Способ переработки твердых органических субстратов


 


Владельцы патента RU 2505491:

Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) (RU)

Изобретение относится к методам переработки различных видов твердых субстратов с содержанием органического биоразлагаемого вещества не менее 20% от общей массы отходов. Изобретение может применяться в качестве самостоятельного технологического процесса или в составе комплексных технологических линий. Исходный субстрат помещают в метантенк с возможностью постепенного перемещения внутри перфорированной трубы через жидкостную анаэробную зону метантенка с последующей переработкой растворимого, тонко- и среднедисперсного органического вещества субстратов в газообразный энергоноситель и механически обезвоженную твердую фракцию, которую подвергают термохимической газификации с получением синтез-газа и твердого остатка. Жидкую фракцию после обработки в анаэробном биореакторе с прикрепленной микрофлорой возвращают в метантенк, а твердую фракцию эффлюента метантенка используют для приготовления удобрений. Механически обезвоженную твердую фракцию перед термохимической газификацией подсушивают с использованием продуктов сгорания синтез-газа. Технический результат - повышение интенсивности процесса метаногенеза, улучшение массогабаритных показателей установки, газификация невымываемой негидролизуемой части отходов и полезное использование органического вещества эффлюента, обогащенного азотом в подвижной форме. 1 з.п. ф-лы, 1 ил.

 

Предлагаемый способ относится к методам переработки различных видов твердых субстратов с содержанием органического биоразлагаемого вещества не менее 20% от общей массы отходов. Данный способ, в зависимости от вида и морфологического состава отходов, может применяться в качестве самостоятельного технологического процесса или в составе комплексных технологических линий.

Областью применения способа является любой тип промышленного, сельскохозяйственного и муниципального производства, связанного с переработкой органических субстратов и отвечающего следующим требованиям субстрата:

- исходные (отходы) не должны содержать металлические, минеральные и иные включения, не поддающиеся биологической и термохимической переработке (газификации);

- в исходных отходах должны отсутствовать крупноразмерные твердые включения (свыше 30-50 мм), не поддающиеся разложению и диспергированию в водной среде.

В случае необходимости, в составе технологических линий должны предусматриваться процессы предварительного дробления и сепарации.

Согласно предлагаемому изобретению могут перерабатываться в газообразные энергоносители (биогаз и синтез-газ), а также в удобрения следующие виды субстратов: пищевые, растительные отходы, твердые экскременты с подстилочным материалом, в том числе в смеси с бумагой, картоном, пластмассой, что в исходной смеси содержится не менее 20% органического вещества (предпочтительно не менее 45%).

Известны способы переработки твердых органосодержащих отходов в метантенке. Согласно способу по патенту России №2551536, кл. C02F 3/28. исходные отходы элеваторной установкой загружают последовательно в камеры метанового брожения, при этом невымываемая и нерастворимая части отходов остаются в элеваторе, затем выгружаются из рабочего пространства метантенка.

Поступившее в жидкую рабочую среду метантенка органическое вещество перерабатывается в биогаз (до 40-50%).

Недостатками способа аналога являются неудовлетворительные массогабаритные показатели системы «метантенк - элеваторная установка», что обусловлено низкой интенсивностью процессов перехода органического вещества из ковшей элеваторной установки в камеры брожения, громоздкостью установки и низкой концентрацией анаэробной биомассы в рабочем пространстве метентенка.

В известной степени указанные недостатки устранены в способе согласно патента Великобритании №2282337, кл. C02F 11/04.

В способе-прототипе исходные отходы загружаются в метантенк через гидрозатворное устройство, связанное с перфорированной трубой, размещенной в рабочем пространстве метантенка.

Перемещение отходов и переход вымываемой и растворимой части органических отходов в дисперсную фазу обеспечивается шнековым транспортером.

В верхней части перфорированной трубы, размещенной вне рабочего пространства метантенка, предусмотрено обезвоживание отходов посредством подпружиненного диска с отверстиями, перекрывающего выход из перфорированной трубы.

