Устройство для испытаний образцов на трещинообразование

Изобретение относится к области энергетики, к устройствам для исследования термоусталости образцов, подверженных случайным температурным пульсациям в потоке жидкости, и может быть использовано в атомной энергетике и в транспортных энергетических устройствах. Устройство содержит корпус с фланцевым разъемом и испытуемые образцы в виде трубок. Испытуемые образцы в количестве двух, расположенные соосно один внутри другого с образованием кольцевого зазора между ними, закреплены внутри отдельных частей корпуса, размещенных на коллекторе подвода горячей воды и коллекторе отвода смеси горячей и холодной воды. Коллекторы посредством трубопроводов подключены к нагревателю и холодильнику. Наружная поверхность внешней трубки и внутренняя поверхность центральной трубки покрыты слоем изоляции. В верхней части корпуса установлен штуцер и клапан для подвода и регулирования расхода охлаждающей воды. Технический результат: исключение влияние рабочего давления среды на процесс образования трещин, обеспечивая в чистом виде трещинообразование только за счет пульсации температуры среды, что приводит к получению абсолютно точных результатов испытаний. 1 ил.

 

Изобретение относится к области энергетики, к устройствам для исследования термоусталости образцов, подверженных случайным температурным пульсациям в потоке жидкости, и может быть использовано в атомной энергетике и в транспортных энергетических устройствах.

Известна установка для исследования тепловой усталости труб, воспроизводящая в стендовых условиях разрушение кипятильных труб в результате изменения условий теплообмена на внутренней стороне трубы, содержащая замкнутый трубный контур в виде треугольника, одной из вершин обращенного вниз и закрепленного на валу, заполненном до определенного уровня дистиллятом. На одной из сторон контура установлена электропечь. При качаниях контура уровень воды в нем перемещается, тем самым создаются колебания температуры стенки трубы (Троянский Е.А., Кориковский И.К. Тепловая усталость труб при высоком давлении. Сборник: Исследование прочности элементов паровых котлов, МЭМ, М., 1954, с.45-52, и Троянский Е.А. Металлы котлостроения и расчет прочности деталей паровых котлов. Энергия, М. - Л.. 1964, с.192).

Недостатками известной установки является сложность изготовления каждого образца - замкнутый трубный контур в виде треугольника, установка электропечи на образец, сложность в определении места для дефектоскопии, а также большой период одного цикла и, как следствие, очень большое время для получения большого числа циклов (106-107) для построения кривой усталости, кроме того, невозможность увеличения перепада температур и повторения условий испытаний из-за индивидуального изготовления каждого участка.

Известна установка для испытания образца на термоусталость, содержащая полый цилиндрический корпус, заполненный теплоносителем, перегородку с отверстием, установленную в корпусе и разделяющую его на две полости с различными температурами теплоносителя, нагреватель и охладитель теплоносителя, при этом нагреватель и охладитель установлены в корпусе по разные стороны перегородки, перегородка выполнена в виде установленного соосно корпусу диска с углублением для размещения торца образца, причем ось углубления параллельна оси отверстия диска, а край углубления расположен от оси отверстия на расстоянии, равном радиусу этого отверстия (SU 1665284, МПК: G01N 3/60, опубликовано 23.07.91)

Недостатком известного устройства является сложность изготовления, а также влияние величины рабочего давления на процесс трещинообразования, что приводит к нарушению чистоты эксперимента.

