Устройство термоэлектрической защиты трубопровода от коррозии



Устройство термоэлектрической защиты трубопровода от коррозии
Устройство термоэлектрической защиты трубопровода от коррозии
Устройство термоэлектрической защиты трубопровода от коррозии
Устройство термоэлектрической защиты трубопровода от коррозии
Устройство термоэлектрической защиты трубопровода от коррозии
Устройство термоэлектрической защиты трубопровода от коррозии

 


Владельцы патента RU 2510434:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) (RU)

Изобретение относится к оборудованию для систем защиты подземных трубопроводов от коррозии и может быть использовано для получения электрической энергии для питания катодной станции за счет тепла перемещаемого газа или жидкости в трубопроводе. Устройство содержит источник питания, соединенный с силовым блоком, который соединен кабелями с участком защищаемого трубопровода и анодным заземлителем, при этом в качестве источника питания оно содержит термоэлектрический генератор, представляющий собой отрезок трубы, включенный в защищаемый трубопровод, соединенный с ним через фланцы и выполненный с кольцевым оребрением из изоляционного диэлектрического материала с высокой теплопроводностью, внутри которого, повторяя очертания продольного разреза кольцевых ребер вокруг отрезка трубы по всей его длине, помещены парные зигзагообразные ряды теплоэлектрических секций, одиночные ряды которых состоят из размещенных поочередно и соединенных между собой термоэмиссионных преобразователей, каждый из которых состоит из пары отрезков из разных металлов M1 и М2, концы которых расплющены, плотно прижаты друг к другу и расположены в зоне нагрева и охлаждения, причем свободные концы одиночных рядов каждого парного ряда с одной стороны отрезка трубы соединены между собой перемычками, а с противоположной - присоединены к коллекторам с одноименными зарядами, соединенными через токовыводы с силовым блоком. Технический результат - повышение надежности и эффективности защиты трубопровода от коррозии. 6 ил.

 

Предлагаемое изобретение относится к оборудованию для систем защиты подземных трубопроводов от коррозии, а именно для получения электрической энергии для питания катодной станции за счет тепла перемещаемого газа или жидкости в трубопроводе.

Известно устройство для совместной защиты от коррозии подземных металлических объектов, содержащее источники питания, анодные заземления, блоки питания и электроды сравнения [Патент РФ№656374, МПК C23F 13/00, 2000].

Основным недостатком известного устройства является необходимость постоянного электроснабжения источников питания от электросети, что снижает его надежность и эффективность.

Более близким по технической сущности к предлагаемому изобретению является автономное устройство для катодной зашиты трубопроводов, содержащее источник ЭДС, соединенный с анодным заземлением и защищаемым трубопроводом, причем источник ЭДС представляет собой движущий орган, который передает кинетическую энергию движущегося потока газа (жидкости) в трубопроводе на вал генератора через стабилизатор частоты в силовой блок, где преобразуется в необходимое для катодной защиты напряжение [Патент РФ №1823524, МПК C23F 13/00, 1995].

Основными недостатками известного устройства являются сложность его конструкции, которая включает в себя, как минимум, турбину и электрогенератор, и создаваемое турбиной дополнительное гидравлическое сопротивление в защищаемом трубопроводе, что снижает надежность и эффективность устройства.

Техническим результатом предлагаемого изобретения является повышение надежности и эффективности термоэлектрической защиты трубопровода от коррозии.

Технический результат достигается тем, что предлагаемое устройство термоэлектрической защиты трубопровода от коррозии содержит источник питания, соединенный с силовым блоком, который соединен кабелями с участком защищаемого трубопровода и анодным заземлителем, причем источник ЭДС представляет собой отрезок трубы, включенный в защищаемый трубопровод и соединенной с ним через фланцы, покрытой изоляционным слоем из диэлектрического материала с высокой теплопроводностью, выполненным в форме кольцевого оребрения с кольцевыми ребрами, внутри которого, повторяя очертания его продольного разреза вокруг отрезка трубы по всей ее длине, помещены парные зигзагообразные ряды теплоэлектрических секций, одиночные ряды которых состоят из размещенных по очередности и соединенных между собой термоэмиссионных преобразователей, каждый из которых состоит из пары отрезков, выполненных из разных металлов М1 и М2, концы которых расплющены и плотно прижаты друг к другу и расположены в зоне нагрева и охлаждения, вблизи кромки ребра и поверхности трубы соответственно, причем свободные концы одиночных рядов каждого парного ряда с одной стороны отрезка трубы соединены между собой перемычками, а с противоположной - присоединены к коллекторам с одноименными зарядами, соединенными через токовыводы, с силовым блоком.