Способ-прототип реализуется следующим образом. Исходные органические отходы помещаются вовнутрь перфорированной трубы и перемещаются внутри метантенка в непрерывном контакте с рабочей средой, содержащей взвешенную анаэробную микрофлору. Органические вещества поступают в рабочую среду через перфорацию в растворенном, тонко- и среднедисперсном виде, обеспечивая тем самым необходимые условия метаногенеза по питанию субстратом. Образовавшиеся при этом биогаз, а также жидкая и сгущенная фракции эффлюента отводятся через соответствующие патрубки для последующего использования. Перед выгрузкой твердый остаток частично обезвоживается в верхней части перфорированной трубы вне метантенка.

Основным недостатком способа прототипа является сравнительно низкая интенсивность процесса метаногенеза из-за низкой концентрации анаэробной биомассы и, как следствие, неудовлетворительные массогабаритные показатели установки для реализации способа. Другим недостатком является отсутствие обезвреживания (переработки, компактирования) невымываемой негидролизуемой части отходов. Органическое вещество эффлюента, обогащенное азотом в подвижной форме, полезно не используется.

Задачей изобретения является устранение вышеуказанных недостатков, а также существенное расширение области применения методов газификации органических отходов.

В результате использования предлагаемого изобретения повышается интенсивность процессов гидролиза и метаногенеза, увеличивается удельный выход биогаза и уменьшается суммарный объем основного оборудования.

Технический результат достигается тем, что исходный субстрат помещают в метантенк с возможностью постепенного перемещения внутри перфорированной трубы через жидкостную анаэробную зону метантенка с последующей переработкой растворимого, тонко- и среднедисперсного органического вещества субстратов в газообразный энергоноситель и механически обезвоженную твердую фракцию, механически обезвоженную твердую фракцию подвергают термохимической газификации с получением синтез-газа и твердого остатка, жидкую фракцию после обработки в анаэробном биореакторе с прикрепленной микрофлорой возвращают в метантенк, а твердую фракцию эффлюента метантенка используют для приготовления удобрений, при этом механически обезвоженную твердую фракцию перед термохимической газификацией подсушивают с использованием продуктов сгорания синтез-газа.

Сущность предлагаемого изобретения поясняется фигурой, на которой представлена схема реализации способа.

Способ реализуется следующим образом. Исходные отходы через гидрозатвор 1 загружаются в перфорированную трубу 2, оснащенную транспортирующим механизмом, например шнеком 3, и размещенную в рабочем пространстве метантенка 4.

По мере перемещения (с возможностью реверсирования) отходов внутри перфорированной трубы 2 дисперсная среда (вода) проникает через перфорацию внутрь трубы и, в условиях механического воздействия на твердую фазу, вымывает и растворяет органическое вещество твердой фазы. Рабочая (жидкая) среда 5 метантенка 4 при этом обогащается органическим веществом в растворенном, тонко- и среднедисперсном виде (с размерами частиц не более 2-5 мм). Таким образом, создаются необходимые условия развития метаногенной анаэробной микрофлоры, а образующийся в процессе метаногенеза биогаз отводится по трубопроводу 6 накопитель 7 для последующего энерготехнологического использования. В силу отсутствия интенсивного перемешивания рабочей среды 5 в метантенке 4 происходит расслоение среды, с образованием осадочной части 8 и надосадочной части 9, причем надосадочная часть 9 занимает не менее 50% рабочей среды 5.

Для сокращения размеров надосадочной части 9 и соответствующего снижения объема метантенка 4 при сохранении количества вырабатываемого биогаза и увеличении содержания в нем целевого продукта - метана, из верхней части рабочей среды 5 метантенка 4 осуществляется непрерывный отбор дисперсной среды с последующей ее подачей в анаэробный биореактор с прикрепленной микрофлорой (например, биофильтр). При этом процесс очистки дисперсной среды осуществляется в интенсивном (проточном) режиме при рабочем объеме анаэробного биореактора 10, примерно в 2-5 раз меньшем объема надосадочной части 9. Применение прикрепленной микрофлоры позволяет снизить зависимость процесса метаногенерации от температурных условий (возможен температурный диапазон 20-30°С, в то время как соответствующий показатель для метантенка 4 составляет 33-57°С).

