Автоматическое клапанное устройство



Автоматическое клапанное устройство
Автоматическое клапанное устройство

 


Владельцы патента RU 2506410:

Закрытое акционерное общество "Газтехнология" (RU)

Изобретение относится к нефтяной и газовой промышленности и предназначено для повышения надежной эксплуатации фонтанирующих скважин. Устройство содержит цилиндрический корпус с приемной и отводящей камерами с осевым каналом между ними, ступенчатую втулку с дросселем в осевом канале, узел очистки осевого канала дросселя в виде стержня, связанного с подпружиненной гильзой. При этом устройство снабжено седлом в осевом канале корпуса и стаканом с продольными пазами на конце, установленным между корпусом и ступенчатой втулкой, с опорой на седло, с образованием гидравлического канала с корпусом, связанного отверстиями в теле ступенчатой втулки, с приемной камерой. Причем гильза снабжена кольцевым поршнем с торцовым клапаном, установленным с возможностью образования подвижного соединения со стаканом и перекрытия продольных пазов ступенчатой втулки в исходном положении. Гильза снабжена радиальными отверстиями и соединена с держателем стержня, снабженного перепускными отверстиями, соединяющими осевой канал ступенчатой втулки с осевым каналом гильзы, а пружина кольцевого поршня установлена в камере между ступенчатой втулкой и стаканом. Технический результат заключается в упрощении конструкции и монтажной технологической схемы. 2 ил.

 

Изобретение относится к нефтяной и газовой промышленности и предназначено для повышения надежности эксплуатации фонтанирующих скважин.

Известна конструкция прямоточно-регулируемого штуцера (см. «Справочное пособие по газлифтному способу эксплуатации скважины» Ю.В. Зайцев, Р.А. Максутов, О.В. Чурбанов и др. - М.: «Недра», 1984 г., с.115-116).

Устройство состоит из корпуса, в осевом канале которого размещена насадка, наконечник на днище полого поршня, который связан через шаровое зацепление с гайкой на внешней стороне корпуса.

Площадь кольцевого сечения насадки изменяется за счет ввода в ее осевой канал наконечник.

Недостатки конструкции:

- несмотря на возможность менять дебит скважин, за счет возвратно-поступательного перемещения наконечника, очистку дроссельного канала в автоматическом режиме осуществить невозможно.

Известна конструкция клапанного устройства для управления работой газонефтяной скважины (см. а.с. №1. 624.130, М. кл E21B 34/16, опубл. 30.01.91, бюлл. №4). Устройство содержит цилиндрический корпус, с приемной и отводящей камерами, соединяющими между собой через осевой канал дросселя, ступень для его очистки с приводом.

Устройство снабжено стаканом, установленным в верхней части корпуса. Посадочное седло размещено в нижней части корпуса, с подпружиненным поршнем, снабженным кольцевым выступом и торцовым клапаном, опирающимся на седло.

Между торцовой поверхностью стакана и посадочным седлом образована кольцевая полость, для размещения кольцевого выступа поршня, установленного с возможностью поперечного торцового взаимодействия с торцовой поверхностью стакана и посадочным седлом. Ступень очистки осевого канала дросселя, приемная камера расположены в осевом канале подпружиненного поршня.

Привод выполнен в виде подпружиненного толкателя, установленного в корпусе, с возможностью взаимодействия с подпружиненным поршнем. Кольцевая полость может гидравлически соединятся с отводящей камерой.

Корпус снабжен подводящим и отводящим каналами с подводящим и отводящим патрубками для включения в состав отводящей трубы промыслового коллектора.

Работа устройства

Устройство устанавливается на отводящей струне скважины и настраивается на расчетный, рабочий перепад давления. Пластовая жидкость, через подводящий канал поступает в кольцевую полость и через радиальные цели в теле стакана перетекает в осевой канал дросселя и далее через отводящую камеру и отводящий канал выводится в отводящую магистраль.