На фиг.1 представлены общий вид и разрез устройства термоэлектрической защиты трубопровода от коррозии, на фиг.2-6 -источник питания (ЭДС).

Предлагаемое устройство термоэлектрической защиты трубопровода содержит источник питания (ЭДС) 1, соединенный с силовым блоком 2, который, в свою очередь, соединен соединительными кабелями 3 и 4 с участком защищаемого трубопровода 5 и анодным заземлителем 6, причем генератор 1 представляет собой отрезок трубы 7, включенный в защищаемый трубопровод 5 и соединенный с ним через фланцы 8, покрытый изоляционным слоем из диэлектрического материала с высокой теплопроводностью 9, выполненным в форме кольцевого оребрения с кольцевыми ребрами 10, внутри которого, повторяя очертания его продольного разреза вокруг трубы 7 по всей ее длине, помещены парные зигзагообразные ряды 11 теплоэлектрических секций (ТЭС) 12, одиночные ряды которых состоят из размещенных по очередности и соединенных между собой термоэмиссионных преобразователей (ТЭП) 14. Каждый ТЭП 14 состоит из пары отрезков, выполненных из разных металлов М1 и М2, концы которых расплющены и плотно прижаты друг к другу и расположены в зоне нагрева и охлаждения, вблизи кромки ребра 10 и поверхности трубы 7 соответственно, причем свободные концы одиночных рядов каждого парного ряда 11 с одной стороны ТЭС 12 соединены между собой перемычками 15, а с противоположной - присоединены к коллекторам с одноименными зарядами 16 и 17, соединенными через токовыводы 18 и 19 с силовым блоком 2.

Предлагаемое устройство термоэлектрической защиты трубопроводов, представленное на фиг.1-6, работает следующим образом.

После заполнения трубопровода 5 и начала движения в нем газа (жидкости) с температурой tГ выше, чем температура грунта tЗ, который соприкасается с наружной поверхностью источника питания (ЭДС) 1, представляющей собой слой из диэлектрического материала с высокой теплопроводностью 9, выполненный в форме кольцевого оребрения с кольцевыми ребрами 10. При этом, в результате теплообмена между горячим газом (водой), движущимся по трубе 7 и окружающим грунтом, нагревается зона нагрева, состоящая из слоя материала 9, прилегающего к стенке трубы 7, в промежутке между смежными ребрами 10, в которой происходит нагрев двухслойных расплющенных концов ТЭП 14, выполненных из металлов М1 и М2, расположенных параллельно поверхности трубы 7 за счет передачи тепла теплопроводностью через слой материала 9, обладающего высокой теплопроводностью от стенки трубы 7 и охлаждение кромок ребер 10 от холодного грунта, в которых происходит охлаждение двухслойных расплющенных, плотно прижатых друг к другу, концов ТЭП 14, выполненным из металлов М1 и М2, расположенных в кромках ребер 10, которые охлаждаются при этом. Конструкция двухслойных концов ТЭП 14 позволяет увеличить количество переходящего тепла за счет повышенной площади их контакта с зонами нагрева и охлаждения и высокой площади контакта слоев самих металлов М1 и М2, соединенных между собой (например, спайкой). Кроме того, процесс теплообмена от материала 9 к спаям металлов М1 и М2 ТЭП 14 интенсифицируется за счет передачи его теплопроводностью, скорость которой при высоком значении коэффициента теплопроводности значительно выше, чем скорость передачи тепла за счет конвекции [И.Н. Сушкин. Теплотехника. - М.: «Металлургия», 1973, с.195-198]. В результате теплообменных процессов, происходящих между газом в трубе 7 и наружным грунтом, происходит нагрев двухслойных спаев, состоящих из плотно соединенных между собой слоев металлов М1 и М2, расположенных в зоне нагрева, и охлаждение двухслойных спаев, выполненных также из металлов М1 и М2, расположенных в зоне охлаждения каждой ТЭП 14, соединенных между собой, что создает разность температур между зонами нагрева и охлаждения, в результате которой происходит эмиссия электронов во всех ТЭП 14 и, соответственно, возникновение в парных зигзагообразных рядах 11 термоэлектричества [С.Г. Калашников. Электричество. - М.: «Наука», 1970, с.502-506], которое суммируется на коллекторах 16 и 17 и через тоководы 18 и 19 поступает в силовой блок 2, где создается требуемое напряжение и сила тока (на фиг.1-6 не показаны), после чего через соединительные кабели 3 и 4 ток с необходимыми параметрами подается на защищаемый участок трубопровода 5 и анодный заземлитель 6.

