Способ повышения съема пленки жидкости в газопроводе

Изобретение относится к области очистки газа от жидкости и механических примесей на объектах газовой, нефтяной и нефтехимической промышленности и может быть использовано при внутрипромысловом сборе газа и при подготовке его к магистральному транспорту. Технический результат состоит в повышении съема пленки жидкости с внутренней поверхности газопровода посредством формирования в его стенках сдвиговых акустических колебаний. Способ повышения съема пленки жидкости в газопроводе включает формирование в стенках газопровода импульсных акустических колебаний определенной длительности и частоты, обуславливающих возникновение в стенках трубы газопровода деформаций, направленных перпендикулярно распространению акустических колебаний, и образование сдвиговых волн, уменьшающих адгезию пленки жидкости на внутренней поверхности трубы газопровода.

 

Изобретение относится к области очистки газа от жидкости и механических примесей на объектах газовой, нефтяной и нефтехимической промышленности и может быть использовано при внутрипромысловом сборе газа и при подготовке его к магистральному транспорту.

Анализ известных способов повышения съема пленки жидкости с внутренних стенок газопроводов в процессе подготовки газа к транспорту позволяет сделать вывод, что, в основном, используются гидродинамические методы удаления жидкости из газового потока, формирование пленки жидкости на стенках газопровода и уменьшение толщины пленки с использованием центробежных сил.

Известен, например, способ, включающий закручивание газожидкостного потока, формирование вращающего слоя жидкости на поверхности цилиндрического патрубка и осевого тела вращения, разделение потоков на жидкую и газовую фазы и их последующий отбор [Патент РФ №2344869, МПК B01D 45/12, опубл. 27.01.2009 г.]. Недостатком этого способа является низкая эффективность отделения капель жидкости различного диаметра.

Известен также способ [а.с. СССР №1494936, МПК B01D 45/12], в котором производят отбор расслоенной жидкой фазы со стенок трубопровода и удаляют ее в зону пониженного давления. Основным недостатком указанного способа является его низкая эффективность при высоких скоростях газового потока, вызывающих диспергирование жидкости, поэтому удаление частиц жидкости из газового потока становится проблематичным.

Задача изобретения заключается в достижении высокой эффективности очистки газа вне зависимости от скорости его ввода во входной канал.

Технический результат состоит в повышении съема пленки жидкости с внутренней поверхности газопровода посредством формирования в его стенках сдвиговых акустических колебаний.

Поставленная задача и технический результат достигаются тем, что способ повышения съема пленки жидкости в газопроводах включает формирование в стенках газопровода импульсных акустических колебаний определенной длительности и частоты, обуславливающих возникновение в стенках трубы газопровода деформаций, направленных перпендикулярно распространению акустических колебаний, и образование сдвиговых волн, уменьшающих адгезию пленки жидкости на внутренней поверхности трубы газопровода.

Физической основой предлагаемого способа является создание в стенках газопровода сдвиговых волн, уменьшающих адгезию жидкости и обуславливающих повышение съема пленки жидкости.

Механизм формирования сдвиговых волн обусловлен тем, что при возбуждении в трубе газопровода упругих волн, направленных перпендикулярно стенке трубы, возникающие в стенках деформации перпендикулярны направлению волны, т.е. направлены вдоль стенок трубы [Ландау Л.Д., Лифшиц Е.Н. Теория упругости, 3 изд. -М.: 1965, с.470].

Скорость распространения сдвиговых, или поперечных, колебаний в металлах лежит в диапазоне (1,7-3,5)103 м/с, что на 3 порядка превосходит скорость газа в газопроводах. [Таблицы физических величин. Справочник./ Под ред. акад. И.К.Кикоина,- М.: Атомиздат, 1976,86-87 с.]. Поэтому предлагаемый способ съема пленки не зависит от скорости ввода газа во входной канал.

Способ реализуется с помощью аппаратурного комплекса, функциональная схема которого включает импульсный генератор акустических колебаний, магнитострикционные излучатели упругих волн, микрогидроциклон для сбора жидкости, контроль которой осуществляется ультразвуковым уровнемером, а также фильтр и расходомер.

