Турбомашина с уравнительным поршнем против сдвига

Ротационная машина, в частности турбина, насос или компрессор. Ротор (6) содержит уравнительный поршень (10) для воздействия на осевой сдвиг ротора. Уравнительный поршень (10) имеет изменения (21, 22, 23, 24) диаметра ротора (6). Между ними установлены соответственно первое (31), второе (32) и третье (33) уплотнения вала на уравнительном поршне (10), которые герметизируют соответственно первую (11), вторую (12), третью (13) и четвертую (14) камеры нагнетания со своим давлением в каждой камере. Первое изменение (21) диаметра подвержено давлению первой камеры (11) нагнетания, второе (22) - давлению второй камеры (12), третье (23) - третьей (13), а четвертое изменение (24) диаметра подвержено давлению четвертой камеры (14). Первая (11) и третья камеры (13) нагнетания соединены посредством первого нагнетательного канала (71) с первым уровнем давления на участке сходящего потока ротационной машины. Давление в первой (11) в третьей камере (13) нагнетания идентично. Вторая (12) и четвертая камеры (14) нагнетания соединены посредством второго нагнетательного канала (72) со вторым уровнем давления у лопаточной решетки (4) ротационной машины (1) таким образом, что давления во второй (12) и четвертой камерах (14) нагнетания являются идентичными. Достигается сокращение пространства для монтажа за счет уменьшения диаметра уравнительного поршня без уменьшения потенциала компенсации сдвига. 5 з.п. ф-лы, 5 ил.

 

Изобретение относится к ротационной машине, в частности, турбине, насосу или компрессору, по меньшей мере с одним ротором и по меньшей мере с одной текучей рабочей средой (паром), частично окружающей ротор, причем ротор содержит по меньшей мере один уравнительный поршень для воздействия на осевой сдвиг ротора, причем уравнительный поршень имеет изменения диаметра ротора, причем предусмотрено первое уплотнение вала, герметизирующее первую камеру нагнетания, в которой действует первое давление, от второй камеры нагнетания, в которой действует второе давление, таким образом, что по меньшей мере время от времени между первой и второй камерой нагнетания устанавливается разность давлений, при этом первое уплотнение вала установлено на уравнительном поршне таким образом, что первое изменение диаметра подвержено давлению первой камеры нагнетания, а второе изменение диаметра - давлению второй камеры нагнетания, при этом уравнительный поршень содержит третью камеру нагнетания с третьим давлением, причем второе уплотнение вала установлено таким образом, что третье изменение диаметра подвержено давлению третьей камеры нагнетания, при этом уравнительный поршень содержит четвертую камеру нагнетания с четвертым давлением, причем четвертое изменение диаметра подвержено давлению четвертой камеры, при этом четвертая камера нагнетания отделена от третьей камеры нагнетания с помощью третьего уплотнения вала. В US 444615657 раскрыт пример газовой турбины с уравнительным поршнем высокого и низкого давления.

Уравнительные поршни ротационных машин относятся, в частности, у паровых турбин, к обычным узлам. Как правило, рост или падение давления текучей рабочей среды происходят вдоль пути расширения или уплотнения по меньшей мере частично в аксиальном направлении ротора, причем сам ротор или соединенный с ним элемент на участках изменения диаметра, например, на уступах на валу подвержены, соответственно, действию разных давлений. При этом вращающаяся лопаточная решетка так же, как и сплошные окружные уступы, вызывает осевой сдвиг, передаваемый этими элементами ротору в качестве осевого усилия. Чтобы осевой подшипник в этих условиях эксплуатации мог быть рассчитан в разумных пределах, необходимо, чтобы эти усилия компенсировались соответствующими противодействующими усилиями в другом месте. С этой целью, например, паровые турбины современной конструкции регулярно содержат уступ на валу, именуемый уравнительным поршнем, поверхность окружности которого, радиально обращенная наружу, снабжена уплотнением вала, регулярно выполняемым в качестве лабиринтного уплотнения, отделяющего первую камеру нагнетания от второй камеры нагнетания с образованием разности давлений. Вследствие этого с аксиальной стороны уравнительного поршня приложено другое давление, нежели чем с другой аксиальной стороны, так что при соответствующем расчете диаметров и давлений в камерах к ротору может прикладываться осевое усилие, компенсирующее дальнейший осевой сдвиг до остатка, подпираемого осевым подшипником, так что на осевой подшипник приходится лишь незначительная нагрузка, а ротор все же постоянно удерживается в своем определенном аксиальном положении за счет остающегося остаточного усилия.