При проведении экспериментальных исследований было установлено, что источник ЭДС с теплообменной поверхностью 170×120 мм (0,02 м2), выполненный из 160 ТЭП (парных отрезков металлов М1-хромель и М2-копель), позволяет при разности температур холодной и горячей среды от 30°C до 230°C (в качестве сред использовали воздух при разных температурах) на холодных и горячих спаях металлов М1 и М2 получать постоянный электрический ток напряжением от 0,23 до 2,8 В, силой тока от 0,01 до 0,15 А и мощностью от 0,002 до 0,42 Вт [Ежов B.C., Семичева Н.Е. Использование низкопотенциальной тепловой энергии для электроснабжения зданий. Известия Юго-Западного государственного университета. - Курск, №1, 2012. - С.56-62]. Расчеты на основании экспериментальных данных (без учета потерь) показывают, что источник ЭДС с теплообменной поверхностью 1 м2 при этих условиях позволяет получать постоянный электрический ток напряжением (выходное напряжение) от 11,5 до 140 В, силой тока от 0,5 до 6,5 А и мощностью от 5,75 до 810 Вт. Для сравнения - выходное напряжение известной станции катодной защиты «Минерва-3000», Uвых=96 В.

Вышеприведенные данные показывают, что величина разности электрического потенциала и силы тока на токовыводах 18 и 19 источника питания (ЭДС) 1 зависит от разности температур на спаях металлов М1 и М2, их характеристик, количества ТЭП 14 в парных рядах 11 и их числа. При необходимости устанавливают несколько источников питания 1. Требуемые напряжение U и силу тока I получают путем суммирования и трансформации получаемого ими тока в силовом блоке 2.

Таким образом, предлагаемое изобретение обеспечивает автономное энергоснабжение катодной защиты и позволяет упростить конструкцию источника питания, что повышает надежность и эффективность защиты трубопроводов от коррозии.

Устройство для термоэлектрической защиты трубопровода от коррозии, содержащее источник питания, соединенный с силовым блоком, который соединен кабелями с участком защищаемого трубопровода и анодным заземлителем, отличающееся тем, что в качестве источника питания оно содержит термоэлектрический генератор, представляющий собой отрезок трубы, включенный в защищаемый трубопровод, соединенный с ним через фланцы и выполненный с кольцевым оребрением из изоляционного диэлектрического материала с высокой теплопроводностью, внутри которого, повторяя очертания продольного разреза кольцевых ребер вокруг отрезка трубы по всей его длине, помещены парные зигзагообразные ряды теплоэлектрических секций, одиночные ряды которых состоят из размещенных поочередно и соединенных между собой термоэмиссионных преобразователей, каждый из которых состоит из пары отрезков, выполненных из разных металлов M1 и М2, концы которых расплющены, плотно прижаты друг к другу и расположены в зоне нагрева и охлаждения вблизи кромки ребра и поверхности трубы соответственно, причем свободные концы одиночных рядов каждого парного ряда с одной стороны отрезка трубы соединены между собой перемычками, а с противоположной - присоединены к коллекторам с одноименными зарядами, соединенными через токовыводы с силовым блоком.



 

Похожие патенты:

Изобретение относится к области предотвращения коррозии металлов путем анодной и катодной защиты от эрозионного и коррозионного разрушения подводной поверхности морских сооружений освоения шельфа замерзающих морей, например морских стационарных платформ, и может быть использовано в другой морской технике, предназначенной для ледовых условий эксплуатации.
Изобретение относится к способам защиты от эрозионно-коррозионного разрушения подводной поверхности морских сооружений освоения шельфа замерзающих морей, а также от воздействия на них ледовых образований и может быть использовано в другой морской технике, предназначенной для ледовых условий эксплуатации.

Изобретение относится к области предотвращения коррозии гребных винтов и гребных валов морских судов путем катодной защиты. .