Известно устройство для испытаний образцов на термоусталость, включающее цилиндрический корпус, горизонтальную разделительную перегородку и датчики контроля и управления испытаниями, при этом внутри цилиндрического корпуса, снабженного плоским днищем и герметичной крышкой, в верхней части, закрепленной шпильками и гайками, расположен барабан, закрепленный на крышке внутри корпуса, горизонтальная разделительная перегородка размещена в нижней части барабана и выполнена в виде перфорированного диска, перфорация которого выполнена в виде расположенных по окружности калиброванных отверстий, имеющих вдоль своей образующей калиброванные каналы для прохода греющей среды, во внутренней полости барабана установлена дополнительная горизонтальная перегородка с калиброванными отверстиями в ней, точно такими же, как отверстия в перфорированном диске, при этом трубки-образцы установлены в отверстиях перфорированного диска и закреплены на крышке корпуса, а между трубками установлены вертикальные разделительные перегородки, во внутреннюю полость каждой трубки-образца заведены трубки меньшего диаметра, закрепленные в раздаточном ресивере и имеющие в своей верхней части штуцеры для отвода охлаждающей среды и сливные трубы с калиброванными устройствами на них, кроме того, в нижней части корпуса под перфорированным диском установлены трубка с диффузорным насадком, соединенная с цилиндрическим диффузором и штуцером подвода греющей среды и система камер со штуцером на днище для отвода греющей среды. (Ru 2433385 МПК G01N 3/60, опубликовано 10.11.2011).

По совокупности признаков это известное техническое решение является наиболее близким к заявленному и принято за прототип.

Недостатком известного технического решения, а также причиной, препятствующей достижению желаемого технического результата при использовании упомянутого известного устройства является сложность изготовления и регулировки нагрузки параллельно испытуемых образцов.

Проведенный заявителем анализ уровня техники, включающей поиск по патентным и научно-техническим источникам информации, а также выявление источников, содержащих сведения об аналогах заявленного изобретения, позволили установить, что заявитель не обнаружил технического решения, характеризующегося признаками, тождественными или эквивалентными предлагаемым. При этом предлагаемое техническое решение не вытекает явным для специалиста образом из известного уровня техники и определенного заявителем.

Определение из перечня выявленных аналогов прототипа как наиболее близкого технического решения по совокупности признаков позволило выявить в заявленном устройстве совокупность существенных отличительных признаков по отношению к усматриваемому заявителем техническому результату, изложенную в нижеприведенной формуле изобретения.

Заявляемое техническое решение позволяет испытывать на трещинообразование одновременно большое количество образцов, проводить ресурсные испытания для получения кривых усталости металла за счет создания на поверхности образов при организованной протечке горячей и холодной среды нестабильного температурного режима с резкими колебаниями температуры при различных частотах и амплитудах. Расположение образцов во внутренней полости корпуса исключает влияние рабочего давления среды на процесс образования трещин, обеспечивая в чистом виде трещинообразование только за счет пульсации температуры среды, что приводит к получению абсолютно точных результатов испытаний.

Предложено устройство для испытаний образцов на трещинообразование, включающее корпус с фланцевым разъемом и испытуемые образцы в виде трубок, при этом испытуемые образцы в количестве двух, расположенных соосно один внутри другого с образованием кольцевого зазора между ними, закреплены внутри отдельных частей корпуса, размещенных на коллекторе подвода горячей воды и коллекторе отвода смеси горячей и холодной воды, коллекторы посредством трубопроводов подключены к нагревателю и холодильнику, причем наружная поверхность внешней трубки и внутренняя поверхность центральной трубки покрыты слоем изоляции, кроме того, в верхней части корпуса установлен штуцер и клапан для подвода и регулирования расхода охлаждающей воды. К коллекторам может быть присоединено необходимое для эксперимента количество корпусов с испытуемыми образцами.

Изобретение иллюстрируется чертежом.

Устройство для испытаний образцов на трещинообразование включает корпус 1 с фланцевым разъемом 2 и испытуемые образцы в виде трубок 3, 4. Испытуемые образцы в количестве двух, расположенных соосно один внутри другого с образованием кольцевого зазора между ними закреплены внутри отдельных частей корпуса 1, размещенных на коллекторе подвода горячей воды 5 и коллекторе отвода смеси горячей и холодной воды 6. Коллекторы 5, 6 посредством трубопроводов 7 подключены к нагревателю 8 и холодильнику 9. Наружная поверхность внешней трубки 4 и внутренняя поверхность центральной трубки 3 покрыты слоем изоляции. В верхней части корпуса 1 установлен штуцер 10 и клапан для подвода и регулирования расхода охлаждающей воды 11. К коллекторам 5 и 6 может быть присоединено необходимое для эксперимента количество корпусов 1 с испытуемыми образцами 3 и 4.