При известных условиях со ссылкой на соответствующую рабочую точку может быть осуществлена такая регулировка давления в камерах нагнетания, чтобы желательное остаточное давление поддерживалось постоянно.

Описанный эффект компенсации зачастую достигается лишь тогда, когда или давления на уравнительный поршень обнаруживают особенно большую разность, или диаметр уравнительного поршня рассчитан очень большим. При особенно больших разностях давлений уплотнение вала, предусмотренное на уравнительном поршне, имеет достаточное большое пространство для монтажа для достижения необходимого эффекта уплотнения. Как большие диаметры, так и большое аксиальное пространство для монтажа, с одной стороны, вызывают нежелательные эффекты в динамике ротора в виде колебаний, а, с другой стороны, большие расходы вследствие дополнительной потребности в материалах как для ротора, так и для окружающих компонентов, в частности, для корпусов. Вместе с тем значительными являются дополнительные расходы на установку, транспортировку и хранение крупногабаритных деталей.

Поэтому задачей изобретения является такое усовершенствование ротационной машины с уравнительным поршнем вышеупомянутого типа, чтобы для той же компенсации было необходимо меньшее пространство для монтажа.

Для решения задачи согласно изобретению предлагается ротационная машина, в которой первая камера нагнетания и третья камера нагнетания соединены посредством первого нагнетательного канала с первым уровнем давления на участке сходящего потока ротационной машины таким образом, что давление, действующее в первой камере нагнетания, и давление, действующее в третьей камере нагнетания, являются идентичными, при этом вторая камера нагнетания и четвертая камера нагнетания соединены посредством второго нагнетательного канала со вторым уровнем давления у лопаточной решетки ротационной машины таким образом, что давление, действующее во второй камере нагнетания, и давление, действующее в четвертой камере нагнетания, являются идентичными. Взаимосвязанные зависимые пункты формулы изобретения содержат предпочтительные усовершенствования.

Выполнение уравнительного поршня с несколькими камерами, отделенными друг от друга соответствующими уплотнениями вала с образованием разности давлений, ограничивающими камеры по меньшей мере одним изменением диаметра ротора, обеспечивает уменьшение диаметра уравнительного поршня без уменьшения потенциала компенсации сдвига. Кроме того, благодаря многоступенчатому выполнению уравнительного поршня (когда одна ступень уравнительного поршня определяется как установка одного уплотнения вала, одной камеры с определенным давлением и одного ограничивающего эту камеру изменения диаметра ротора) необходимое давление в расчете на ступень уравнительного поршня может быть выбрано меньшим, так чтобы требования к соответствующему уплотнению вала были снижены и чтобы оно могло быть выполнено меньшего аксиального размера.

Особенно предпочтительное усовершенствование изобретения предусматривает, чтобы уравнительный поршень был выполнен в виде непосредственной последовательности изменений диаметра ротора, которая при обозначении в направлении продольной протяженности ротора выполнена в следующем порядке:

- первое увеличение диаметра,

- первое уменьшение диаметра,

- второе увеличение диаметра,

- второе уменьшение диаметра,

причем между

- первым увеличением и первым уменьшением диаметра,

- первым уменьшением и вторым увеличением диаметра,

- вторым увеличением и вторым уменьшением диаметра,

предусмотрено соответствующее уплотнение вала между соответствующей неподвижной стенкой и ротором, так чтобы

- первая камера нагнетания в качестве ограничительной стенки имела первое увеличение диаметра,

- вторая камера нагнетания в качестве ограничительной стенки имела первое уменьшение диаметра,

- третья камера нагнетания в качестве ограничительной стенки имела второе увеличение диаметра и

- четвертая камера нагнетания в качестве ограничительной стенки имела второе уменьшение диаметра.

Под непосредственной последовательностью (непосредственностью) следует понимать отсутствие промежуточной установки других модулей, как, например, лопаточных решеток.