Предлагаемый способ съема пленки жидкости осуществляется следующим образом. Высокочастотные акустические колебания с помощью магнитострикционных излучателей и волноводов подаются на газопровод перпендикулярно стенкам трубы. Эти колебания формируют вдоль стенок трубы сдвиговые колебания. Возникающие сдвиговые колебания уменьшают адгезию жидкости на стенках трубы и увеличивают съем пленки жидкости под действием потока газа[3имон А.Д. Адгезия и смачивание.- М.:«Химия»,1974, 15-19 с.]. Газожидкостный поток поступает в микрогидроциклон. В микрогидроциклоне вследствие центробежного ускорения осуществляется сепарация капель жидкостей из газового потока, которые собираются в нижней части микрогидроциклона, где установлена измерительная камера ультразвукового уровнемера. С помощью электронного блока ультразвукового уровнемера определяются индивидуальные массы жидкостей уноса и их процентное соотношение.

Установлено, что наибольший съем пленки жидкости с внутренней поверхности трубы газопровода имеет место при частоте следовании акустических импульсов, равной 12 Гц, при амплитуде колебаний - 7 В и частоте колебаний - 13 кГц.

Стендовые испытания акустического способа съема пленки жидкости с внутренней поверхности трубы газопровода были проведены при давлении 0,2 МПа для трех газожидкостных систем: воздух - вода, воздух - этиленгликоль и воздух - веретенное масло. Установлено, что формирование сдвиговых волн в стенках газопровода увеличивает съем пленки жидкости: для воды в 1, 4 раза, для диэтиленгликоля - 1.7 раза, для веретенного масла - в 3,9 раз. Увеличение пленкосъема для углеводородных жидкостей, по-видимому, обусловлены уменьшением работы адгезии с увеличением краевого угла смачивания.

Способ повышения съема пленки жидкости в газопроводе, включающий формирование в стенках газопровода импульсных акустических колебаний определенной длительности и частоты, обуславливающих возникновение в стенках трубы газопровода деформаций, направленных перпендикулярно распространению акустических колебаний, и образование сдвиговых волн, уменьшающих адгезию пленки жидкости на внутренней поверхности трубы газопровода.



 

Похожие патенты:

Изобретение относится к технике отделения дисперсных частиц от газов или паров с использованием гравитационно-инерционных или центробежных сил, создаваемых поворотом потока направления газового потока или пара, и может быть использовано в энергетике, нефтеперерабатывающей, нефтехимической и химической промышленности.

Изобретение относится к технике отделения дисперсных частиц от газов или паров с использованием гравитационно-инерционных или центробежных сил и может быть использовано в энергетике, нефтеперерабатывающей, нефтехимической и химической промышленности.

Изобретение относится к технике отделения дисперсных частиц от газов или паров с использованием гравитационно-инерционных или центробежных сил, создаваемых поворотом потока направления газового потока или пара, и может быть использовано в энергетике, нефтеперерабатывающей, нефтехимической и химической отрослях промышленности.

Изобретение относится к технике отделения дисперсных частиц от газов или паров с использованием гравитационно-инерционных или центробежных сил, создаваемых поворотом потока направления газового потока или пара, и может быть использовано в энергетике, нефтеперерабатывающей, нефтехимической и химической промышленности.

Изобретение относится к циклонному сепаратору и может быть использовано в машиностроении и, в частности, в технологических процессах, в которых требуется сепарировать из потока газовой или жидкой среды под действием центробежных сил одно вещество, которое имеет более высокую плотность, чем основная средообразующая фракция.

Изобретение относится к центробежному сепаратору, предназначенному для очистки газообразной текучей среды. Газоочистной сепаратор для разделения текучей смеси веществ различной плотности, таких как газ и жидкость, содержит кожух, образующий внутреннее пространство, роторный узел, расположенный в указанном внутреннем пространстве и способный вращаться вокруг оси относительно кожуха, и кожуховый элемент.

