Рентгеновская трубка с модулируемым излучением


 


Владельцы патента RU 2507627:

Открытое акционерное общество "Научно-производственное предприятие "Радий" (RU)

Изобретение относится к области рентгеновской техники и может найти применение в медицине, научных исследованиях и оптоэлектронике. Рентгеновская трубка с модулируемым излучением содержит вакуумную оболочку с выводным окном, прозрачным для рентгеновского излучения, и размещенные внутри вакуумной оболочки источник электронов, фокусирующую электронную систему и анод, на поверхность которого нанесен слой металла мишени. При этом в заявленном изобретении в качестве источника электронов применяется микроканальная пластина, на вход которой подается ультрафиолетовое излучение полупроводникового фотодиода или лазера. Техническим результатом является обеспечение возможности модуляции излучения рентгеновской трубки. 1 ил.

 

Изобретение относится к области рентгеновской техники и может найти применение в медицине, научных исследованиях и оптоэлектронике.

Известна рентгеновская трубка, по патенту России №29405 на полезную модель, содержащая вакуумную оболочку с выводным окном и размещенные внутри вакуумной оболочки источник электронов, фокусирующую электронно-оптическую систему и анод, на поверхность которого нанесен слой металла мишени, при этом поверхность анода с нанесенным на нее слоем металла мишени имеет наклон по отношению к оси пучка электронов в месте формирования последним фокального пятна, а анод имеет край, расположенный в торце рентгеновской трубки, противоположном источнику электронов, выводное окно также расположено в торце рентгеновской трубки, противоположном источнику электронов, и его внутренняя поверхность примыкает к указанному краю анода, а источник электронов и фокусирующая электронно-оптическая система выполнены и установлены с возможностью формирования пучком электронов фокального пятна на слое металла мишени, нанесенном на поверхность анода, вблизи края анода, к которому примыкает внутренняя поверхность выводного окна.

Недостатком известной рентгеновской трубки является невозможность модулирования ее излучением.

Техническим результатом является осуществление возможности модуляции излучения рентгеновской трубки.

Указанный технический результат достигается тем, что в рентгеновской трубке с модулируемым излучением, содержащей вакуумную оболочку с выводным окном, прозрачным для рентгеновского излучения и размещенные внутри вакуумной оболочки источник электронов, фокусирующую электронную систему и анод, на поверхность которого нанесен слой металла мишени, а в качестве источника электронов применяется микроканальная пластина, на вход которой подается ультрафиолетовое излучение фотодиода или полупроводникового лазера.

Сущность заявляемого изобретения иллюстрируется графическими материалами, где на фигуре 1 дано схематическое изображение рентгеновской трубки с модулируемым излучением.

Рентгеновская трубка с модулируемым излучением содержит вакуумную оболочку 1 и цоколь 2, расположенный на ее внешней стороне. В вакуумной оболочке 1 расположен ультрафиолетовый источник модулированного света (фотодиод, полупроводниковый лазер 3), излучение которого подается на вход микроканальной пластины 4, с выхода которой снимается поток вторичных электронов, сгенерированных в микроканальной пластине 4. Поток электронов попадает на анодный узел 5, в котором формируется электронный пучок, подающийся на мишень 6.

Рентгеновская трубка с модулируемым излучением работает следующим образом. Напряжение питания подается на цоколь 2, а через него на ультрафиолетовый полупроводниковый фотодиод или лазер 3, излучение которого подается на вход микроканальной пластины 4, содержащей большое число стеклянных трубок (каналов) диаметром 5-15 микрон с внутренней полупроводящей поверхностью, имеющей сопротивление от 20 до 1000 Мом. Когда ультрафиолетовый фотон попадает в стенку канала, он выбивает электроны, которые ускоряются электрическим полем, созданным напряжением, приложенным к концам канала. Вторичные электроны летят по своим параболическим траекториям, пока не попадут на стенку, в свою очередь, выбивая еще большее количество вторичных электронов. Этот процесс, по мере пролета вдоль канала, повторяется много раз и на выходе микроканальной пластины 4 формируется электронная лавина, которая проходя через анодный узел 5, формируется в электронный пучок, который попадая на мишень 6, тормозится, являясь, таким образом, источником тормозного и характеристического излучения, спектр которого находится в рентгеновском диапазоне.