Если система из камеры нагнетания, изменения диаметра, определяющим ограничительную стенку камеры нагнетания, и с уплотнением вала понимается как ступень уравнительного поршня, то в этом предпочтительном усовершенствованном варианте выполнения речь идет о четырехступенчатой системе, которая при одинаковых максимальных и минимальных диаметрах соответствующих ступеней может иметь удвоенный потенциал компенсации сдвига как обычный уравнительный поршень.

Система согласно изобретению в зависимости от компенсируемой разности давлений может иметь и больше четырех вышеприведенных ступеней, например, 5, 6 или более.

Чтобы уравнительный поршень согласно изобретению даже при больших разностях давлений в расчете на одну ступень не требовал большого аксиального пространства для монтажа, целесообразно, чтобы уплотнения вала между камерами нагнетания были выполнены в качестве щеточного или торцевого уплотнения. Эти виды уплотнения по сравнению с лабиринтными уплотнениями дают больший эффект уплотнения, так что при меньшем аксиальном удлинении могут быть стравлены большие разности давлений, и вследствие этого уравнительные поршни как в радиальном, так и в аксиальном направлении имеют меньшую потребность в пространстве для монтажа.

Особенно целесообразным является создание нагнетательных каналов для соответствующих камер нагнетания, так чтобы разности давлений, необходимые для компенсации, устанавливались путем установки определенного давления в камерах нагнетания.

Для обеспечения подстройки компенсации сдвига к различным условиям эксплуатации в качестве дополнения может быть целесообразно предусмотреть по меньшей мере в одном нагнетательном канале по меньшей мере один исполнительный орган или клапан, с помощью которого можно регулировать давление в подсоединенной камере нагнетания. Из-за перманентной утечки через соответствующее уплотнение вала камеры нагнетания исполнительный орган обеспечивает динамичное регулирование давления, инициируемое, предпочтительно, из центра регулирования в зависимости от соответствующей рабочей точки.

При изготовлении особые потенциалы экономии раскрываются на основе изобретения, если на уравнительном поршне выполнены по меньшей мере два уплотнения вала одинаковой конструкции. Кроме того, ступенчатое выполнение уравнительного поршня согласно изобретению обеспечивает использование уплотнений вала одинаковой конструкции для разных турбин, в частности, когда варьирование числа ступеней уравнительного поршня по их различию в компенсации сдвига в точности соответствует различию в сдвиге соответствующих типов ротационных машин.

Ниже изобретение более подробно описано со ссылкой на чертежи частного примера выполнения. Изобретение не ограничено этим частным вариантом выполнения, более того, перед специалистом наряду с этим примером открываются другие варианты выполнения, также использующие изобретение. При этом

фиг.1 изображает паровую турбину в качестве примера ротационной машины согласно изобретению,

фиг.2 - деталь X на фиг.1 в обычном исполнении уравнительного поршня,

фиг.3 - деталь X на фиг.1 в исполнении уравнительного поршня согласно изобретению,

фиг.4 - схематично вид ротора в обычном исполнении с разными диаметрами и с уравнительным поршнем и

фиг.5 - схематично вид ротора с исполнением уравнительного поршня согласно изобретению и с разными диаметрами.

На фиг.1 изображена ротационная машина 1, а именно, паровая турбина 2, в которой поданный свежий пар 3 при прохождении через лопаточную решетку 4 стравливается до пара 5 более низкого уровня давления на участке 80 сходящего потока. Ротор 6, на котором закреплена лопаточная решетка 1, в результате стравливания пара испытывает осевой сдвиг 8. Частично осевой сдвиг 8 подпирается осевым подшипником 9.

Для уменьшения осевого усилия, действующего на осевой подшипник, предусмотрен уравнительный поршень 10, выполненный на роторе 6 в виде уступа вала.

На фиг.2 и 3 изображена деталь X с уравнительным поршнем 10 обычной конструкции и в исполнении согласно изобретению.