Очищенная и стабилизированная в анаэробном биореакторе 10 дисперсная среда подается в гидрозатвор 1 для первичного увлажнения отходов.

Биогаз поступает в накопитель 7. Отходы с пониженной концентрацией органического вещества поступают далее в секцию механического обезвоживания 11 перфорированной трубы 2, размещенную вне корпуса метантенка 4. Механическое обезвоживание может осуществляться методом прессования в сочетании с гравитационным методом. Так как отходы, подвергающиеся переработке согласно данному способу, в основном обладают высокой гигроскопичностью, то может быть достигнута относительная влажность 30-45%. Это создает возможность их последующей термохимической переработки в газогенераторе 12 с получением синтез-газа с калорийностью до 5-15 мДж/м3, в зависимости от состава отходов, и твердого остатка (золы). В случае необходимости часть синтез-газа может подаваться в скруббер 13 для его очистки с одновременным подогревом рециркулирующей дисперсной среды из биореактора 10. Твердую фракцию эффлюента из осадочной части 8 метантенка 5, содержащую до 4% азота, направляют на участок приготовления удобрений 14.

После очистки в скруббере 13 синтез-газ утилизируется в генераторе тепловой энергии 15 или энерготехнологического агрегата. Продукты сгорания, образовавшиеся при сжигании синтез газа, могут быть использованы для подсушивания механически обезвоженной твердой фракции в сушилке 16.

Биогаз может быть направлен на утилизацию в энерготехнологическом агрегате или когенерационной установке 17, при этом часть теплоносителя из генератора тепловой энергии и (или) когенерационной установки 17 может быть использована для стабилизации температурного режима в метантенке 4.

1. Способ переработки твердых органических субстратов, в соответствии с которым исходный субстрат помещают в метантенк с возможностью постепенного перемещения внутри перфорированной трубы через жидкостную анаэробную зону метантенка с последующей переработкой растворимого, тонко- и среднедисперсного органического вещества субстратов в газообразный энергоноситель и механически обезвоженную твердую фракцию, отличающийся тем, что механически обезвоженную твердую фракцию подвергают термохимической газификации с получением синтез-газа и твердого остатка, жидкую фракцию после обработки в анаэробном биореакторе с прикрепленной микрофлорой возвращают в метантенк, а твердую фракцию эффлюента метантенка используют для приготовления удобрений.

2. Способ по п.1, отличающийся тем, что механически обезвоженную твердую фракцию перед термохимической газификацией подсушивают с использованием продуктов сгорания синтез-газа.



 

Похожие патенты:

Изобретение может быть использовано в сельском хозяйстве в составе животноводческих и растениеводческих комплексов, жилищно-коммунальном хозяйстве (городских и поселковых сооружений биологической очистки хозяйственно-бытовых сточных вод), перерабатывающих производствах.

(57) Изобретение относится к области утилизации концентрированных органических субстратов. Источниками таких субстратов могут быть предприятия агропромышленного комплекса - животноводческие и птицеводческие комплексы (бесподстилочный навоз, помет), перерабатывающие предприятия.

Изобретение может быть использовано в животноводческих комплексах и индивидуальных и фермерских хозяйствах для переработки отходов органического, растительного и биологического происхождения в высокоэффективные органические удобрения, биогаз, тепловую и электрическую энергию.

Изобретение относится к способу очищения биогаза для извлечения метана, в котором компоненты, содержащиеся в биогазе, такие как диоксид углерода, соединения серы и аммиака, отделяются в ходе нескольких этапов процесса, и к соответствующей системе для осуществления способа.

Изобретение относится к области утилизации биологических азот- и углеродсодержащих отходов сельскохозяйственных предприятий путем анаэробного сбраживания с выработкой высококачественного удобрения.

Изобретение относится к биологической очистке фекально-бытовых стоков. .

