль вала заведена в силовую муфту переходника. Рабочее колесо включает основной диск с системой криволинейных лопаток. Активный объем динамического заполнения совокупности межлопаточных каналов выполнен обеспечивающим возможность выброса на проток за один оборот колеса (5,0÷1500)×10-5 м3/об перекачиваемой среды. Основной диск колеса защищен гидрозатвором в виде импеллера. Корпус проточной части снабжен кольцевой уступообразной стенкой с меньшим из внешних радиусов стенки, превышающим радиус лопаток импеллера. Изобретение направлено на повышение долговечности и надежности работы агрегата и эффективности перекачивания рабочих сред, защиту от протечек перекачиваемой среды, снижение загрязнения атмосферного воздуха ядовитыми испарениями. 2 н. и 20 з.п. ф-лы, 4 ил.

Изобретение относится к насосостроению. Способ производства включает изготовление сборного корпуса насоса из соединяемых с опорной плитой корпуса ходовой части с подшипниковыми опорами, корпуса подвески и корпуса проточной части, изготовление вала ротора насоса, рабочего колеса, корпуса переходника и силового узла. Осуществляют сборку насоса, монтаж агрегата и производят испытания собранного агрегата. Корпусы проточной части и подвески разделяют кольцевой съемной уступообразной тыльной стенкой. Насос производят с рабочим колесом закрытого типа, лопатки которого выполняют с угловой закруткой. Активный объем динамического заполнения совокупности диффузорных межлопаточных каналов обеспечивает возможность выброса на проток (5,0÷1500)×10-5 м3/об перекачиваемой среды. Диски колеса защищают с внешней стороны гидрозатворами в виде импеллера с системой лучевидных лопаток. Радиус лопаток импеллеров выполняют достаточным для создания гидродинамического противодавления, удерживающего напор перекачиваемой среды в штатном режиме работы насоса на расстоянии не менее 0,25 длины лопатки от точки прикорневого начала лопатки. Группа изобретений направлена на повышение ресурса, долговечности, надежности работы агрегатов, защиту от протечек перекачиваемых химических сред и ядовитых испарений в атмосферу при пониженной трудо-, материало- и энергоемкости производства. 4 н. и 20 з.п. ф-лы, 6 ил.
Наверх