Способ нанесения медного покрытия


 


Владельцы патента RU 2505621:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU)

Изобретение относится к получению медных покрытий и может быть использовано для коррозионной защиты, декоративной обработки различных материалов, а также в электронной технике. Способ включает очистку и обезжиривание поверхности изделия, нанесение на нее механическим способом медьсодержащей пасты и термическую обработку путем ее нагревания в углеводороде. В способе на поверхность изделия наносят пасту, содержащую оксалат меди и 0,1-6,0 мас.% безводного тетрабората натрия и смешанную с предварительно нагретым до 90-95°C церезином, при этом термическую обработку осуществляют при 340°C и атмосферном давлении, а полученное покрытие очищают от остатков церезина. Изобретение позволяет получить на поверхности изделий из стекла, керамики и металлов прочное медное покрытие высокой степени чистоты и однородности. 1 пр.

 

Изобретение относится к способам нанесения медного покрытия и может использоваться для коррозионной защиты, декоративной обработки и в электронной технике. Медное покрытие необходимо при изготовлении качественных электрических контактов, для создания металлизированных участков на диэлектрических подложках для производства интегральных схем.

Известен способ («Способ получения осажденных на носителе наночастиц металла или полупроводника», патент РФ №2380195 C1, МПК 51 B22F 9/14, B82B 3/00, C23C 4/00, опубл. 27.01.2010 г.) получения осажденных на носителе наночастиц металла, включающий расплавление и диспергирование расплавленного материала, подачу полученных жидких капель этого материала в плазму, охлаждение жидких наночастиц, формируемых в плазме до их отвердевания, и осаждение полученных твердых частиц на носитель при определенных параметрах плазмы.

Недостатками способа являются: использование сложного и дорогостоящего оборудования для нанесения наночастиц металла и низкая скорость формирования покрытия.

Наиболее близким по технической сущности является способ («Способ нанесения медного покрытия», патент РФ №2347850 C2, МПК51 C23C 20/02, C23C 24/08, опубл. 27.02.2009 г.) нанесения медного покрытия, включающий очищение, обезжиривание поверхности материала, нанесения на него механическим способом медьсодержащего материала и термическую обработку материала путем его нагревания в атмосфере продуктов сгорания углеводородов, причем на поверхность наносят медьсодержащий материал в виде мелкодисперсного порошка боратов меди, термическую обработку осуществляют при температуре 500-600°C.

Недостатком способа является использование высокой температуры, что при нанесении покрытия приводит к выходу из строя полупроводниковых приборов, кроме того образующийся B2O3 необходимо после нанесения покрытий удалять, так как он может создавать помехи для монтажа электронных устройств.

Задачей данного изобретения является уменьшение энергозатрат за счет снижения температуры при нанесении медных покрытий с 500-600°C до 340°C, в условиях атмосферного давления с сохранением качества и адгезии покрытий, уменьшение себестоимости способа за счет использования более дешевого медьсодержащего оксалата вместо дорогих трудно синтезируемых боратов меди.

Поставленная задача достигается тем, что проводят очищение и обезжиривание поверхности материала, нанесение механическим способом медьсодержащей пасты и термическую обработку пасты путем ее нагревания в углеводороде, в состав пасты входит оксалат меди и 0,1-6,0 мас.% безводного тетрабората натрия, а термическую обработку осуществляют ниже температуры разложения углеводородов при 340°C. Согласно заявляемому способу получают трудно растворимый в воде оксалат меди (II), отделяют от воды и сушат при комнатной температуре. Порошкообразный оксалат смешивают с безводным тетраборатом натрия и с предварительно нагретым до 90-95°C церезином, пасту наносят на поверхность изделия и нагревают до 340°C при атмосферном давлении. При нагревании оксалат меди разлагается и образует химически активную медь, которую можно осадить на поверхность полимеров, стекла, керамики и металлов. Полученные медные покрытия очищают от церезина и промывают растворителем.