Изобретение относится к прямоточному сепаратору для отделения дисперсных частиц от газа, содержащему снабженный фланцами корпус с входными и выходными отверстиями, отверстия для отвода жидкости.

Группа изобретений относится к криогенной технике и технологии, а именно к способам и устройствам осушки, очистки и сжижения природного газа, отбираемого из магистрального газопровода, и других низкомолекулярных газов, получаемых на нефтехимическом производстве газоразделения, а также при хранении и выдаче товарных сжиженных и газообразных газов на газораспределительных станциях.

Изобретение относится к сепаратору, предназначенному для очистки газообразной текучей среды. Способ сборки газоочистного сепаратора и сепаратор, собранный данным способом для разделения текучей смеси веществ различной плотности, таких как газ и жидкость, причем сепаратор содержит: кожух, содержащий первую и вторую отдельные части, причем первая часть кожуха имеет установочную поверхность, на которой устанавливается базовая поверхность второй части кожуха так, чтобы образовать внутреннее пространство кожуха и роторный узел, расположенный в указанном внутреннем пространстве и способный вращаться вокруг оси первой части кожуха относительно кожуха, причем роторный узел содержит вращающийся вал, установленный с возможностью вращения в первой части кожуха с помощью подшипникового узла и установленный с возможностью вращения во второй части кожуха, при этом способ сборки указанного сепаратора содержит этапы, на которых: устанавливают с возможностью вращения вращающийся вал во второй части кожуха в заданном положении относительно указанной базовой поверхности, причем указанное заданное положение совпадает с указанной осью, когда базовая поверхность второй части кожуха совмещается с установочной поверхностью первой части кожуха, располагают подшипниковый узел в зажимное приспособление, причем зажимное приспособление содержит базовую поверхность для совмещения с установочной поверхностью первой части кожуха, и средство приема указанного подшипникового узла в положение относительно базовой поверхности зажимного приспособления так, что подшипниковый узел принимается зажимным приспособлением в положении относительно базовой поверхности зажимного приспособления, которое совпадает с указанной осью, когда базовая поверхность зажимного приспособления совмещается с указанной установочной поверхностью первой части кожуха, совмещают базовую поверхность зажимного приспособления с указанной установочной поверхностью первой части кожуха и закрепляют подшипниковый узел на первой части кожуха.

Изобретение относится к технологии очистки газовоздушной смеси в отраслях промышленности, производящих выброс газов во внешнюю среду. При осуществлении способа поток очищаемой газовоздушной смеси подают в трубчатый корпус рабочей зоны первой ступени очистки, закручивают завихрителем и направляют по винтовой линии вдоль корпуса рабочей зоны, после чего поток направляют на вторую ступень очистки.

Изобретение предназначено для очистки газов от пыли в различных отраслях промышленности (химической, горной, пищевой, текстильной и др.) и в энергетике и основано на применении закрученных или вихревых потоков. Устройство для вихревого пылеулавливания содержит сепарационную камеру, в верхней части которой расположены осевой выхлопной патрубок и тангенциальный ввод закрученного вторичного потока, а с нижней частью соединена пылесборная камера с выгрузочным отверстием, на которой закреплен тангенциальный патрубок для ввода первичного потока, соединенный с осевым цилиндром, выходное отверстие которого и соосная ему отбойная шайба расположены в сепарационной камере. Тангенциальный патрубок выполнен с узлом рециркуляции потока из пылесборной камеры в сепарационную камеру с регулятором расхода. В сепарационной камере на выхлопном патрубке закреплен кольцевой обтекатель вогнутой формы, установленный с зазором между его краем и верхней стенкой сепарационной камеры. Предпочтительно, верхняя стенка сепарационной камеры в осевом сечении имеет форму полуовала. Предпочтительно, на расположенной в сепарационной камере части выхлопного патрубка выполнены отверстия по кольцевой линии. Технический результат: повышение эффективности пылеулавливания. 2 з.п. ф-лы, 1 ил.