Устройство работает следующим образом. Горячая вода от нагревателя 8 через коллектор 5 подводится к каждому корпусу 1 и через центральную трубку образца 3, смешавшись с холодной водой, поступающей через штуцер 10 от холодильника 9, поступает в кольцевую щель, образованную между испытуемыми образцами 3 и 4, провоцируя процесс трещинообразования. Клапаном 11 обеспечивается требуемый расход смеси в зазоре, которая через коллектор 6 отводится в схему устройства. Трубчатые образцы 4 с наружной поверхности и 3 с внутренней поверхности покрыты теплоизолирующим слоем, чем обеспечивается более интенсивная пульсация температуры в кольцевом зазоре.

Расположение образцов 3 и 4 во внутренней полости корпуса 1 исключает влияние рабочего давления среды на процесс образования трещин, обеспечивая в чистом виде трещинообразование только за счет пульсации температуры среды.

Колебания температуры среды, воздействующей на поверхности трубок-образцов и вызывающей деформацию их поверхности, фиксируются датчиками контроля и управления испытаниями (датчиками давления, тензорезисторами и термопарами - на рисунке не показаны). На основании этих измерений вычисляют напряжение, соответствующее деформации поверхностей трубок-образцов, и в соответствии с количеством циклов испытаний, строят кривые усталости.

Устройство для испытаний образцов на трещинообразование, включающее корпус с фланцевым разъемом и испытуемые образцы в виде трубок, отличающееся тем, что испытуемые образцы в количестве двух, расположенных соосно один внутри другого с образованием кольцевого зазора между ними, закреплены внутри отдельных частей корпуса, размещенных на коллекторе подвода горячей воды и коллекторе отвода смеси горячей и холодной воды, коллекторы посредством трубопроводов подключены к нагревателю и холодильнику, при этом наружная поверхность внешней трубки и внутренняя поверхность центральной трубки покрыты слоем изоляции, кроме того, в верхней части корпуса установлен штуцер и клапан для подвода и регулирования расхода охлаждающей воды.



 

Похожие патенты:

Изобретение относится к испытаниям космической техники, а именно к установкам для имитации тепловых режимов работы элементов космических аппаратов. .

Изобретение относится к области испытательной техники, в частности к устройствам для исследования термоусталости образцов, подверженных случайным температурным пульсациям в потоке жидкости, и может быть использовано в атомной и теплоэнергетике и в транспортных энергетических установках.

Изобретение относится к способам испытания материалов на термоустойчивость. .

Изобретение относится к способам оценки длительной прочности неразрушающим методом. .

Изобретение относится к области температурных измерений, в частности, к определению пространственного распределения температур в теплозащитных конструкциях, подвергнутых высокотемпературному одностороннему нагреву, и может быть использовано при отработке теплозащиты спускаемых космических аппаратов.

Изобретение относится к установкам и стендам для исследования и испытаний лопаток турбомашин двигателей, установок и других турбомашин на термомеханическую усталость.

Изобретение относится к испытаниям, в частности на термостойкость, и заключается в том, что поверхность испытываемого образца материала подвергают циклическому тепловому воздействию, включающему нагрев поверхности и последующее охлаждение, производя при этом контроль поверхности испытываемого образца материала.

Изобретение относится к испытательной технике, в частности к устройствам для испытания полых изделий на термостойкость. .

Изобретение относится к области теплофизических измерений и предназначено для определения коэффициента термического расширения твердых тел. .