Пример

В предлагаемом способе нанесение медного покрытия осуществляют: в термостойкий стакан (реактор) емкостью 1 л загружают 30 г церезина, нагревают до 90°C, после чего добавляют 30 г оксалата меди и 1 г, безводного тетрабората натрия. Полученную пасту наносят на поверхность изделия и нагревают до 340°C. Для достижения равномерности нагрева пасты оксалата в церезине использовали сушильный шкаф SNOL 67/350, нагрев вели со скоростью 5°C в минуту, температуру контролировали с помощью термопары (хромель-алюмель).

Согласно предварительно записанным термограммам разложение оксалата меди происходит в интервале температур 290-305°C. После нагревания до температуры разложения, нагрев прекращали и охлаждали до 130°C. Стакан извлекали из сушильного шкафа, жидкий церезин отделяли путем декантации, затем полученное покрытие отмывали от остатков церезина методом декантации смесью безводных растворителей (бензин, толуол). Отмытое покрытие подвергали исследованию: фазовый состав определяли с помощью дифрактометра «Дифрей-401» и состояние поверхности пленки с использованием электронной микроскопии «Jeol-840». Согласно полученным результатам установлено наличие в покрытии только фазы меди, толщину пленки измеряли с помощью профилометра. Поверхность покрытия блестящая, толщина не превышает 6 мкм.

Способ нанесения медного покрытия, включающий очищение и обезжиривание поверхности изделия, нанесение механическим способом медьсодержащей пасты и термическую обработку путем ее нагревания в углеводороде, отличающийся тем, что на поверхность изделия наносят пасту, содержащую оксалат меди и 0,1-6,0 мас.% безводного тетрабората натрия и смешанную с предварительно нагретым до 90-95°C церезином, при этом термическую обработку осуществляют при температуре 340°C и атмосферном давлении, а полученное покрытие очищают от остатков церезина.



 

Похожие патенты:

Изобретение относится к области машиностроения, а именно к нанесению детонационных покрытий на поверхности деталей машин. Технический результат - повышение равномерности толщины получаемого покрытия.

Изобретение относится к области машиностроения и металлургии, в частности к вакуумной установке для получения наноструктурированных покрытий из материала с эффектом памяти формы на поверхности детали.

Изобретение относится к порошковой металлургии, в частности к нанесению покрытий из порошковых материалов посредством послойного лазерного спекания. Может использоваться для упрочнения изношенных рабочих поверхностей стальных изделий, например участков вала, расположенных в зонах подшипников.
Изобретение относится к получению фторопластового покрытия на металлических поверхностях. .

Изобретение относится к композиционным материалам на основе тугоплавких металлов и может быть использовано в электролизерах при получении алюминия. .

Изобретение относится к технологии нанесения металлополимерных покрытий на поверхности цилиндрических изделий с помощью энергии взрыва и может быть использовано при создании защитных и износостойких покрытий деталей машин и технологического оборудования для химической, нефтехимической, атомной и машиностроительной промышленности.

Изобретение относится к способу холодного газового напыления частиц разной твердости и/или вязкости и к устройству (11) для его реализации. .

Изобретение относится к комбинированным лазерно-плазменно-ультразвуковым технологиям, направленным на преобразование структуры приповерхностного обрабатываемого слоя металлов и их сплавов, а именно к способу получения износостойкой поверхности металлов и их сплавов (варианты).

Изобретение относится к области нанесения покрытий, а именно к восстановлению защитной способности поврежденных высокотемпературных кремнийсодержащих покрытий на элементах конструкций из жаропрочных конструкционных материалов.

Изобретение относится к деталям машин для пар скольжения, в частности к цилиндрам двигателя, гильзам цилиндра, поршневым кольцам. .
Изобретение относится к способам нанесения медного покрытия и может быть использовано в электронной технике. .
Изобретение относится к металлу для электроники и изделиям из него. .