При забивании осевого канала дросселя мех. примесями, или газогидратами, изменяется перепад давления между приемной и отводящей камерами, в сторону роста, с воздействием на подпружиненный поршень. Последний, преодолевая усилие пружины, толкателем отрывается от седла, с вводом стержня в осевой канал дросселя, с его очисткой.

При этом происходит отрыв торцового клапана от седла с подачей пластовой жидкости в отводящую камеру минуя канал дросселя. Поршень отбрасывается резко вверх, с разрушением слоя отложений на поверхности радиальных целей. Расход пластовой жидкости в этом положении превышает расход через осевой канал дросселя, что приводит в снижению перепада давления между приемной и отводящей магистралью. Усилием сжатой пружины толкатель возвращается в исходное положение. Поршень также садится торцовым клапаном на седло, а стержень выводится из осевого канала дросселя.

Недостатки конструкции:

- необходимость проведения монтажных работ на устье скважины, с применением газосварочного оборудования, особенно на старом фонде;

- повышенные значения гидравлических потерь, негативное воздействие потока пластового флюида, содержащего абразивные частицы на элементы и узлы конструкции, поскольку поток взаимодействует с ними при резком изменении направления движения.

Известно клапанное устройство (см. а.с. №1.440.574. М. кл. E21B 34/06, опубл. 30.11.88 г., бюлл. №44) принятое авторами за прототип.

Устройство состоит из цилиндрического корпуса, с приемной и отводящей камерами, с осевым каналом их соединяющим. В этом канале установлена ступенчатая втулка, в которой выполнены радиальные отверстиями, с насадками. Осесимметрично установлен дроссель, в осевой канал которого введен стержень, с его приводом в виде подпружиненной гильзы с фиксатором. Снаружи на ней установлена ступенчатая втулка, с образованием камеры, сообщающейся с отводящей камерой. Втулка снабжена подпружиненным золотником с фиксатором, снабженным пружинами.

При забивании штуцера мех примесями или газогидратами, изменяется перепад давления в сторону роста, которое воспринимается гильзой, с ее перемещением в сторону отводящей камеры и воздействием на золотник.

При этом золотник сжимает пружину и отжимает фиксатор, что приводит к образованию гидравлической связи приемной камеры через отверстия в теле ступенчатой втулки с осевым каналом и отводящей камерой.

При перемещении гильза вводит в осевой канал дросселя стержень, для удаления мех примесей. При выравнивании перепада давления между приемной и отводящей камерами, усилием сжатой пружины стержень возвращается в исходное положение, с продолжением процесса добычи через осевой канал дросселя.

Недостатки:

- сложность конструкции и осуществление настройки устройства на заданный режим работы;

- сложность монтажа устройства в осевом канале цилиндрического корпуса, связанного с необходимостью завинчивания в резьбу ступенчатой втулки.

Технический результат, который может быть получен при реализации предлагаемого изобретения, заключается в следующем:

- упрощение конструкции, при снижении гидравлических сопротивлений;

- возможность монтажа устройства на скважине без проведения сварочных работ и изменения монтажной технологической схемы.

Технический результат достигается тем, что автоматическое клапанное устройство состоит из цилиндрического корпуса, с приемной и отводящей камерами, с осевым каналом между ними, ступенчатую втулку с дросселем в осевом канале, узел очистки осевого канала дросселя, в виде стержня, связанного с подпружиненной гильзой.

Устройство снабжено седлом в осевом канале корпуса, стаканом с продольными пазами на конце, установленным между корпусом и ступенчатой втулкой, с опорой на седло, с образованием гидравлического канала с корпусом, приемной камерой. Гильза снабжена кольцевым поршнем, с торцовым клапаном, опирающимся на седло, установленным с возможностью образования подвижного соединения со стаканом и перекрытия продольных пазов в теле стакана, в исходном положении. Гильза снабжена радиальными отверстиями и соединена с держателем стержня, снабженного перепускными отверстиями, соединяющими осевой канал ступенчатой втулки, с осевым каналом гильзы. Пружина кольцевого поршня установлена в камере между ступенчатой втулкой и стаканом.