Изобретение относится к измерительной технике, в частности к методам и устройствам определения деформаций авиационных конструкций. .

Изобретение относится к испытательной технике, к испытаниям, преимущественно, образцов горных пород. Стенд содержит основание, соосно установленные на нем захваты образца, устройство для нагружения образца, связанное с захватами, механизм для механической обработки образца и платформу для перемещения механизма относительно оси захватов. Стенд дополнительно снабжен механизмом для поворота захватов вокруг их оси, который включает привод, на валу которого установлены две шестерни, на которых закреплены захваты. Технический результат: расширение функциональных возможностей стенда путем обеспечения испытаний при изменениях направлений механической обработки относительно радиальных направлений образца. 1 ил.

Изобретение относится к испытательной технике, к испытаниям, преимущественно, образцов горных пород. Стенд содержит основание, соосно установленные на нем захваты образца, устройство для нагружения образца осевой механической нагрузкой, механизм для взаимодействия с образцом, платформу для перемещения механизма вдоль оси захватов, платформу для перемещения механизма в вертикальном направлении перпендикулярно оси захватов и платформу для перемещения механизма в горизонтальном направлении перпендикулярно оси захватов. Механизм для взаимодействия с образцом выполнен фрезерным. Технический результат: расширение функциональных возможностей стенда путем обеспечения исследований при постепенном удалении материала образца без снятия механической нагрузки. 1 ил.

Изобретение относится к испытательной технике, а именно к устройствам для исследования термической усталости конструкционных материалов, и может быть использовано для экспериментального подтверждения расчетного прогноза малоцикловой прочности конструкционных материалов. Устройство состоит из последовательно соединенных между собой газогенератора и рабочей части с образцом конструкционного материала. Газогенератор имеет сменную смесительную головку. Цилиндрическая камера сгорания газогенератора оснащена запальным устройством и дроссельной шайбой. Рабочая часть состоит из соединенных между собой зажимного фланца с центральным отверстием и фланца с установленным на нем образцом. Центральные продольные оси фланца и образца совпадают. Внутренняя цилиндрическая поверхность зажимного фланца образует с поверхностью образца кольцевую щель, которая через торцевые выходные отверстия, выполненные во фланце вокруг образца, соединена с полостью, заканчивающейся выходным соплом. Технический результат: возможность обеспечить необходимые режимы термосилового нагружения образцов с моделированием натурного термонапряженного состояния исследуемых конструкционных материалов различных агрегатов, работающих в условиях переменных тепловых режимов. 1 ил.

Изобретение относится к устройству для оценки термомеханической усталости материала, который подвергается воздействию горячего теплового потока. Устройство содержит образец для испытаний, имеющий "горячую" стенку с наружной поверхностью, которая подвергается воздействию теплового потока, и внутренней поверхностью, от которой отходят параллельные полосы, прикрепленные к этой внутренней поверхности и образующие между собой параллельные каналы; промежуточную часть, имеющую параллельные ребра, форма и размеры которых обеспечивают возможность их вставки в указанные каналы между полосами с образованием прохода в области внутренней поверхности горячей стенки для циркуляции охлаждающей жидкости. Проход состоит из множества параллельных сегментов, отделенных друг от друга указанными полосами, а сечение прохода задано путем вставки ребер в указанные параллельные каналы. Устройство также содержит опору, на которой установлены образец и промежуточная часть, имеющая проходы, связанные с концами прохода для циркуляции охлаждающей жидкости; контур циркуляции охлаждающей жидкости, и нагревающие средства. Технический результат: возможность создания условий тестирования моделей, соответствующих реальным промышленным условиям, а также обеспечение возможности воздействовать высокими уровнями теплового потока с относительно простыми средствами нагревателя при одновременном наличии ресурса системы охлаждения, который соответствует "промышленным" системам. 9 з.п. ф-лы, 7 ил.