Уравнительный поршень 10 обычной конструкции, изображенный на фиг.2, включает в аксиальном направлении обозначенные слева направо первую камеру 11 нагнетания, первое изменение 21 диаметра, первое уплотнение 31 вала, вторую камеру 12 нагнетания со вторым изменением 22 диаметра. Аксиально впереди этой описанной системы находится лабиринтное уплотнение 82 вала, с помощью которого герметизируется относительно атмосферы 51 первая камера 11 нагнетания. Аксиально позади системы, описанной в качестве уравнительного поршня 10, т.е., со стороны конца этой системы, обращенного внутрь турбины, находится другое лабиринтное уплотнение 52 вала, с помощью которого герметизируется от впуска 54 вторая камера 12 нагнетания. Это лабиринтное уплотнение вала может быть отнесено к уравнительному поршню 10. Давление, действующее во второй камере 22 нагнетания, выше, чем в первой камере 11 нагнетания, так что сдвиг, складывающийся из баланса усилий уравнительного поршня, противодействует сдвигу вследствие лопаточной решетки 3.

На фиг.3 изображена система согласно фиг.2 или детали X на фиг.1 с исполнением уравнительного поршня 10 согласно изобретению. При этом уравнительный поршень 10 согласно изобретению выполнен с четырьмя камерами 11, 12, 13, 14 нагнетания, содержащими соответствующие уплотнения 31, 32, 33 для отделения друг от друга и частично ограниченными по меньшей мере одним изменением 21, 22, 23, 24 диаметра ротора 6.

Уплотнения 31, 32, 33 вала выполнены в качестве щеточных уплотнений, так что для разности давлений между камерами 11, 12, 13, 14 нагнетания, эквивалентной обычной конструкции, используется меньшее аксиальное пространство для монтажа. Вторая камера 12 нагнетания и третья камера 13 нагнетания соединены с напорными каналами 42, 43, так что во второй камере 12 нагнетания имеет место большее давление, чем в третьей камере 13 нагнетания. В данном случае давление, действующее в первой камере 11 нагнетания и в третьей камере 13 нагнетания, а также давление, действующее во второй камере 12 нагнетания и в четвертой камере 14 нагнетания, идентичны. Вследствие неплотности уплотнений 31-33 в результате разностей давлений между отдельными камерами нагнетания, снабжаемыми из нагнетательных каналов 42, 43, возникают соответствующие потоки согласно вычерченным стрелкам 61-66.

На фиг.4 и 5 показаны диаметры, предусмотренные на роторе 6, в сочетании с различными давлениями в камерах 11-14 нагнетания во взаимодействии с уплотнениями 31-33 вала. На фиг.4 первая камера 11 нагнетания соединена нагнетательным каналом 71 со сходящим потоком, а вторая камера 12 нагнетания посредством второго нагнетательного канала 72 - с лопаточной решеткой 4 с более высоким уровнем давления.

На фиг.5 показано, что в дополнение к первой камере 11 нагнетания и второй камере 12 нагнетания третья камера 13 нагнетания и четвертая камера 14 нагнетания также сообщаются с уровнем давления в стекающем потоке или лопаточной решетке 4, и, таким образом, может быть достигнут двойной эффект компенсации сдвига. Дело в том, что в противном случае при аналогичном исполнении паровой турбины 2 диаметр уравнительного поршня 10 в исполнении согласно изобретению на фиг. 5 оказался бы меньше.

В качестве опции в нагнетательном канале 71 предусмотрен исполнительный орган 100 или клапан, с помощью которого давление в камерах 12, 13, 14 нагнетания может подстраиваться к текущим условиям эксплуатации. Исполнительный орган управляется из центра 101 регулирования.