Изобретение относится к электрохимзащите от грунтовой коррозии и может найти применение в нефтяной, газовой, энергетических отраслях промышленности, а также в коммунальном хозяйстве при выполнении анодного заземления.

Изобретение относится к области электрохимической зашиты подземных сооружений от коррозии и может быть использовано при сооружении анодных и рабочих заземлений постоянного тока.

Изобретение относится к машиностроению, к устройствам защиты металлических конструкций от коррозии, может применяться для защиты корпусов автомобилей, поверхностей трубопроводов, корпусов судов.

Изобретение относится к области защиты металлических оболочек кабелей электроснабжения. .

Изобретение относится к устройствам катодной защиты от коррозии металлоконструкций в химической и нефтегазовой промышленности. .

Изобретение относится к области строительства и эксплуатации морских нефтепромысловых гидротехнических сооружений, в частности к обеспечению эксплуатационной надежности морских стационарных платформ.

Изобретение относится к устройствам для катодной защиты скважинного оборудования от коррозии и может быть использовано в различных отраслях промышленности. .

Изобретение относится к области защиты металлических конструкций от коррозии. Протектор для защиты металлических конструкций от коррозии содержит разрушаемый электрод, вмонтированный в него магнитный элемент и изоляционные прокладки. Между электродом и магнитным элементом расположен материал с односторонней проводимостью, направленной от магнитного элемента к электроду, или установлена прокладка из диэлектрика, частично изолирующая контакт между электродом и магнитным элементом, при этом контактное сопротивление между электродом и магнитным элементом не превышает 10% от полного сопротивления протектора. Технический результат: повышение защитного действия протектора на защищаемой металлической конструкции. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к области электрохимической защиты трубопроводной арматуры от внутренней коррозии. Непосредственно на запорном элементе трубопроводной арматуры размещают анодные протекторы и закрепляют их на запорном элементе коррозионно-стойким резьбовым крепежом. В качестве катода используют запорный элемент трубопроводной арматуры, кинематический элемент привода трубопроводной арматуры в виде вала, штока либо шпинделя и корпус трубопроводной арматуры. Запорный элемент трубопроводной арматуры катода и анодный протектор дополнительно соединяют неразъемными или условно-разъемными металлическими соединениями в единую электрическую цепь с суммарным электрическим сопротивлением по металлу в сухом состоянии величиной не более 0,1 Ом. Материал анодного протектора выбирают в зависимости от материала катода и концентрации в рабочей среде коррозионно-активных компонентов, в частности - хлорид-иона, из условия, что алгебраическая разность Δφ электрохимических потенциалов катода φк и анода φа удовлетворяет соотношению: 0,4 В ≤ Δφ ≤ 0,5 В. Повышается эффективность и экономичность защиты. 2 н. и 16 з.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к электрохимзащите от грунтовой коррозии и может найти применение в нефтяной, газовой, энергетических отраслях промышленности, а также в коммунальном хозяйстве при выполнении анодного заземления. Способ включает монтаж стоек на дне траншеи для установки электродов анодного заземления и контрольно-измерительной колонки, к которой подводят кабели, при этом устанавливают ковер с выводом газоотводной трубки от электродов через скважину и заполняют пространство между электродами и грунтом, при этом пространство между электродами и грунтом заполняют углеродсодержащим материалом из твердых углеродосодержащих отходов электродного производства марки МУЭ, обладающим естественной усадкой при увлажнении на 10 -15%, с утрамбовкой каждого слоя материала, увлажненного до насыщения. Технический результат: сокращение количества электродов анодного заземления, уменьшение размеров траншей для их размещения и увеличение срока эксплуатации анодного заземлителя. 1 ил.

Изобретение относится к способу и устройству коррозионной защиты стали в бетоне. Устройство содержит расходуемый анод, модификатор электрического поля и наполнитель с ионной проводимостью, устанавливают в полости, образованной в бетонном элементе, и расходуемый анод непосредственно соединяют со сталью. Модификатор включает элемент со стороной, которая является анодом, поддерживающим реакцию окисления, в электронном контакте со стороной, которая является катодом, поддерживающим реакцию восстановления. Катод модификатора обращен к расходуемому аноду и отделен от него наполнителем. Наполнитель содержит электролит, который соединяет расходуемый анод с катодом модификатора. Анод модификатора обращен от расходуемого анода. Реакция восстановления на катоде модификатора, по существу, включает восстановление кислорода из воздуха. Обеспечивается увеличение выработки тока дискретным расходуемым анодом и усиление защитного эффекта и возможность подачи вырабатываемого тока в предпочтительном направлении для улучшения распределения тока при гальванической защите стали в элементах из отвержденного железобетона, контактирующих с воздухом. 3 н. и 21 з.п. ф-лы, 12 ил., 3 пр.