Изобретение относится к измерительной технике и может быт использовано при испытаниях изделий на термическую стойкость. Заявлен способ испытаний полых изделий на термостойкость, заключающийся в нагреве изделия изнутри и охлаждении снаружи. Согласно изобретению внутрь изделия помещают нагреватель из теплоемкого материала, а изделие с нагревателем помещают в заполненную инертным газом капсулу из жаростойкого материала. Капсулу с изделием герметизируют, после чего полученную сборку нагревают до температуры не более допустимой температуры капсулы и осуществляют выдержку при указанной температуре до состояния выравнивания температуры всех составляющих изделия. Затем сборку охлаждают до заданной температуры с заданной скоростью, изделие извлекают из капсулы, а о термостойкости изделия судят по наличию в нем дефектов сверх допустимых величин. Технический результат - повышение достоверности получаемых результатов. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области строительства, в частности к определению изменения длительной прочности бетона во времени эксплуатируемых под нагрузкой в условиях внешней агрессивной среды бетонных и железобетонных конструкций. Сущность: отслеживается разница между деформациями, получаемыми в результате испытания образца на одновременное силовое нагружение и воздействие агрессивной среды, и заранее протарированными данными, полученными испытаниями на длительную прочность образцов в условиях только силового нагружения, осуществляется контроль нагрузки на образец и своевременное ее снижение таким образом, что напряжения в сечении образца остаются постоянными до начала разрушения образца. Устройство содержит резервуар, заполненный агрессивным раствором, раму силовой установки, подвижную и неподвижную траверсы с цилиндрическими шарнирами для реализации сосредоточенного нагружения на железобетонный образец. В качестве нагрузочного устройства использована рычажная система с применением в качестве груза воды, заполняющей резервуар, оборудованный отводной трубкой с вентилем, работа которого регулируется изменением показателей тензометрических приборов на образце. Технический результат: возможность экспериментально определять градиент изменения длительной прочности во времени от начала приложения нагрузки и коррозионного воздействия среды до разрушения опытного образца нагруженного и корродирующего бетона при заданном неизменном значении напряжений в сечении образца с использованием более усовершенствованной по сравнению с прототипом модели испытательного стенда. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области контроля и диагностики совокупности эксплуатационных свойств износостойких покрытий, связанных, прежде всего, с твердостью, адгезионной прочностью, износостойкостью, и может быть использовано в машиностроении, судостроении и других отраслях, а также для покрытий, находящихся в условиях циклического нагружения, связанных, прежде всего, с эрозионной стойкостью поверхности. Сущность: осуществляют воздействие индентором на образец с износостойкими покрытиями деформирующей нагрузкой до разрушения покрытия и оценивают результаты воздействия. Воздействие осуществляют с помощью высокоскоростной струи жидкости, используемой в качестве индентора, со скоростью 300…1000 м/с на образцы, предварительно прошедшие циклическое нагружение, имеющее волновой нестационарный характер, а оценивают результаты воздействия по скорости струи, при которой начинается интенсивное разрушение покрытия или по скорости подачи сопловой головки относительно поверхности диагностируемого образца или изделия, при которой начинается интенсивное разрушение покрытия, или по длине гидрокаверны от точки начала воздействия до точки полного разрушения покрытия или по глубине и ширине гидрокаверны. Технический результат: расширение возможностей контроля и диагностики устойчивости покрытия к действию внешних нагрузок для определения остаточного ресурса покрытий на образцах. 5 ил.