Конструкция клапанного устройства поясняется чертежами, где:

- на фиг.1 - конструкция устройства в исходном положении деталей, при нормальном режиме эксплуатации;

- на фиг.2 - конструкция устройства в положении деталей при очистке дроссельного канала.

Клапанное устройство состоит из корпуса 1, с приемной 2 и отводящей 3 камерами. Внутри корпуса 1 установлена ступенчатая втулка 4, с образованием между ними кольцевого гидравлического канала 5.

В осевом канале корпуса 1 установлен стакан 6, под фланцем 7 ступенчатой втулки 4, которым он связан с корпусом 1. Между ступенчатой втулкой 4 и стаканом 6 образована камера 8, перекрытая телом кольцевого поршня 9, установленного на гильзе 10, которая образует верхним концом подвижное соединение со стаканом 5, а нижним концом входит в осевой канал 11 седла 12, установленного в осевом канале корпуса 1, снабженного с внешней стороны уплотнителем 13. Кольцевой гидравлический канал 5 связан каналами 16 в теле фланца 7 с приемной камерой 2. В теле ступенчатой втулки 4, со стороны седла 12, выполнен ряд продольных пазов 17, перекрытых в исходном положении телом кольцевого поршня 9. В теле гильзы 10 выполнены радиальные отверстия 18, гидравлически соединяющие камеру 8 с осевым каналом 19 гильзы 10. Ступенчатая втулка 4 снабжена дросселем 20, закрепленным гайкой 21. Гильза 10 снабжена иглодержателем 22 в виде втулки, с которой связан стержень 23, проходящий в осевой канал 24 дросселя 20. Осевой канал 25 стакана 6 под дросселем 20 постоянно гидравлически связан радиальным отверстием 26 в теле иглодержателя 22 с осевым каналом 19 гильзы 10. Корпус 1 снабжен фланцем 27, которым он опирается на торец трубы 28, связанной с отводящей трубой 29 промыслового коллектора.

Кольцевой зазор между телом трубы 28 и наружной поверхностью корпуса 1 перекрыт уплотнителем 13.

Работа клапанного устройства

Устройство в сборе вводится в осевой канал трубы 28, с упором фланцем 27 на ее торец и перекрытием кольцевого зазора уплотнителем 13.

Размер осевого канала 24 дросселя 20, рассчитывают исходя из дебита скважины, при пропуске всего расхода через кольцевой зазор между стенкой осевого канала 24 дросселя 20 и наружной поверхностью стержня 23.

Пластовый флюид через дроссель 20 поступает в осевой канал 25 стакана 6, откуда через радиальные отверстия 26 в теле втулки 22 подается в осевой канал 19 гильзы 10 и далее в отводящую камеру 3 При работе с расчетным перепадом давления, последнее через каналы 16 в теле фланца 7 передается в гидравлический канал 5 с воздействием на торцовый клапан 14, поджимаемый пружиной 15 к седлу 12. При изменении режима работы скважины, которое может произойти при забивании дросселя, увеличивается перепад давления между приемной 2 и отводящей 3 камерами.

Под действием изменившегося перепада давления кольцевой поршень 9, преодолевая сопротивление пружины 15 отрывает торцовый клапан 14 от седла 12, с совместным перемещением в сторону дросселя 21 гильзы 10 со стержнем 23.

Стержень 23 перемещается в осевом канале 24 дросселя 20, с воздействием на отложения на его стенках.

Пластовой флюид из гидравлического канала 5 через продольные пазы 17 поступает в осевой канал 11 седла 12 и далее в отводящую камеру 3. Поскольку расход пластового флюида в этом случае принимается большим, чем через осевой канал 24 дросселя 20, то перепад давления между приемной 2 и отводящей 3 камерами восстанавливается до расчетного. Под действием усилия сжатой пружины 15 кольцевой поршень 9 садится торцовым клапаном 14 на седло 12, с прекращением гидравлической связи гидравлического канала 5 с осевым каналом 11 седла 12. Одновременно стержень 23 выводится из осевого канала 24 дросселя 20, с продолжением процесса добычи в прежнем режиме. В случае отложения солей на внутренней поверхности седла 12, слой последней может быть удален торцовой поверхностью гильзы 10, при ее перемещении вместе со стержнем 23, в момент очистки осевого канала 24 дросселя 20.