Изобретение относится к катодной защите металлических объектов от коррозии и электрохимической обработки почв, илов и других дисперсных сред для очистки от загрязнений. Сборка содержит центральный кабель и концентрично расположенные относительно него последовательно распределенные аноды на титановой основе цилиндрической формы с наружным каталитическим покрытием, каждый из которых связан с кабелем электрическим контактом, размещенным в полости анода. Каждый анод с электроактивным покрытием внутри и снаружи снабжен приваренным в его торцевой части биметаллическим трубчатым элементом титан-медь, содержащим переходный термодиффузионный слой, представляющий собой токоввод для соединительного проводника, связывающего анод с проводником центрального кабеля в полости анода, при этом электрические контакты выполнены пайкой и защищены многослойной изоляцией. Технический результат: снижение переходного сопротивления в месте контакта токопроводящего кабеля и токоприемника и в месте контакта токоприемника и анодного заземлителя. 3 ил.

Изобретение относится к области защиты подземных металлических сооружений от коррозии. Анодный заземлитель состоит из литого электрода с крестовидной формой сечения, имеющего равноудаленные выступы, соединенные дугами, выгнутыми от центра электрода, токоввод, кабель и термоусадочную муфту в форме колпака с отверстием для заливки герметика, при этом электрод имеет два токоввода, расположенных на противоположных торцах электрода и представляющих собой контактные узлы, содержащие вплавленные в электрод вставки цилиндрической формы диаметром 0,2-0,4 диаметра электрода, длиной 0,1-0,15 общей длины электрода, изготовленные с проточками глубиной 3-6 мм и шириной 5-15 мм, причем вставки вплавлены в электрод на 2/3 своей длины, а на боковой поверхности вставок, не залитой материалом электрода, выполнены площадки для крепления накладок размером 0,60-0,65 диаметра вставки, фиксирующих прижим кабеля токоввода в виде петли, причем вставки выполнены из сплава, обладающего коэффициентом термического расширения, близким к коэффициенту термического расширения материала электрода, а в качестве герметика использован кремнийорганический полимерный наполнитель. Конструкция электрода позволяет повысить его механическую прочность и надежность работы при сборке электродов в гирлянду. 3 ил.
Изобретение относится к области защиты металлов от коррозии. Способ ремонта системы защиты от коррозии трубопроводов куста скважин нефтяного месторождения, содержащей установки катодной защиты скважин и протекторной защиты трубопроводов, групповую замерную установку (ГЗУ), станции катодной защиты (СКЗ) и анодные заземлители, характеризуется тем, что на корпусе ГЗУ монтируют кабельные линии с подключением к каждому трубопроводу и блок совместной защиты трубопроводов (БСЗТ), кабельные выводы подключают к регулировочному плато БСЗТ, протекторно-защищенные трубопроводы через диоды и регулируемые сопротивления подключают к катодно-защищенным трубопроводам в БСЗТ, при этом в качестве СКЗ используют СКЗ и анодные заземлители, смонтированные на скважине для катодной защиты обсадной колонны скважины с трубопроводом, катодно-защищенный трубопровод используют в качестве «донора» для обеспечения тока защиты остальных трубопроводов, защитный потенциал которых снизился менее минимально допустимого -0,9 В или срок службы протекторов которых истек, проставляют вставки для электрического разобщения трубопроводов и пункта схождения трубопроводов, все трубопроводы подключают к БСЗТ и производят регулировку тока защиты на трубопроводах, значения защитных потенциалов на которых превышают -1,05 В, производят снижение и перераспределение токов защиты между трубопроводами, протекторную защиту отключают при потенциале защиты менее -0,9 В, потенциал на вновь подключаемых трубопроводах устанавливают (-0,9) - (-1,05) В, при подключении одного из каналов БСЗТ к корпусу пункта схождения трубопроводов и трубопроводам до перемычки потенциал устанавливают порядка (-0,7) - (-0,8) В и регулируют величину токов утечек. Технический результат: устранение коррозии околошовных зон трубопроводов и повышение степени антикоррозионной защиты трубопроводов.
Наверх