Изобретение может быть использовано в двигателях внутреннего сгорания. Аспирационная система устройства предварительной очистки для всасывающего воздуха предназначена для двигателя внутреннего сгорания, имеющего воздухозаборник и выпуск для продуктов сгорания при повышенных температурах. Двигатель содержит устройство предварительной очистки, соединенное по текучей среде с воздухозаборником двигателя и расположенное выше по потоку от него. Устройство предварительной очистки выполнено с возможностью предотвращения попадания потока крупных загрязняющих веществ в воздухозаборник двигателя и их накопления. Устройство предварительной очистки имеет выпуск для загрязняющих веществ. Аспирационная система содержит элемент, образующий канал первичного потока для выхлопных газов двигателя. Указанный элемент имеет секцию трубки Вентури и трубку, имеющую выпуск вблизи секции трубки Вентури. Указанная трубка соединена по текучей среде с выпуском устройства предварительной очистки для загрязняющих веществ так, что загрязняющие вещества втягиваются в указанную трубку и проходят через нее. Указанный элемент имеет, по меньшей мере, один впуск для окружающего воздуха в канал первичного потока для охлаждения потока выхлопных газов из двигателя вблизи указанного элемента. Технический результат заключается в улучшении очистки от загрязнений, накапливаемых в устройстве предварительной очистки. 6 з.п. ф-лы, 2 ил.

Группа изобретений относится к способу и устройству для удаления твердых веществ в форме частиц из газового потока, в частности несущего газового потока для транспортировки твердых веществ в форме частиц. Устройство включает в себя транспортный трубопровод (2), который впадает в разделительную камеру (5), подсоединенный сухой фильтр (9) для удаления пыли и/или твердых веществ в форме мелких частиц, отводящий трубопровод (12) для отвода очищенного газового потока и аккумулирующую емкость (1) для помещения удаленных твердых веществ в форме частиц. Сухой фильтр оснащен устройствами обратной продувки, предназначенными для очистки сухого фильтра. Технический результат, достигаемый при использовании устройства по изобретению, заключается в том, чтобы обеспечить надежную очистку газового потока и использовать материал пыли для дальнейшей переработки. 2 н. и 13 з.п. ф-лы, 1 ил.

Изобретение относится к области добычи природного газа и может быть использовано в процессе его подготовки к утилизации или транспортировке. Сепаратор содержит цилиндрический корпус с тангенциальным входным и выходным патрубками, крышкой и днищем с осевыми каналами, дренажную трубу, размещенную в осевом канале днища. Внутри корпуса соосно размещены кожух, фильтрующий элемент в виде полого цилиндра, центратор, втулка и опорная шайба. Втулка присоединена к крышке, а центратор установлен внутри втулки. Верхний и нижний торцы фильтрующего элемента взаимодействуют соответственно со втулкой и опорной шайбой. Центратор и опорная шайба связаны между собой с помощью стяжной шпильки с гайками. Основная цилиндрическая спираль размещена в кольцевом пространстве, которое образовано внутренней поверхностью корпуса и наружной поверхностью кожуха, а дополнительная - в кольцевом пространстве, которое образовано наружной поверхностью фильтрующего элемента и внутренней поверхностью кожуха. Направление навивки основной спирали совпадает с направлением перемещения потока газа внутри корпуса и противоположно направлению навивки дополнительной спирали. Шаги навивки спиралей должны выбираться с учетом того, что площадь проходного сечения между смежными витками основной спирали должна быть меньше или равна площади поперечного сечения входного патрубка в месте его присоединения к корпусу, но при этом больше площади проходного сечения между смежными витками дополнительной спирали. Техническим результатом является повышение эффективности очистки природного газа от частиц капельной жидкости и механических примесей и повышение надежности работы сепаратора. 1 з.п. ф-лы, 2 ил