Автоматическое клапанное устройство, содержащее цилиндрический корпус с приемной и отводящей камерами с осевым каналом между ними, ступенчатую втулку с дросселем в осевом канале, узел очистки осевого канала дросселя в виде стержня, связанного с подпружиненной гильзой, отличающееся тем, что устройство снабжено седлом в осевом канале корпуса и стаканом с продольными пазами на конце, установленным между корпусом и ступенчатой втулкой, с опорой на седло, с образованием гидравлического канала с корпусом, связанного отверстиями в теле ступенчатой втулки, с приемной камерой, причем гильза снабжена кольцевым поршнем, с торцовым клапаном, установленным с возможностью образования подвижного соединения со стаканом и перекрытия продольных пазов ступенчатой втулки в исходном положении, гильза снабжена радиальными отверстиями и соединена с держателем стержня, снабженного перепускными отверстиями, соединяющими осевой канал ступенчатой втулки с осевым каналом гильзы, а пружина кольцевого поршня установлена в камере между ступенчатой втулкой и стаканом.



 

Похожие патенты:

Изобретение относится к нефтегазовой промышленности и предназначено, в частности, для добычи флюидов из скважины штанговыми винтовыми насосами. Клапан обратный штанговый включает седло и запорный элемент.

Изобретение относится к погружным устройствам, предназначенным для дистанционного, многократного, герметичного перекрытия и разделения внутрискважинного пространства.

Изобретение относится к области технических средств защиты кольцевого затрубного пространства скважины, ведущего на поверхность, от давления, превышающего предельные давления колонны труб или противовыбросовых превенторов при обработке призабойной зоны пласта и, в частности, во время проведения гидравлического разрыва пласта.

Изобретение относится к трубопроводной арматуре для газовой промышленности, предназначено для автоматического сброса потока флюида, исходящего из газовой скважины при несанкционированном выбросе газа, а также при разработке и создании обогреваемых обратных клапанов, устанавливаемых в нефтегазосборные трубы.

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для оборудования скважин, оснащенных электропогружными насосами. .

Изобретение относится к трубопроводной арматуре и предназначено для использования в нефтяной промышленности, в частности во внутрискважинном эксплуатационном оборудовании при добыче пластовой жидкости, профилактических работах, промывке и освоении скважины.

Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяной залежи горизонтальными скважинами. .

Изобретение относится к клапанам управления потоком или к обратным клапанам, переключаемым потоком для скважинного инструмента. .

Изобретение относится к трубопроводной арматуре и предназначено для автоматического сброса потока флюида, исходящего из газовой скважины при несанкционированном выбросе газа при разработке и создании обогреваемых обратных клапанов, устанавливаемых в насосно-компрессорные трубы.

Представлен клапанный узел для регулирования потока текучей среды в горизонтальной скважине. Корпус может быть соединен насосно-компрессорной колонной. Камера образована внутри корпуса и может быть гидравлически сообщена проточным каналом с внутренним кольцевым зазором, образованным вблизи ствола скважины. Поршень и смещающий элемент могут быть расположены внутри камеры, причем смещающий элемент приспособлен для смещения поршня в первое положение. Путь потока текучей среды образован внутри корпуса и сообщен с насосно-компрессорной колонной и внутренним кольцевым зазором. Путь потока может содержать одну или несколько форсунок, расположенных в нем, и поршень может быть приспособлен для перемещения между первым положением, обеспечивающим поток текучей среды через путь потока в насосно-компрессорную колонну, и вторым положением, предотвращающим поток текучей среды в насосно-компрессорную колонну - перекрыт. 3 н. и 15 з.п. ф-лы, 7 ил.