1. Ротационная машина (1), в частности турбина, насос или компрессор, по меньшей мере с одним ротором (6) и по меньшей мере с одной текучей рабочей средой (3), частично окружающей ротор (6), причем ротор (6) содержит по меньшей мере один уравнительный поршень (10) для воздействия на осевой сдвиг ротора, причем уравнительный поршень (10) имеет изменения (21, 22, 23, 24) диаметра ротора (6), причем предусмотрено первое уплотнение (31) вала, герметизирующее первую камеру (11) нагнетания, в которой действует первое давление, от второй камеры (12) нагнетания, в которой действует второе давление, таким образом, что по меньшей мере время от времени между первой (11) и второй камерой (12) нагнетания устанавливается разность давлений, при этом первое уплотнение (31) вала установлено на уравнительном поршне (10) таким образом, что первое изменение (21) диаметра подвержено давлению первой камеры (11) нагнетания, а второе изменение (22) диаметра - давлению второй камеры (12) нагнетания, при этом уравнительный поршень (10) содержит третью камеру (13) нагнетания с третьим давлением, причем второе уплотнение (32) вала установлено таким образом, что третье изменение (23) диаметра подвержено давлению третьей камеры (13) нагнетания, при этом уравнительный поршень (10) содержит четвертую камеру (14) нагнетания с четвертым давлением, причем четвертое изменение (24) диаметра подвержено давлению четвертой камеры (14), при этом четвертая камера (14) нагнетания отделена от третьей камеры (13) нагнетания с помощью третьего уплотнения (33) вала, отличающаяся тем, что первая камера (11) нагнетания и третья камера (13) нагнетания соединены посредством первого нагнетательного канала (71) с первым уровнем давления на участке (80) сходящего потока ротационной машины (1) таким образом, что давление, действующее в первой камере (11) нагнетания, и давление, действующее в третьей камере (13) нагнетания, являются идентичными, при этом вторая камера (12) нагнетания и четвертая камера (14) нагнетания соединены посредством второго нагнетательного канала (72) со вторым уровнем давления у лопаточной решетки (4) ротационной машины (1) таким образом, что давление, действующее во второй камере (12) нагнетания, и давление, действующее в четвертой камере (14) нагнетания, являются идентичными.

2. Ротационная машина (1) по п.1, в которой уравнительный поршень (10) выполнен как непосредственная последовательность изменений (21-24) диаметра ротора (6), которая при обозначении в направлении продольной протяженности ротора (6) выполнена в следующем порядке:
первое увеличение диаметра (21),
первое уменьшение диаметра (22),
второе увеличение диаметра (23),
второе уменьшение диаметра (24),
причем между
первым увеличением и первым уменьшением диаметра,
первым уменьшением и вторым увеличением диаметра,
вторым увеличением и вторым уменьшением диаметра,
предусмотрено соответствующее уплотнение (31-33) вала между соответствующей неподвижной стенкой и ротором (6), так что
первая камера (11) нагнетания в качестве ограничительной стенки имеет первое увеличение диаметра,
вторая камера (12) нагнетания в качестве ограничительной стенки имеет первое уменьшение диаметра,
третья камера (13) нагнетания в качестве ограничительной стенки имеет второе увеличение диаметра, и
четвертая камера (14) нагнетания в качестве ограничительной стенки имеет второе уменьшение диаметра.

3. Ротационная машина (1) по п.1 или 2, в которой но меньшей мере одно уплотнение (31-33) вала, предусмотренное на уравнительном поршне (10), выполнено в виде щеточного уплотнения.

4. Ротационная машина (1) по п.1 или 2, в которой по меньшей мере одно уплотнение (31-33) вала, предусмотренное на уравнительном поршне (10), выполнено в виде торцевого уплотнения.

5. Ротационная машина (1) по п.1, в которой предусмотрен по меньшей мере один исполнительный орган (100) по меньшей мере в одном из нагнетательных каналов (71, 72), с помощью которого регулируется давление в подсоединенной камере (11-14) нагнетания.

6. Ротационная машина (1) по п.1 или 2, в которой по меньшей мере два уплотнения (31-33) выполнены одинаковой конструкции.



 

Похожие патенты:

Изобретение относится к области турбостроения и может быть использовано при проектировании, например, газотурбинных установок, работающих по замкнутому циклу, обеспечивающих высокую мощность при малых массогабаритных показателях.

Изобретение относится к паровой турбине с корпусом, причем внутри корпуса с возможностью вращения установлен вал, содержащий компенсирующий сдвиг поршень и направленный вдоль оси вращения, между корпусом и валом выполнен проточный канал, вал содержит внутри охлаждающую линию для ведения охлаждающего пара в направлении оси вращения, и охлаждающая линия связана, по меньшей мере, с одной подающей линией для подачи охлаждающего пара из проточного канала в охлаждающую линию.

Изобретение относится к паровой турбине и способу ее работы. .