Заявляемая рентгеновская трубка позволяет осуществлять модуляцию потока рентгеновских фотонов и получать импульсы рентгеновского излучения в большом диапазоне длительностей и скважностей, а также дает возможность программного управления процессом излучения, как по длительности сгустков, так и по дозам облучения в заданном временном интервале. Модуляция излучения рентгеновской трубки осуществляется благодаря тому, что управление рентгеновским излучением фактически сводится к управлению источником ультрафиолетового излучения, что само по себе не представляет никаких трудностей. Кроме того, отсутствие традиционного катода с накалом существенно увеличивает срок службы рентгеновской трубки и повышает надежность ее работы.

Применение заявляемой рентгеновской трубки позволит существенно расширить диапазон практического применения рентгеновского излучения.

Рентгеновская трубка с модулируемым излучением, содержащая вакуумную оболочку с выводным окном, прозрачным для рентгеновского излучения, и размещенные внутри вакуумной оболочки источник электронов, фокусирующую электронную систему и анод, на поверхность которого нанесен слой металла мишени, отличающаяся тем, что в качестве источника электронов применяется микроканальная пластина, на вход которой подается ультрафиолетовое излучение полупроводникового фотодиода или лазера.



 

Похожие патенты:

Изобретение относится к области рентгенотехники. Переносная рентгеновская система (200) имеет воспринимающее средство, чтобы обнаруживать, прикреплена ли отсеивающая решетка (230) к переносному детектору (240) или нет.

Группа изобретений относится к устройству и способу для генерации мощного оптического излучения, в частности, в области экстремального УФ (ЭУФ) или мягкого рентгеновского излучения в диапазоне длин волн примерно от 1 нм до 30 нм.

Изобретение относится к области плазменной техники. .

Изобретение относится к ускорительной технике и может быть использована при разработке импульсных рентгеновских трубок, предназначенных для облучения медицинских или промышленных объектов.

Изобретение относится к источникам рентгеновского излучения для селективного получения рентгеновского излучения с различными длинами волн. .

Изобретение относится к рентгенотехнике, в частности к рентгеновским генераторам моноблочного типа. .

Изобретение относится к рентгенотехнике, в частности к рентгеновским излучателям, и может быть использовано в высокоэнергетичных промышленных рентгеновских аппаратах, а также в просмотровых таможенных комплексах.

Изобретение относится к рентгенотехнике и может быть использован для получения рентгеновских изображений, например, в медицине. .

Изобретение относится к рентгеновским трубкам, содержащим автокатод, выполненный на основе углеродных материалов, и может быть использовано в качестве источника рентгеновского излучения в приборах дефектоскопии, досмотровой аппаратуре, медицинских рентгеновских аппаратах, диагностических установках рентгеновской спектроскопии.

Изобретение относится к рентгеновской технике, более конкретно к средствам для генерирования рентгеновского излучения, а именно к рентгеновским трубкам. .