Изобретение относится к изготовлению полупрозрачных металлических родиевых пленок, которые могут быть использованы в микроэлектронике для повышения износоустойчивости радиоэлектронных изделий, а также для удовлетворения жизненных потребностей человека, в частности для получения устойчивого блеска ювелирных изделий.

Изобретение относится к способам получения пленок металлов, например, в виде покрытий, и может быть использован в металлургии и машиностроении при изготовлении материалов с необычными физико-химическими, электрофизическими, фотофизическими, магнитными или каталитическими свойствами. Согласно способу порошкообразный хлорид металла размещают на подложке в реакционном пространстве и пропускают через пространство смесь водяного пара и оксида углерода (II), взятых в соотношении водяной пар:оксид углерода(II)=0,9÷1:1, со скоростью 5-10 мл/мин. При этом реакционное пространство нагревают со скоростью 15-20°С/мин до температуры плавления соответствующей соли. Технический результат - упрощение технологии. 2 ил., 2 пр.

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектронике, альтернативной энергетике и т.д. Наноструктурное покрытие из наногранулированного композита «металл-керамика», преимущественно (CO40Fe40B20)x(CaF2)100-x, получено методом ионно-лучевого напыления на подложки и представляет собой наноструктурный материал, состоящий из металлических гранул со средним диаметром преимущественно 2-6 нм, расположенных в объеме керамической матрицы. Концентрация металлической фазы составляет 20-60 ат.%, предпочтительно 30-56 ат.%. Изобретение обеспечивает повышенную износостойкость, высокую стабильность параметров с одновременным снижением себестоимости защитного покрытия. 1 ил.

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектроники, альтернативной энергетике и т.д. Способ повышения износостойкости наноструктурного покрытия из гранулированного композита «металл-керамика», преимущественно (CO40Fe40B20)x(CaF2)100-x, получаемого методом ионно-лучевого напыления на подложки и представляющего собой наноструктурный материал, состоящий из металлических гранул со средним диаметром преимущественно 2-6 нм, расположенных в объеме керамической матрицы, характеризуется тем, что концентрацию металлической фазы при напылении выбирают в пределах 20-60 ат.%, предпочтительно 30-56 ат.%. Изобретение обеспечивает повышенную износостойкость, высокую стабильность параметров с одновременным снижением себестоимости. 1 ил.

Настоящее изобретение относится области металлургии, а именно к способу формирования тонких, однородных покрытий на кромках бритвенных лезвий. Способ формирования кромки бритвенного лезвия содержит стадию, на которой изостатически прессуют (IP), по меньшей мере, одну кромку лезвия, покрытую полимерным материалом. Изостатическое прессование может быть горячим изостатическим прессованием (HIP) или холодным изостатическим прессованием (CIP). Изостатически прессованное покрытие имеет толщину в диапазоне от приблизительно 10 нм до приблизительно 100 нм, имеет, по существу, однородную морфологию поверхности, и имеет, по существу, нулевую пористость. 3 н. и 18 з.п. ф-лы, 13 ил.

Изобретение относится к области машиностроения и может быть использовано при формировании износостойкого покрытия на поверхностях деталей с подачей ремонтно-восстановительных составов на поверхность и последующим пластическим деформированием с помощью безабразивной ультразвуковой финишной обработки. Осуществляют нанесение слоя ревитализанта на поверхность металлической детали и безабразивную ультразвуковую финишную обработку с поперечной подачей рабочей головки относительно поверхности обрабатываемой детали 0,16 - 0,08 мм/об до получения шероховатости поверхности Ra = 0,3 - 0,125 мкм. Изобретение обеспечивает не только снижение шероховатости поверхности за счет смятия вершин микронеровностей до Ra=0,125 мкм, но и дополнительно упрочняет поверхностный слой детали на глубину до 100 мкм, с образованием поверхностного слоя. 3 пр., 1 табл.
Наверх