Метантенк // 2462509
Изобретение относится к устройствам для двухступенчатого анаэробного сбраживания органических отходов и может быть использовано на животноводческих и птицеводческих фермах, сельских усадьбах и дачных участках.

Изобретение относится к анаэробной конверсии отходов сельского хозяйства с получением биогаза и генерацией из него электрической и тепловой энергии, а также с получением ценного органического удобрения.

Изобретение относится к методам переработки отходов, в частности к методам получения биогаза из органосодержащих отходов. .

Метантенк // 2456247
Изобретение относится к области природоохранной и энергогенерирующей техники и предназначено для переработки органических субстратов относительной влажностью 90-98%: бесподстилочного навоза, помета сельскохозяйственных животных, осадков и илов как отходов процессов механо-биологической очистки хозяйственно-бытовых и близких к ним по составу производственных сточных вод АПК.
Изобретение относится к биотехнологии. Предложен способ очистки фракции навозного стока и сточной воды ЖКХ с использованием метанового брожения, осуществляемого биоценозом анаэробных бактерий. Осуществляют кавитационную обработку жидкой фракции навоза или сточной воды. Отдельно приготавливают структурированную и биологически активную воду с последующим разбавлением ее в анаэробном биореакторе в 10-30 раз кавитационно обработанной жидкой фракцией навоза или сточной водой. Приготавливают раствор биологически активных веществ (БАВ). Заполняют биореактор раствором БАВ в объеме 0,1% от общего объема сбраживаемой среды. Вносят посевной материал в количестве 30% от объема сбраживаемой среды для осуществления метанового брожения, ведут метановое брожение в мезофильном режиме. Осуществляют сушку выработанного биогаза. Получают возвратную технологическую воду путем фильтрации сбраживаемой жидкости через первый биологический фильтр. Направляют первый биологический фильтр с осевшими твердыми частицами в шламосборник для освобождения от осадка. Затем направляют просочившуюся через первый биологический фильтр технологическую воду на рециркуляцию обратно в биореактор или на последующую фильтрацию через второй фильтр для получения физиологически полноценной питьевой воды. Изобретение позволяет усилить интенсивность процесса брожения, увеличить глубину брожения сбраживаемого субстрата с увеличением выхода биогаза с содержанием метана более 75%, ускорить формирование биоценоза анаэробных бактерий, уменьшить ХПК на 78% от исходной величины, получить оборотное водоснабжение с возможностью получения физиологически полноценной питьевой воды. 4 пр.

Изобретение относится к области биотехнологии, в частности к биоэнергетике. Анаэробный реактор содержит корпус с камерами гидролизного и метанового брожения, устройства загрузки и перемешивания субстрата в камерах, гидравлический затвор и колонну для обогащения биогаза, разделенную перегородками на сборник биогаза и секции, заполненные иммобилизирующей засыпкой. Корпус и колонна соединены двумя патрубками, один из которых соединен между выходом субстрата из корпуса реактора и верхней частью колонны. Другой подключен между выходом биогаза из корпуса реактора и нижней частью колонны. В реакторе установлен диафрагменный электролизер. Выход с газом водородом подключен к нижней части колонны обогащения. Выход с аналитом - к входу корпуса в гидролизную камеру. Выход электролизера с католитом соединен с камерами метанового брожения. К выходу сборника биогаза в колонне подключен гидравлический затвор. В качестве засыпки в секциях колонны обогащения газа использован волокнистый графитовый материал с большой развитой поверхностью, между гидравлическим затвором на выходе биогаза из колонны обогащения и патрубком в нижней части колонны установлен насос для повторной продувки через нее биогаза. Изобретение обеспечивает повышение эффективности и качества вырабатываемого биогаза и удобство эксплуатации. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области утилизации органических субстратов, не представляющих ценности в качестве исходного сырья для приготовления товарной продукции, в первую очередь органических удобрений. Для осуществления способа исходный субстрат подвергают последовательно анаэробной обработке с получением биогаза, аэробной обработке с получением легкоосаждающегося биошлама и кислородосодержащего газа, разделению на фракции с получением жидкой и твердой фракций с последующей термической утилизацией твердой фракции с получением зольного остатка и газообразных продуктов. Тепловую энергию биошлама используют для регулирования температурного режима анаэробной обработки после его контакта с газообразными продуктами термической утилизации. Термическую утилизацию проводят в режиме газификации с использованием кислородосодержащего газа и с получением газообразных продуктов в виде генераторного газа. Температурный режим анаэробной обработки и влажности твердой фракции регулируют тепловой энергией жидкой фракции биошлама. Жидкую фракцию биошлама затем последовательно подвергают дополнительной анаэробной обработке и стриппингу. Полученную аммиачную воду используют для приготовления органических удобрений. Способ обеспечивает повышение энергетической эффективности процесса утилизации, снижение стоимости и улучшение эксплуатационных показателей основного анаэробного процесса. 2 з.п. ф-лы, 1 ил.

