Способ термической обработки деформируемой коррозионно-стойкой стали 14х17н2

Изобретение относится к термической обработке стали, применяемой для изготовления сложнонагруженных деталей в судовом машиностроении, воспринимающих значительные разнонаправленные динамические нагрузки, например, крепежа, поковок. Для повышения пластических характеристик и ударной вязкости способ включает нагрев стали под закалку при температуре 1040-1050°C, охлаждение в масле, двукратный отпуск с охлаждением в воде после каждого отпуска, причем нагрев при первом отпуске ведут при температуре 600-610°C. 2 табл., 1 пр.

 

Изобретение относится к технологии термической обработки и предназначено для термической обработки деформируемой коррозионно-стойкой стали 14X17H2, применяемой в судовом машиностроении для изготовления сложнонагруженных деталей, воспринимающих значительные разнонаправленные динамические нагрузки, например, крепежа, поковок.

Известны способы термической обработки стали 14X17H2, разные технологические приемы и решения по процедуре нагрева, выдержки и охлаждения, которые нашли широкое промышленное применение в серийном производстве продукции общетехнического назначения. Однако они не обеспечивают требуемого уровня механических характеристик.

Известен способ термической обработки изделий из стали 14X17H2 (ГОСТ 5949-75) «Сталь сортовая и калиброванная коррозионно-стойкая, жаростойкая и жаропрочная», включающий закалку в масле в интервале температур 1000-1030°C с последующим высоким отпуском в интервале температур 620-660°C и охлаждением на воздухе. Однако он не обеспечивает получения однородного комплекса свойств в направлении вдоль и поперек волокон деформации, регламентируя лишь значения механических свойств поперек волокон деформации. Известное техническое решение находит промышленное применение при термической обработке проката, применяемого в судостроительной промышленности для изготовления из него деталей в процессе последующего перекова проката.

Недостатком известного способа является то, что он обеспечивает более низкую ударную вязкость, которая определяется содержанием δ феррита в стали. Наиболее высокой ударной вязкостью обладает сталь, практически не содержащая δ феррит; несколько ниже - у сталей мартенситно-ферритного класса, содержащих δ феррита более 40%; наименьшая ударная вязкость у стали, содержащей δ феррит в пределах 10-20%.

В качестве прототипа принят способ термической обработки штамповок кривошипных валов из стали мартенситно-ферритного класса 14X17H2, включающий закалку в масле с температуры 970-1020°C и последующий двукратный высокотемпературный отпуск, первый и второй отпуск осуществляют при температуре 620-670°C с охлаждением после каждого отпуска в воде или масле, при этом первый отпуск проводят в течение 4,5-5 часов, а второй отпуск 3,5-4,5 часа. Однако способ по прототипу не обеспечивает высоких пластических характеристик и ударной вязкости. Эти недостатки устраняются предлагаемым техническим решением. Задачей изобретения является повышение качества сложнонагруженных деталей. Технический результат - повышение пластических характеристик и ударной вязкости, которые наиболее важны для сложнонагруженных деталей.

Этот технический результат достигается тем, что в способе термической обработки деформируемой коррозионно-стойкой стали 14X17H2, включающем нагрев под закалку, охлаждение в масле, двукратный отпуск с охлаждением после каждого отпуска в воде, нагрев под закалку осуществляют при температуре 1040-1050°C, нагрев при первом отпуске - при температуре 600-610°C. При этом время выдержки при закалке 3 часа, время выдержки при первом отпуске 4,5-5 часов, при втором отпуске 3,5-4,5 часа, как в прототипе, температура второго отпуска находится в интервале, принятом в прототипе (620-670°C), в предлагаемом способе 640-660°C. Технический результат достигается выбором узкого диапазона температур при закалке и первом отпуске. В структуре после охлаждения от температуры закалки до комнатной образуется мартенсит и сохраняется некоторое количество мягких структурных составляющих δ феррита. Проведение высокого отпуска при указанной температуре приводит к распаду мартенсита на ферритно-карбидную смесь, обеспечивая стабильное состояние отпущенной мартенситной составляющей.