Группа изобретений относится к нефтяной промышленности и может быть применена в скважине. Способ приведения в действие клапана в скважине включает накопление энергии за счет дифференциального давления поперек замкнутого запорного устройства клапана и выделение, по меньшей мере, части накопленной энергии при размыкании запорного устройства. Клапан для использования в скважине включает запорное устройство, устройство смещения и привод, который сохраняет энергию в устройстве смещения под действием дифференциального давления поперек запорного устройства. Клапан включает запорное устройство и привод, который, по меньшей мере частично, приводит в действие клапан под воздействием дифференциального давления поперек запорного устройства. Технический результат заключается в повышении эффективности работы скважинного клапана. 2 н. п. и 13 з.п. ф-лы, 22 ил.

Группа изобретений относится к горному делу и может быть применена для заканчивания, подготовки и/или эксплуатации ствола скважины. Устройство включает трубчатый корпус, образующий внутренний канал, один или более инжекционных регуляторов притока и один или более эксплуатационных регуляторов притока. Один или более инжекционных регуляторов притока может включать один или более первых обратных клапанов в гидравлической связи с внутренним каналом. Причем каждый первый обратный клапан обеспечивает протекание флюида через него от внутреннего канала в область ствола скважины и по существу блокировку обратного потока флюида через него. Один или более эксплуатационных регуляторов притока может включать один или более вторых обратных клапанов, соединенных с трубчатым корпусом. Причем каждый второй обратный клапан обеспечивает протекание флюида через него от ствола скважины во внутренний канал и по существу предотвращает обратный поток флюида через него. Технический результат заключается в повышении эффективности заканчивания скважины, пробуренной с большим отклонением от вертикали. 3 н. и 19 з.п. ф-лы, 10 ил.

Группа изобретений относится к системе регулирования притока в скважину, обеспечивающей регулирование притока в обсадную трубу жидкости, поступающей снаружи обсадной трубы, например, из продуктивного пласта или промежуточной обсадной трубы. Система содержит обсадную трубу с осевым направлением и стенку, имеющую толщину (t), клапан-регулятор притока, имеющий корпус, содержащий упор, с длиной, заданной продольной осью корпуса, и пружинный элемент, подвижный относительно корпуса и тем самым регулирующий приток жидкости, проходящей через клапан от входного отверстия корпуса к выходному отверстию корпуса. При этом клапан расположен таким образом, что осевое направление клапана перпендикулярно осевому направлению обсадной трубы. Причем пружинный элемент выполнен с возможностью проявления своих упругих свойств в направлении указанной оси клапана и перпендикулярно осевому направлению обсадной трубы, с созданием упругой силы, обеспечивающей возможность регулирования потока жидкости через клапан от входного отверстия к выходному отверстию корпуса. При этом пружинный элемент выполнен с возможностью работы как диафрагма в направлении указанного упора с обеспечением закрывания отверстия. Технический результат заключается в повышении эффективности регулирования притока жидкости из продуктивного пласта в обсадную трубу. 4 н. и 11 з.п. ф-лы, 10 ил.
Изобретение относится к области добычи углеводородов и может быть применено для эксплуатации скважин, в частности, для выравнивания профиля притока флюида по длине горизонтальной скважины. Устройство содержит входное и выходное устройства, между которыми последовательно размещены, по меньшей мере, две последовательно размещенных регулирующих ступени, состоящие из нормально открытого клапана и гидравлического сопротивления, и/или отсечная ступень, содержащая один или несколько клапанов, установленных параллельно, с фиксированным положением затвора. Кроме того, устройство содержит наружный кожух, в котором, по меньшей мере, частично размещены указанные элементы устройства. При этом клапаны в регулирующей и/или отсечной ступени содержат средства настройки для удержания и переключения затвора. Гидравлическое сопротивление в регулирующей ступени содержит средства настройки своей величины. Технический результат заключается в автоматизации регулирования притока флюида. 13 з.п. ф-лы.

Изобретение направлено на получение технического результата, выражающегося в повышении энергоэффективности погружного насосного оборудования. Указанный технический результат достигается тем, что в клапане обратном, содержащем корпус, запорный элемент и седло, сжатая пружина расположена поперек хода запорного элемента, а прижатие запорного элемента к седлу осуществляется прогибом сжатой пружины. 4 ил.