Изобретение относится к метрологии, в частности к средствам измерения термостойкости углей. Способ предполагает воздействие на образец угля двух последовательных термоударов, второй из которых имеет большую по сравнению с первым интенсивность, и регистрацию параметров акустической эмиссии. Ориентация образца по отношению источнику нагрева постоянна. При этом регистрацию параметров акустической эмиссии осуществляют как на стадиях нагрева, так и на стадиях остывании образца после каждого из термоударов. Затем определяют границы временных интервалов, соответствующих областям пиковых значений акустической эмиссии, когда ее уровень не менее чем в полтора раза выше уровня фоновых шумов. В каждом из этих интервалов рассчитывают средние значения активности акустической эмиссии. Уровень активности акустической эмиссии в ходе второго термоударного воздействия, проводимого на уже не содержащий влагу образец, показывает количество разрушенных структурных связей, а этот же параметр, но в ходе последующего остывания - количество сохранившихся структурных связей, переходящих из напряженного состояния в исходное. Затем по отношению величин средней активности акустической эмиссии за время нагрева и остывания вычисляется коэффициент термической стойкости геоматериала. Технический результат - повышение надежности и точности измерений. 4 ил.

Изобретение относится к области пожарной безопасности зданий и сооружений. Сущность: осуществляют проведение технического осмотра, инструментальное измерение геометрических характеристик элементов фермы в их опасных сечениях; выявление условий опирания и крепления элементов фермы, схем обогрева их поперечных сечений; установление марки стали фермы, характеристик металла сопротивлению на сжатие и растяжение, определение величины нагрузки оценочного испытания на стальную ферму, схем ее приложения, интенсивности силовых напряжений в металле в опасных сечениях элементов стальной фермы, определение времени наступления предельного состояния по признаку потери несущей способности элементов стальной фермы под испытательной нагрузкой оценочного огневого испытания. Оценку огнестойкости стальной фермы здания проводят без натурного огневого воздействия неразрушающими методами испытаний, используя комплекс единичных показателей качества стальных конструкций. Назначают число и место расположения участков, в которых определяют единичные показатели качества, при этом технический осмотр дополняют определением группы однотипных стальных ферм. За единичные показатели качества принимают геометрические характеристики элементов фермы, степень напряжения и предел текучести металла, затем определяют интегральные конструктивные параметры: интенсивность нормальных силовых напряжений в поперечном сечении элементов стальной фермы в условиях оценочного огневого испытания; приведенную толщину металла поперечного сечения элементов стальной фермы, и, употребляя их, определяют проектное время сопротивления термосиловому воздействию каждого элемента стальной фермы по потере несущей способности, используя аналитическое выражение. Проектный предел огнестойкости стальной фермы (Fur, мин) определяют по длительности сопротивления до потери несущей способности наиболее слабого с точки зрения огнестойкости элемента (τus, min, мин) в условиях оценочного огневого испытания. Технический результат: возможность определения огнестойкости стальной фермы здания без натурного огневого воздействия, повышение достоверности статистического контроля качества и неразрушающих испытаний, уменьшение расходов металла на изготовление стальной фермы, сокращение сроков проведения испытаний, снижение экономических затрат. 15 з.п. ф-лы, 1 табл., 4 ил.

Изобретение относится к методам определения морозостойкости пористых материалов. Сущность: изготавливают несколько образцов материала, насыщают их водой, термоциклируют, замораживая и размораживая до нормативных температур, определяют деформации образцов после размораживания, пределы прочности образцов в условиях одноосного сжатия и перпендикулярные ему остаточные деформации, находят отношение относительного снижения предела прочности к относительной остаточной деформации и рассчитывают морозостойкость каждого образца, морозостойкость же материала рассчитывают как среднее морозостойкостей образцов. После термоциклирования каждый образец нагружают в условиях одноосного сжатия с заданным темпом до экстремальной нагрузки, отвечающей пределу кратковременной прочности в условиях одноосного сжатия, разгружают образец, определяют относительную остаточную деформацию в направлении, перпендикулярном сжатию, повторяют нагружение в условиях сжатия до значения экстремальной нагрузки второго нагружения, а относительное снижение предела прочности определяют с учетом значений эктремальных нагрузок при первом и втором нагружении. Технический результат: расширение арсенала технических средств ускоренного определения марки бетона по морозостойкости. 1 табл., 2 ил.
Наверх