Способ осуществляют следующим образом.

Заготовки вырезают из прутков стали 14X17H2, помещают в печь с выдвижным подом и подвергают их термической обработке по предлагаемому режиму. После термической обработки из заготовок изготавливают образцы для механических испытаний.

Пример осуществления способа.

Из прутка стали 14X17H2 (химический состав приведен в таблице 1) диаметром 80 мм брали отрезок 1,5 м, из которого фрезой вырезали заготовки для термической обработки. Заготовки вырезали в соответствии с требованиями ГОСТ 7564-97: продольные - бруски сечением 25×25 мм, поперечные - шайбы толщиной 20 мм. Вырезанные заготовки проходили термообработку по различным режимам: на средних, минимальных, максимальных и запредельных значениях параметров. Оптимальным был признан режим: закалка при 1040°C 3 часа, охлаждение в масле, нагрев при первом отпуске при температуре 610°C, выдержка 4,5 часа, охлаждение в воде, нагрев при втором отпуске 650°C 3,5 часа, охлаждение в воде. Обработанные образцы подвергали механическим испытаниям (результаты приведены в таблице 2). Определение ударной вязкости производилось при нормальной температуре по ГОСТ 9454-78; испытания на растяжение образцов проводилось по ГОСТ 1497-84; склонность к межкристаллитной коррозии определялась по ГОСТ 6032-2003 методом AM на продольных и поперечных пластинах. Склонность к межкристаллитной коррозии отсутствовала; содержание δ феррита определялось по методу Розиваля на поперечных микрошлифах и составило 0,1%.

В примерах меняли температуру нагрева под закалку и принимали ее 1030, 1040, 1050, 1060°C при времени выдержки 3 часа, нагрев при первом отпуске до 610°C 4,5 часа, при втором 650°C 3,5 часа, охлаждение в воде. При температуре нагрева под закалку 1030°C свойства на образцах были нестабильны, то же наблюдалось при нагреве при 1060°С. Вероятно это связано с неполным распадом мартенсита. Меняли температуру нагрева при первом отпуске: 590, 600, 610, 620°C, выдержка 4,5 часа, охлаждение в воде. Температуру второго отпуска принимали 650°C, выдержка 3,5 часа, охлаждение в воде. Температура закалки 1040-1050°C 3 часа. При температуре первого отпуска 590°C не весь мартенсит распадался на ферритно-карбидную смесь и снижались механические характеристики. При температуре первого отпуска 620°C свойства были, как и при 610°C, следовательно нагрев до этой температуры нецелесообразен экономически.

Как видно из таблицы 2, пластические характеристики и ударная вязкость после обработки по предлагаемому способу выше, чем по прототипу. Значения δв и δ0,2 практически соответствуют значениям прототипа. Испытания проведены в производственных условиях и подтвердили промышленную применимость способа.

Таблица 1
Марка стали Полуфабрикат Химический состав, % мас.
C Mn Si Cr Ni P S
ГОСТ 5632-72 0,11-0,17 0,8 0,8 16-18 1,5-2,5 0,025 0,030
14X17H2 0,12
14X17H2 прокат 0,52 0,56 16,0 2,2 0,022 0,011
Таблица 2.
⌀ проката, мм Способ обработки Механические свойства, не менее Вид образца
δ, % ψ, % KCU, МДж/м2
от 60-100 Известный 12 43 38-52
По прототипу
80 Предлагаемый 17,5 45,8 Продольные
14,3 43,2 83 Поперечные

Способ термической обработки деформируемой коррозионно-стойкой стали 14X17H2, включающий нагрев под закалку, охлаждение в масле, двукратный отпуск с охлаждением в воде после каждого отпуска, отличающийся тем, что нагрев под закалку осуществляют при температуре 1040-1050°C, а нагрев при первом отпуске - при температуре 600-610°C.