Источник мягкого рентгеновского излучения на основе разборной рентгеновской трубки относится к области рентгеновской техники и предназначен для использования в качестве источника мягкого рентгеновского излучения с различными длинами волн для калибровки приемников излучения. Источник включает корпус, к которому крепится основание с расположенными на нем анодом и термокатодным узлом с электродами и нитью накала, высоковольтный и низковольтный вводы для соединения с источниками питания, а также фокусирующий электрод и систему охлаждения. Система охлаждения выполнена в виде петли трубопровода, электрически связанного с высоковольтным вводом, анод выполнен сплошным в форме параллелепипеда и зафиксирован непосредственно на трубопроводе с помощью крепежных элементов. Термокатодный узел снабжен упругодеформируемой деталью, закрепленной одним концом на одном из электродов термокатодного узла и связанной с нитью накала силовой связью с возможностью перемещения свободного конца и натяжения нити накала в процессе ее разогрева при подаче напряжения. Фокусирующий электрод выполнен в виде детали, частично охватывающей нить накала. Технический результат - упрощение конструкции и обеспечение стабильности параметров излучения. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области рентгеновской техники и может быть использовано при разработке импульсных рентгеновских трубок для использования в малогабаритных рентгеновских аппаратах, в частности, для медицинской диагностики и лечения заболеваний, а также в других областях техники. Технический результат - получение излучения мягкого диапазона, обеспечивающего высокий контраст изображения при работе с объектами разной оптической плотности с сохранением рентгенооптических параметров в процессе наработки. Импульсная рентгеновская трубка содержит металлический корпус в виде полого цилиндра, одно основание которого соединено с большим основанием изолятора, выполненного в виде полого усеченного конуса и расположенного вне корпуса, а другое основание корпуса соединено с окном для вывода рентгеновского излучения и катодом, закрепленным на держателе, которые имеют осесимметричные отверстия относительно анода, выполненного в виде цилиндрического стержня переходящего в конус и направленного в сторону окна, вывод анода, проходящий по оси прибора в полости изолятора и соединенный с его меньшим основанием. Держатель выполнен в форме чаши, в цилиндрической части которой равномерно по ее периметру и перпендикулярно дну сформированы сквозные пазы, переходящие в пропилы в дне чаши, а катод выполнен из полиакрилонитрильных углеродных волокон, расположенных радиально относительно оси прибора и закрепленных на дне чаши, например, тонким металлическим кольцом точечной сваркой, при этом торцы одних концов полиакрилонитрильных углеродных волокон образуют границу отверстия катода, а другие концы зажаты в пропилах между дном чаши и внутренней поверхностью корпуса. 1 ил.

Изобретение относится к области рентгеновской техники и может быть использовано при разработке импульсных рентгеновских трубок для использования в малогабаритных рентгеновских аппаратах, в частности, для медицинской диагностики и лечения заболеваний, а также в других областях техники. Технический результат - повышение контрастности изображения при работе с объектами разной оптической плотности. Импульсная рентгеновская трубка содержит металлический корпус в виде полого цилиндра, одно основание которого соединено с большим основанием изолятора, выполненного в виде полого усеченного конуса и расположенного вне корпуса, а другое основание корпуса соединено с окном для вывода рентгеновского излучения и катодом с осесимметричным отверстием относительно анода, выполненного в виде стержня, переходящего в конус и направленного в сторону окна, вывод анода, проходящий по оси прибора в полости изолятора и соединенный с его меньшим основанием. Вершина конусной части анода выполнена с заострением под углом не более 60° и размещена ниже плоскости расположения катода на расстоянии не более 2 мм. 1 ил., 1 табл.

Изобретение относится к измерительной технике и может быть использовано, например, для контроля металлических и газовых дефектных включений в полимерной кабельной изоляции с использованием рентгеновского излучения электрического газового барьерного разряда (ЭГБР). Металлический электрод выполнен отражающим, конической формы, с заданными углом конусности и толщиной. Выходное окно для рентгеновского ЭГБР излучения выполнено в цилиндрической стеклянной колбе на одном конце, а на другом конце - сквозное отверстие, в котором установлен патрубок для напуска в рентгеновскую трубку рабочего газа. В качестве рабочего газа использован аргон или азот с активирующей добавкой летучего в ЭГБР 0,1 мг/см3 мелкодисперсного порошка РbO2. Технический результат - повышение контрастности изображения металлических и газовых включений за счет мягкого рентгеновского излучения в диапазоне от 1 до 10 нм, что повышает точность их фотографической регистрации. 3 з.п. ф-лы, 3 ил.