Изобретение относится к области очистки газа от жидкости и примесей на объектах газовой, нефтяной и нефтехимической промышленности и может быть использовано на газовых и нефтяных промыслах, а также на компрессорных станциях магистральных газопроводов. Газожидкостный сепаратор содержит корпус, патрубки входа и выхода газа, верхнюю и нижнюю решетки, между которыми монтируются циклонные элементы, узел безгидрозатворного отвода жидкости, сборник механических примесей, защитный лист. Защитный лист выполнен в виде усеченного конуса с осевым отверстием. Вершина конуса с центральным отверстием направлена в сторону нижнего днища. Наружная кромка защитного листа плотно соединена с внутренней стенкой газожидкостного сепаратора. Входное отверстие патрубка отвода жидкости и механических примесей размещено в нижней точке днища в осевой зоне сепаратора. Техническим результатом является повышение надежности и эффективности работы газожидкостного сепаратора при очистке газа от жидкости и механических примесей. 3 з.п. ф-лы, 2 ил.

Изобретение относится к технике отделения дисперсных частиц от газов или паров с использованием гравитационно-инерционных или центробежных сил и может быть использовано в энергетике, нефтеперерабатывающей, нефтехимической и химической промышленности. Сепаратор для отделения дисперсных частиц от газа содержит снабженный фланцами корпус с входными и выходными отверстиями, отверстия для отвода жидкости. Корпус выполнен по периметру в виде многозаходной винтовой поверхности с винтовыми канавками внутри корпуса в виде карманов криволинейной формы с центрами кривизны карманов криволинейной формы винтовой поверхности, расположенными внутри поперечного сечения корпуса. Корпус по периметру выполнен из трех и более скрученных в продольном направлении относительно продольной оси и изогнутых по винтовой линии в поперечном направлении на оправке в виде параболоида вращения полос трапециевидной формы с увеличением их размеров по ширине с образованием по периметру корпуса трех и более внутренних криволинейных поверхностей выпуклой формы и образованием напусков внутри корпуса в виде винтовых лопастей по всей длине корпуса от загрузки к выгрузке. По всей длине корпуса смонтирована винтообразная поверхность конической формы с прямоугольным сечением витков, которая оборудована устройством для изменения шага витков путем ее растяжения или сжатия. Длина отверстия для отвода жидкости должна быть не менее одного полного шага винтовой поверхности корпуса. Техническим результатом является повышение эффективности отделения дисперсных частиц от газа. 10 ил.

Изобретение относится к сепаратору, в частности, но не исключительно, к центробежному сепаратору, предназначенному для очистки газообразной текучей среды. Газоочистной сепаратор для разделения текучей смеси веществ различной плотности, таких как газ и жидкость, содержит кожух, образующий внутреннее пространство, роторный узел, предназначенный для придания вращательного движения указанной смеси веществ. Роторный узел расположен в указанном внутреннем пространстве и способен вращаться вокруг оси относительно кожуха. Роторный узел содержит вход для приема указанной смеси веществ, выход, из которого указанные вещества выпускаются из роторного узла во время использования, и путь для потока для обеспечения сообщения по текучей среде между входом и выходом. Сепаратор дополнительно содержит электромотор для вращения роторного узла и проход для текучей среды через электромотор для приема, при использовании, вещества, отделенного от указанной смеси веществ. Указанный проход для текучей среды через электромотор ограничен, по меньшей мере, частично, ротором и статором электромотора. Электрические провода, расположенные в указанном проходе для текучей среды, изолированы изолирующим материалом. Техническим результатом является использование прохода для текучей среды через электромотор, что обеспечивает возможность расположения мотора ниже ротора сепаратора и позволяет ускорить втекание смеси веществ, подлежащих разделению, сверху сепаратора, что обеспечивает улучшение конструкции впуска смеси веществ, подлежащих разделению. 21 з.п. ф-лы, 41 ил.