Предложен вкладыш (10) и способ изменения уравновешивающего пар сквозного отверстия (54) в рабочем колесе (52) ротора паровой турбины. Вкладыш (10) содержит корпус (12), имеющий продольную ось (14) и противоположно расположенные первый и второй концы (16, 18). Фланец (20) вкладыша проходит радиально от второго конца (18) корпуса (12). Внешняя поверхность (22) расположена по периферии корпуса (12) между указанными первым концом (16) и фланцем (20). Первый канал (24), выполненный в корпусе (12), образует первое отверстие (28) на первом конце (16), при этом указанный первый канал (24) и внешняя поверхность (22) корпуса (12) вместе ограничивают между собой стенку (32), выполненную с возможностью пластической деформации в радиальном наружном направлении. Второй канал (26), выполненный в корпусе (12), сообщается с указанным первым каналом (24) и имеет меньшее поперечное сечение, чем первый канал (24). Способ установки включает установку вкладыша (10) в сквозное отверстие (54) и развальцовку стенки (32) с обеспечением захвата осевой толщины рабочего колеса (52) между фланцем (20) и развальцованной стенкой (32) вкладыша (10). Достигается несложная установка вкладыша, которая может быть выполнена одним рабочим без модификаций колеса, устраняется опасность деформации смежных колес во время процесса установки. 2 н. и 5 з.п. ф-лы, 5 ил.

Паротурбинная энергетическая установка содержит турбину (104) высокого давления, турбину (106) среднего давления и три турбины низкого давления. Три турбины низкого давления содержат две турбины (108) низкого давления, образующие двухпоточную турбину (108) низкого давления, и однопоточную турбину (110) низкого давления. Турбина (104) высокого давления и турбина (106) среднего давления выполнены таким образом, что каждая из них по существу уравновешивает осевое усилие другой. Двухпоточная турбина (108) низкого давления также выполнена уравновешенной по осевому усилию. Средство отбора пара подает пар высокого давления от турбины (104) высокого давления к полости, расположенной перед однопоточной турбиной (110) низкого давления. В направлении к однопоточной турбине низкого давления указанная полость по существу ограничена неподвижной конструкцией, которая окружает вал (102). Установка содержит упорный поршень (128), соединенный с валом (102), и в направлении от однопоточной турбины низкого давления указанная полость по существу ограничена указанным поршнем (128). Упорный поршень (128) выполнен с возможностью противодействия осевому усилию, создаваемому однопоточной турбиной (110) низкого давления в процессе эксплуатации. Позволяет снизить затраты на изготовление и обслуживание и повысить КПД за счёт использования упорного поршня с меньшей площадью поверхности и подачи на него пара высокого давления. 13 з.п. ф-лы, 3 ил.

Изобретение относится к способу эксплуатации ротационной машины с установленным в подшипнике (39) ротором (14), который в какой-то момент работы подвержен действию силы тяги, действующей, главным образом, только в аксиальном направлении, а воспринимаемой и отводимой первым упорным подшипником (43) подшипника (39) через смазку, причем подшипник (39) содержит второй упорный подшипник (45). Для демпфирования или даже предотвращения аксиальных колебаний ротора (4) предлагается, чтобы при возникновении силы тяги второй упорный подшипник (45) по меньшей мере периодически одновременно создавал усилие, действующее на первый упорный подшипник (43) в направлении тяги. 11 з.п. ф-лы, 4 ил.

Устройство уравновешивания осевого давления ротора турбомашины содержит полый корпус и установленный в корпусе дисковый поршень с центральным валом и разделением корпуса на две полости с каналами подвода и отвода сжатого воздуха в каждую полость. Один конец вала снабжен центральным резьбовым гнездом, а оба конца вала - наружными шлицевыми поясами. Дисковый поршень установлен в корпусе на роликовых подшипниках и обеспечен уплотнениями по опорам и наружному диаметру поршня. В полостях устройства расположены кольцевые водяные теплообменники с подводом и сливом воды. Датчик перемещения установлен на корпусе устройства с возможностью контроля осевого положения поршня и электрически связан с блоком управления. Создаваемое на поршне осевое давление передается на ротор турбомашины. Вращающийся дисковый поршень за счет сил трения нагревает окружающий его сжатый воздух. Нагретый воздух передает тепло водяными теплообменниками, что снижает температуру устройства. Изобретение направлено на увеличение теплосъема с дискового поршня и полого корпуса устройства уравновешивания. 3 з.п. ф-лы, 2 ил.
Наверх