Изобретение относится к рентгеновской технике, в частности к миниатюрным маломощным рентгеновским излучателям, и может быть использовано для создания устройств экспрессной диагностики и локального воздействия в медицине, технике, быту. Излучатель выполнен как стеклянный баллон вида таблетки, состоящий из двух стеклянных крышки-окна и крышки, склеенных вакуумплотно по краю низкоплавким свинцовым стеклом. Внутри баллона мишень и анод совмещены и выполнены в виде плёнки электропроводящего подбираемого материала, нанесённого на окно-крышку. Катод выполнен как автоэмиссионный катод в виде покрытия порошкового материала на плёнку газопоглотителя, нанесённого на крышку. Управляющий электрод выполнен в виде двух металлических сеток с расположенной между ними микроканальной стеклопластиной. Управляющий электрод усиливает поток эмитированных из катода электронов и отражает рентгеновское излучение со стороны катода к аноду. Технический результат - увеличение полезного выхода рентгеновского излучения; уменьшение электрических нагрузок на анод и катод и, как следствие, увеличение долговечности и стабильности работы прибора; расширение функциональных возможностей устройства за счет обеспечения безвредности окружающей среде. 2 ил.

Изобретение относится к области рентгеновской техники. Многолучевая рентгеновская трубка (1) для сканирования неподвижного объекта (13) в перекрещивающихся направлениях при ее статичном положении содержит размещенные в заземленном корпусе (2): вращающийся анод (3) с размещенной на его плоской поверхности плоской кольцевой мишенью (4); систему (5) источников электронов, размещенную над поверхностью мишени (4) и содержащую N источников (10) электронов для подачи N потоков (17) электронов, имеющих круглое поперечное сечение, управляющий электрод (22) для преобразования N потоков (17) электронов в N конфигурированных потоков (23) электронов, создающих на рабочей поверхности (4а) мишени (4) N источников (12) рентгеновского излучения в форме узких фигур, близких к прямоугольнику, протяженных в направлении окна (6) вывода и сходящихся в одну точку за окном вывода; неподвижные коллиматоры (27) для отбора излучения со всей площади источника (12) рентгеновского излучения в направлении окна (6) вывода и формирования рентгеновского луча (30) пирамидальной формы, охватывающей область рентгеновского излучения, имеющую наибольшую плотность энергии в луче, сопряженной с верхней (6а) и нижней (6 с) сторонами прямоугольника окна (6) вывода и имеющей прямоугольное основание (30а), охватывающее область (13) объекта, подлежащую сканированию. Технический результат - обеспечение в неподвижной многолучевой рентгеновской трубке формирования и вывода из трубки в перекрещивающихся направлениях дискретных рентгеновских лучей, охватывающих неподвижный объект сканирования и имеющих высокую плотность энергии, необходимую для томографического анализа сканируемого объекта. 7 з.п. ф-лы, 14 ил.

Изобретения относятся к электронной технике и рентгеновской технике, а именно к источнику электронов, предназначенному для использования в составе электронных приборов с автоэлектронной эмиссией, и одному из таких приборов - рентгеновской трубке. Источник содержит катодный электрод 1 с автоэлектронной эмитирующей частью 2 и управляющий электрод 20, прозрачный для эмитируемых электронов. Особенностью источника является то, что управляющий электрод 20 выполнен в виде прямого пустотелого проводящего цилиндра, имеющего боковую стенку 3 и два основания 6, 7 с центральными отверстиями 4, 5. Одно из оснований (6) обращено к катодному электроду 1 и расположено напротив его автоэлектронной эмитирующей части 2. Отверстие 4 в этом основании имеет меньший размер по сравнению с отверстием 5 в другом основании. Рентгеновская трубка содержит источник электронов и анод, размещенные в вакуумированном корпусе, имеющем рентгенопрозрачное выводное окно. Особенностью конструкции трубки является описанное выше выполнение источника электронов. Трубка может быть выполнена , таким образом, что боковая стенка упомянутого цилиндра является частью стенки корпуса трубки. Технический результат - предотвращение нежелательной эмиссии из способных к эмиссии частиц материала автоэлектронной эмитирующей части катодного электрода, отрывающихся от нее и оседающих на управляющем электроде, и уменьшение количества таких частиц, отрывающихся от управляющего электрода. 2 н. и 10 з.п. ф-лы, 6 ил.