Изобретение относится к нефтяной промышленности и предназначено для применения при сепарации газа и нефти в условиях промысла. Клапан-отсекатель включает корпус, днище с отверстием, сливной штуцер нефти, штуцер выхода газа, проницаемую перегородку, соединенные один над другим поплавки сферической формы с нижним штоком на нижнем поплавке, расположенным с возможностью перемещения в отверстии проницаемой перегородки, и с верхним штоком на верхнем поплавке, установленным на карданной передаче и снабженным тороидальным уплотнением с возможностью контакта с седлом, размещенным на штуцере выхода газа. На расстоянии от седла закреплена пластина с центральным отверстием и манжетой, контактирующей с верхним штоком. Сливной штуцер нефти расположен в корпусе на уровне нижнего поплавка. Поплавки расположены по центру корпуса. Изобретение направлено на повышение надежности работы за счет исключения уноса нефти вместе с газом. 3 ил.

Группа изобретений относится к устройству для регулирования потока текучей среды - флюида, поступающего из пласта в эксплуатационную колонну скважины с ограничением притока нежелательного флюида типа воды или газа. Технический результат - повышение надежности регулирования потока флюида. Устройство содержит зону прохода потока, на которой обеспечено существенное повышение падения давления, когда величина выбранной характеристики флюида находится в первом диапазоне, и поддерживание постоянной величины падения давления, когда величина выбранной характеристики флюида находится во втором диапазоне. При этом зона прохода потока включает секции. Каждая из этих секций содержит впускное и выпускное отверстия. Между этими отверстиями образован извилистый путь потока, имеющий продольную и радиальную составляющие. Проход потока обеспечен по извилистому пути каждой секции зоны прохода потока. При этом может быть предусмотрена возможность изменения числа Рейнольдса в необходимых диапазонах. 4 н. и 16 з.п. ф-лы, 14 ил.

Группа изобретений относится к горному делу и может быть применена для регулирования потока текучей среды. Узел устройства регулирования потока текучей среды содержит каналы, способные направлять поток текучей среды на основании одного или нескольких параметров текучей среды. Каналы могут содержать боковой канал, расположенный между двумя другими каналами. Боковой канал позволяет текучей среде течь для воздействия на текучую среду, текущую в одном из каналов. Устройства согласно некоторым аспектам могут дифференцировать текучие среды, имеющие близкие, однако отличающиеся параметры, и направлять их соответственным образом. В качестве примеров параметры текучих сред, на основании которых устройство направляет эту текучую среду, содержат плотность, скорость, вязкость и число Рейнольдса потока текучей среды. Технический результат заключается в повышении эффективности регулирования потока текучей среды. 2 н. и 7 з.п. ф-лы, 6 ил.

Раскрываются варианты способа автономного управления потоком текучей среды в трубчатом элементе в стволе скважины. Поток текучей среды направляют через впускной канал в отклоняющий механизм. Устанавливают распределение потока текучей среды поперек отклоняющего механизма. Распределение потока текучей среды изменяют в ответ на изменение по времени характеристики текучей среды. В ответ изменяется поток текучей среды через стоящий ниже по потоку узел вязкостного переключателя, изменяя схемы потока текучей среды в стоящем ниже по потоку вихревом узле. В способе осуществляют “выбор” по характеристике текучей среды, такой как вязкость, плотность, скорость, расход и т.д. Отклоняющий механизм может принимать разнообразные формы, например, расширяющегося канала, профильных элементов вдоль отклоняющего механизма или искривленной секции канала отклоняющего механизма. Отклоняющий механизм может включать в себя сформированные в стенке канала полости, отходящие от стенки канала препятствия, флюидные диоды, флюидные Тесла-диоды, шикану или резкие перепады поперечного сечения канала. Технический результат заключается в повышении эффективности управления потоком текучей среды. 2 н. и 17 з.п. ф-лы, 16 ил.
Наверх