 

Похожие патенты:

Изобретение относится к машиностроению и может быть использовано для термосиловой обработки (ТСО) маложестких осесимметричных деталей типа «вал». .

Изобретение относится к восстановлению крупногабаритного азотированного коленчатого вала из стали или чугуна с шаровидным графитом, получившего при эксплуатации задир одной или нескольких шеек, имеющих полость.

Изобретение относится к области термической обработки деталей и предназначено для использования в судовом машиностроении для изготовления штамповок кривошипных валов.

Изобретение относится к машиностроению и может быть использовано в производстве двигателей внутреннего сгорания. .

Изобретение относится к упрочняющей обработке коленчатых валов. .

Изобретение относится к области металлургии, в частности к термической обработке поковок и штамповок деталей, работающих в условиях знакопеременных нагрузок. .

Изобретение относится к способам упрочнения изделий и может быть использовано преимущественно в машиностроении при индукционной закалке изделий типа осей, валов, имеющих сложную конфигурацию упрочняемых участков в местах выхода шлиц, пазов, лысок и т.д.

Изобретение относится к области индукционного нагрева и может быть использовано для восстановления работоспособности, например, крупногабаритных азотированных коленчатых валов, получивших при эксплуатации задиры шеек.

Изобретение относится к области металлургии, в частности для упрочнения коленчатых валов двигателей внутреннего сгорания при их изготовлении и ремонте. .

Изобретение относится к области машиностроения и может быть использовано при изготовлении тяжелонагруженных деталей машин из стали с пониженной прокаливаемостью, например цилиндрических и конических шестерен.
Изобретение относится к области машиностроения и может быть использовано для реализации процессов термической обработки деталей, к поверхности которых предъявляются особые требования.

Изобретение относится к области термической обработки деталей и предназначено для использования в судовом машиностроении для изготовления штамповок кривошипных валов.

Изобретение относится к области металлургии и термической обработки сплавов и может быть использовано в точном приборостроении и машиностроении. .

Изобретение относится к области термической обработки деталей и предназначено для использования в судовом и энергетическом машиностроении при изготовлении силовых крепежных элементов систем и узлов высокого давления.

Изобретение относится к области машиностроения и может быть использовано в различных отраслях промышленности при термической обработке деталей из мартенситностареющих сталей, например, 08Х15Н5Д2Т, 06Х14Н6Д2МБТ, 10Х14Н4АМЗ и 07Х16Н6.

Изобретение относится к технологии обработки низко- и среднеуглеродистой легированной стали. .

Изобретение относится к металлургии, в частности к термической обработке мартенситных дисперсионно-твердеющих сталей. .

Изобретение относится к области термической обработки конструкций, выполненных из дисперсионно-твердеющих сплавов и работающих в условиях как высоких, так и низких температур, вибраций и агрессивных сред, в частности обработки паяно-сварных конструкций, содержащих детали из мартенситно-стареющей стали типа Н18К8М5Т.

Изобретение относится к области термической обработки массивных слитков и заготовок из стали мартенситного класса, применяемых в атомной энергетике, судовом и химическом машиностроении.
Изобретение относится к области металлургии, а именно к способу термической обработки жаропрочных сталей мартенситного класса, применяемых для изготовления элементов тепловых энергетических установок с рабочей температурой пара до 650°C. Способ включает выдержку в аустенитной области при температуре 1060°C в течение 30-40 минут с последующим охлаждением на воздухе и двухступенчатый отпуск. На первой ступени проводят низкотемпературный отпуск в интервале температур 200-350°C, а на второй ступени - отпуск при температуре 760°C. Продолжительность каждого отпуска составляет 3 часа. Способ позволяет повысить предел длительной прочности и предел ползучести жаропрочных сталей мартенситного класса за счет выделения дисперсных карбонитридов Nb(C,N) на первой ступени отпуска. 4 табл., 1 пр.
Наверх