Использование: для исследования элементного состава материалов. Сущность изобретения заключается в том, что универсальная рентгеновская трубка для энергодисперсионных рентгеновских спектрометров включает корпус, катод, фокусирующий электрод, анод с рабочей поверхностью, перпендикулярной направлению катод-анод, выходное бериллиевое окно, расположенное на боковой поверхности корпуса, и коллиматор, обеспечивающие выход излучения под углом от 5 до 8 градусов к поверхности анода, при этом анод выполнен двухслойным, поверхностный слой которого имеет толщину 3±1 мкм и выполнен из скандия, а его внутренний слой выполнен из родия и имеет толщину не менее 10 мкм. Технический результат: повышение контрастности и чувствительности при определении элементов, аналитические линии K-спектров которых расположены в диапазоне энергий от 2.3 до 3.5 кэВ (S-K). 2 ил.

Изобретение может быть применено как импульсный источник нейтронов и рентгеновского излучения. Устройство состоит из импульсного источника питания и газоразрядной камеры с электродами и изотопами водорода. Электроды выполнены в виде коаксиальных расположенных один в другом электропроводных тел вращения с криволинейными образующими. Вокруг токоввода внутреннего электрода-анода установлен изолятор с диаметром, меньшим диаметра рабочей части анода и цилиндрической поверхностью между торцами электродов в камере. Токоввод катода - корпуса камеры размещен возле его центрального отверстия, через которое пропущены изолятор и токоввод анода. Для катода и анода зеркально симметрично выполнены дополнительные токовводы и изолятор соответственно возле дополнительного центрального отверстия катода. Два токоввода анода - трубчатые с зеркально симметричными многозаходными спиралями из наклонных прорезей, заполненных твердыми изоляторами. Спирали расположены по высоте в зонах напротив соответствующих зазоров между торцами электродов в камере. Технический результат - повышение термоядерного кпд. 1 ил.

Изобретение относится к области рентгеновской техники. Рентгеновский источник для генерации рентгеновских лучей по меньшей мере с одной узкой энергетической полосой содержит охватывающую камеру, первый контакт, скомпонованный с первой контактной поверхностью в охватывающей камере, второй контакт, скомпонованный со второй контактной поверхностью в охватывающей камере, и узел привода, функционально связанный с первым и/или со вторым контактом. Узел привода имеет такую структуру, чтобы во время работы обеспечивать многократно приведение в контакт первой контактной поверхности и второй контактной поверхности, и разделение их после соприкосновения. Первая контактная поверхность представляет собой поверхность первого трибоэлектрического материала, а вторая контактная поверхность представляет собой поверхность второго трибоэлектрического материала, причем поверхность первого трибоэлектрического материала обладает отрицательным трибоэлектрическим потенциалом относительно поверхности второго трибоэлектрического материала. Второй контакт содержит материал, который в своем составе содержит атомный элемент, у которого имеется возбужденное квантовое энергетическое состояние и который может быть возбужден электронами, переходящими из первой контактной поверхности ко второй контактной поверхности, так что при переходе из возбужденного состояния в состояние с более низкой энергией атомный элемент излучает рентгеновские лучи, энергия которых находится по меньшей мере в одной узкой энергетической полосе. Охватывающая камера имеет такую конструкцию, чтобы обеспечить регулирование окружающей атмосферы, в которой размещены первая и вторая контактные поверхности. Технический результат - упрощение рентгеновского источника. 2 н.и 25 з.п. ф-лы, 11 ил.
Наверх