Изобретение может быть использовано для биологической обработки сточных вод. Реактор (1) с восходящим потоком содержит бак (2) реактора, трубопроводы (31-34), распределитель (3) сточных вод, флотационные разделители (10, 20) для разделения воды (7) реактора, биомассы (8) и биогаза (9), сборное устройство (4) и газоотделитель (6) для разделения биомассы (8) и биогаза (90). Первый флотационный разделитель (10) содержит один или несколько соединенных со сборным устройством (4) колпаков (11) для газа с выпускными отверстиями, причем площадь поперечного сечения выпускных отверстий (13) регулируют посредством подвижных экранов (14). Реактор содержит исполнительные элементы для приведения в действие подвижных экранов (14, 24), причем исполнительные элементы предпочтительно оснащены гидроприводом. Кроме того, реактор (1) с восходящим потоком имеет электронное управление. В выпускных отверстиях, по меньшей мере, одна краевая область (13) ограничена гибким оболочковым экраном, соединенным с нагнетательным устройством для текучей среды, предпочтительно для воды. Реактор обеспечивает биологическую обработку сточных вод с повышенной эффективностью, заключающейся в увеличении степени преобразования имеющихся в сточных водах органических загрязнений. 18 з.п. ф-лы, 5 ил.
Изобретение относится к области биотехнологии и охраны окружающей среды и может быть использовано в производстве биогаза при сверхнормативном закисании сбраживаемых масс. Способ производства биогаза в периодическом или непрерывном режиме включает предварительную подготовку субстрата, анаэробное сбраживание в мезофильном режиме, непрерывный отвод биогаза из биогазовой установки и опорожнение метантенка от сброженной массы. При предварительной подготовке субстрата вводят буферный агент, содержащий преимущественно карбонат кальция. Изобретение позволяет повысить выход биогаза, нивелировать эффект сверхнормативного закисания сбраживаемых масс, исключить задержку и полную остановку процесса расщепления органических веществ, а также исключить торможение процесса метанового брожения. 2 н. и 10 з.п. ф-лы, 2 табл., 10 пр.

Изобретение относится к химической промышленности и может быть использовано для переработки органического сырья. Установка включает систему подачи исходного сырья (1), анаэробный биореактор (2), нагреватель биомассы, систему отвода биогаза (3), систему удаления биомассы (7), систему управления технологическим процессом (6). В систему подачи исходного сырья (1) включен механизм, состоящий из приемной воронки, механизма измельчения, механизма перемешивания, системы подогрева. Система подогрева включает рабочие лопатки, установленные на двух полых валах, образующих две батареи с разным направлением вращения. Нагреватель биомассы выполнен в полых валах двух батарей посредством продольных сквозных отверстий с возможностью пропускания через них теплоносителя. Установка содержит устройство для очистки газа, для выработки электрической и тепловой энергии, а также сепаратор (8) для разделения отработанной биомассы на твердую и жидкую фракции. Изобретение позволяет повысить производительность процесса, обеспечивает возможность функционирования в условиях пониженной температуры. 1 з.п. ф-лы, 4 ил. Референт Попова Е.О.