Изобретение относится к сепаратору и, более конкретно, но не исключительно, к центробежному сепаратору, предназначенному для очистки газообразной текучей среды. Газоочистной сепаратор для разделения текучей смеси веществ различной плотности, таких как газ и жидкость, содержит кожух, образующий внутреннее пространство, роторный узел, предназначенный для придания вращательного движения смеси веществ. Роторный узел установлен на кожухе с помощью верхних и нижних подшипников и расположен во внутреннем пространстве и способен вращаться вокруг оси относительно кожуха. Роторный узел содержит вход для приема смеси веществ, выход, из которого вещества выпускаются из роторного узла во время использования, и путь для потока для обеспечения сообщения по текучей среде между входом и выходом. Выход расположен более радиально в наружном направлении от указанной оси, чем вход. Сепаратор содержит турбинный блок для обеспечения вращения роторного узла. Роторный узел дополнительно содержит вращающийся вал, совпадающий с осью и установленный на кожухе. Первая концевая часть вращающегося вала проходит через кожух в положение, наружное относительно кожуха, где она соединяется с турбинным блоком. Вращающийся вал снабжен проходом для текучей среды, проходящим аксиально через вращающийся вал. Проход для текучей смеси имеет отверстие, расположенное снаружи от указанного кожуха. Роторный узел дополнительно содержит средства регулирования потока для регулирования поступления текучей среды в проход для текучей среды снаружи кожуха у расположения указанного турбинного блока. Средства регулирования потока содержат по меньшей мере один дополнительный путь для текучей среды, расположенный радиально снаружи относительно оси вращения роторного узла для придания текучей среде, поступающей в проход, вращательного движения вдоль пути, радиально наружном от прохода для текучей среды вала. Техническим результатом является обеспечение смазывания верхнего подшипникового узла за счет наличия прохода для текучей среды, проходящего аксиально через вращающийся вал и предназначенного для прохождения масляного тумана через вращающийся вал к верхнему подшипниковому узлу. 11 з.п. ф-лы, 41 ил.

Изобретение предназначено для разделения газожидкостных смесей и может быть использовано на объектах газовой, нефтяной и нефтехимической промышленности. Газожидкостный сепаратор содержит корпус с патрубком входа газожидкостной смеси, патрубки выхода газа и выхода жидкости. Напротив патрубка входа газожидкостной смеси установлен распределитель. В верхней части сепаратора установлено полотно, центральная часть которого выполнена в форме перевернутого усеченного конуса. В нижней части полотна установлен, по крайней мере, один центробежный элемент и, по крайней мере, одна дренажная трубка. Снизу полотна установлен короб, охватывающий его центральную часть. Боковая часть короба выполнена из воронкообразных элементов, повторяющих форму центральной части полотна и установленных с зазором относительно друг друга. Дренажная трубка расположена в коробе, а днище короба снабжено, по крайней мере, одной сливной трубой с гидрозатвором, установленным в нижней части сепаратора. Техническим результатом является повышение эффективности разделения газа и жидкости. 1 ил.

Изобретение относится к технике отделения дисперсных частиц от газов или паров с использованием гравитационно-инерционных или центробежных сил, создаваемых поворотом направления газового потока или пара, и может быть использовано в энергетике, нефтеперерабатывающей, нефтехимической и химической промышленности. Сепарирующее устройство для отделения дисперсных частиц от газа содержит снабженный фланцами корпус с входными и выходными отверстиями, отверстия для отвода жидкости. Корпус выполнен по периметру в виде многозаходной винтовой поверхности с винтовыми канавками внутри корпуса в виде карманов криволинейной формы с центрами кривизны карманов криволинейной формы винтовой поверхности, расположенными внутри поперечного сечения корпуса. Корпус изготовлен из трех и более скрученных в продольном направлении относительно продольной оси и изогнутых по винтовой линии в поперечном направлении на цилиндрической оправке полос прямоугольной формы с образованием по периметру корпуса трех и более внутренних криволинейных поверхностей выпуклой формы с центрами кривизны внутри корпуса и образованием напусков внутри корпуса в виде винтовых лопастей по всей длине корпуса от входного до выходного отверстия. Внутри корпуса смонтирована винтообразная поверхность цилиндрической формы с прямоугольным сечением витков, которая оборудована устройством для изменения шага витков путем ее растяжения или сжатия. Техническим результатом является повышение эффективности отделения дисперсных частиц от газа. 9 ил.
Наверх