Изобретение относится к переработке органических отходов с использованием биотехнологических процессов и получению биогаза. Способ получения биогаза из экскрементов животных включает предварительную обработку органического субстрата путем доведения его до влажности 90% с последующим измельчением субстрата до размера частиц от 0,5 до 0,7 см. Вводят органический катализатор и осуществляют сбраживание в анаэробной среде и сбор биогаза. В качестве органического катализатора используют отходы молочного производства в объеме от 5% до 10% от массы органического субстрата. Сбраживание в анаэробной среде осуществляют при температуре от 17°С до 22°С. Изобретение позволяет интенсифицировать процесс метанового брожения навоза с увеличением выхода биогаза и повышенным содержанием метана в нем. 1 з. п. ф-лы, 1 ил.

Группа изобретений может быть использована для переработки осадков, образующихся при очистке городских и промышленных сточных вод, с получением негниющего осадка и электрической энергии. Способ включает получение сброженного осадка с использованием основного сбраживания, получение первого водного отходящего потока и частично обезвоженного, сброженного осадка, с помощью первого разделения жидких и твердых компонентов сброженного осадка, получение частично обезвоженного и гидролизованного сброженного осадка с использованием термогидролиза частично обезвоженного сброженного осадка, сбраживание частично обезвоженного и гидролизованного осадка. Способ включает также извлечение биогаза, образовавшегося при брожении и основном брожении, получение энергии из биогаза, включающее получение энергии, необходимой для осуществления термогидролиза, и получение дополнительной энергии, причем весь биогаз используется для получения электроэнергии. Установка включает устройство для проведения термогидролиза (16), устройства для первого (10) и второго (11) сбраживания, для фазового разделения жидких и твердых компонентов (17, 28), а также средства извлечения биогаза (20) и устройство получения электроэнергии (21). Изобретения обеспечивают надежную и простую переработку большого количества осадков, плохо поддающихся биологическому разложению, и практически полное их превращение в биогаз и далее в электроэнергию. 2 н. и 11 з.п. ф-лы, 4 ил.

Изобретение относится к способам переработки органических отходов с использованием биотехнологических процессов с получением при этом биогаза. Способ получения биогаза включает предварительную обработку органического субстрата путем доведения до влажности 92% с последующим измельчением, введение катализатора, сбраживание в анаэробной среде, сбор биогаза. В качестве катализатора используют четырехкомпонентную смесь, содержащую четыре класса ферментов протеазу, амилазу, липазу и целлюлазу в их массовом соотношении 3,2:0,3:15,6:1,0, катализатор вводят в объеме 0,01 г/кг от массы сухого органического субстрата, а сбраживание в анаэробной среде осуществляют при температуре от 17°C до 20°C. Использование заявляемого способа получения биогаза позволит получить хороший выход метана при сравнительно небольших концентрациях ферментной смеси. Техническим результатом настоящего изобретения является интенсификация процесса метанового брожения навоза с увеличением выхода биогаза и повышенным содержанием метана в нем. 1 ил., 1 табл.

Изобретение относится к биоэнергетике и может быть использовано качестве универсального метантенка для переработки навоза животных, птиц, бытовых и сельскохозяйственных отходов в метан и в органическое удобрение. Реактор анаэробной переработки биомассы содержит корпус 1 в виде герметично закрытой емкости, включающей четыре секции: подготовительную (кислую) 2, нейтрального 3, щелочного 4 и метанового брожения 5, разделенные вертикальными перегородками 6, 7, 8. Реактор дополнительно оснащен диафрагменным электролизером 12, один выход 18 которого с раствором аналита подключен к секции кислого брожения 2, а другой его выход 21 с раствором католита соединен с секциями нейтрального 3 и щелочного брожения 4. В корпусе 1 реактора по его длине выполнены дополнительные узлы 11 крепления вертикальных перегородок 6, 7, 8, выполненных с возможностью перестановки с изменением объемов секций брожения. Изобретение позволяет увеличить эффективность реактора анаэробной переработки биомассы. 5 з.п. ф-лы, 1 ил.
Наверх