Способ сборки ячеистого радиационного детектора



Способ сборки ячеистого радиационного детектора
Способ сборки ячеистого радиационного детектора
Способ сборки ячеистого радиационного детектора
Способ сборки ячеистого радиационного детектора
Способ сборки ячеистого радиационного детектора
Способ сборки ячеистого радиационного детектора
Способ сборки ячеистого радиационного детектора
Способ сборки ячеистого радиационного детектора
Способ сборки ячеистого радиационного детектора
Способ сборки ячеистого радиационного детектора
Способ сборки ячеистого радиационного детектора
Способ сборки ячеистого радиационного детектора
Способ сборки ячеистого радиационного детектора
Способ сборки ячеистого радиационного детектора
Способ сборки ячеистого радиационного детектора
Способ сборки ячеистого радиационного детектора
Способ сборки ячеистого радиационного детектора
Способ сборки ячеистого радиационного детектора
Способ сборки ячеистого радиационного детектора
Способ сборки ячеистого радиационного детектора
Способ сборки ячеистого радиационного детектора
Способ сборки ячеистого радиационного детектора

 


Владельцы патента RU 2510520:

ТРИКСЕЛЛЬ (FR)

Изобретение относится к системам формирования изображений, таким как радиографические или рентгенографические системы, в частности, касается многоячеистых детекторных сборок, используемых в указанных системах, и способа изготовления указанных сборок. Ячеистая радиационная детекторная сборка (1000), причем сборка содержит матрицу (NхМ) детекторных ячеек (304, 304'); сцинтилляторный слой (910); слой (604) общей подложки; где матрица детекторных ячеек (304, 304') расположена между сцинтилляторным слоем и слоем подложки; где каждая детекторная ячейка (304, 304') имеет переднюю сторону, обращенную к сцинтилляторному слою, и заднюю сторону, обращенную к слою подложки; и где относительное различие по высоте между соседними краями (505, 505') передних сторон соседних детекторных ячеек (304, 304') составляет менее 2 мкм, а предпочтительно менее 1 мкм. Технический результат - предотвращение артефактов изображения. 6 н. и 9 з.п. ф-лы, 22 ил.

 

2420-176122RU/17

Область техники, к которой относится изобретение

Настоящее изобретение относится в целом к системам формирования изображений, таким как радиографические или рентгенографические системы, и, в частности, касается многоячеистых детекторных сборок, используемых в указанных системах, и способа изготовления указанных сборок. Более конкретно, настоящее изобретение относится к такой системе и такому способу для сборки детекторных ячеек, который минимизирует или предотвращает появление видимых артефактов, связанных с ячеистой структурой.

Уровень техники

Медицинские системы диагностики и визуализации изображений нашли широкое применение в современном здравоохранении. В настоящее время существует ряд средств для медицинских диагностических систем с визуализацией изображений. Они включают в себя системы компьютерной томографии (CT), рентгеноскопические системы (включая как традиционные, так и цифровые/оцифровывающие системы визуализации), системы магнитного резонанса (MR), системы позитронно-эмиссионной томографии (PET), ультразвуковые системы, ядерные медицинские системы и т.д. Медицинские системы визуализации часто создают изображение путем облучения пациента неинтрузивным источником и реконструкции изображения из той части, которая проходит через пациента и воздействует на детектор визуализации. Во многих системах визуализации детектор визуализации может содержать детекторную поверхность, содержащую множество детекторных ячеек. Например, в детекторах визуализации на основе рентгеновского излучения, компьютерной томографии, позитронно-эмиссионной томографии, ядерного излучения и гамма-лучей, часто используется детекторный материал с фотонной ионизацией, такой как кадмий - цинк - теллур (CZT), кадмий - теллур (CdTe), и различные другие кристаллические полупроводниковые материалы, которые имеют ограничения по размерам из-за множества производственных факторов. Например, для детекторов визуализации, использующих материал CZT, обычно требуется множество ячеек, поскольку кристаллы CZT можно вырастить только с относительно малого размера из-за проблем выхода готовых изделий в современной технологии. Радиационные детекторы используют, например, при формировании изображений для медицинских целей (например, рентгеноскопии) и в приложениях неразрушающих исследований. Для радиационных детекторов большой площади может потребоваться множество детекторных ячеек, соединенных вместе, которые далее называются ячеистой структурой. Ячеистая структура порождает дополнительные артефакты изображения, вызванные, например, наличием неактивной области или зазора между детекторными ячейками, разупорядочением между детекторными ячейками в направлении x, y, z и нелинейными отличиями между детекторными ячейками.

Соответственно, множество ячеек CZT соединяют с подложкой, такой как кремниевая пластина или кристалл, в ячеистую компоновку для обеспечения желаемого размера детектора визуализации. К сожалению, в процессе формирования ячеистой структуры часто образуются зазоры, которые создают видимые артефакты в реконструированном изображении. Сборка детекторных ячеек также усложняется из-за необходимости электронно соединить детекторные ячейки с соответствующим кристаллом, который затем должен быть подсоединен к остальной части приемника изображений.

В плоских детекторах на основе непрямого преобразования сцинтиллятор соединен с панелью считывания, составленной из одной или нескольких детекторных ячеек. Сцинтиллятор может быть непосредственно нанесен на панель считывания либо сначала нанесен на подложку, которую затем соединяют с панелью считывания, например, с помощью оптического клея или геля. Оптические и механические свойства этого соединительного слоя оказывают большое влияние на качество изображения (IQ). Другими словами, разупорядочение по всем трем направлениям х, y, z между детекторными ячейками в ячеистом детекторе приводит к артефактам изображения. Разупорядочение по Z приводит к различиям по высоте между детекторными ячейками. Это может ввести пустоты или воздушные пузырьки в соединительный слой, где объединяются детекторные ячейки (см. фиг.1). Указанные несовершенства влияют на локальную чувствительность пикселей, что приводит к артефактам в изображении. Если эти дефекты стабильны, то есть не изменяются и/или не смещаются во времени, то соответствующие вариации локальной чувствительности пикселей можно скорректировать с помощью обычной коррекции усиления. Если это не так, то обычный метод коррекции усиления уже не достаточен и приведет к артефактам в изображении. Артефакты изображения, вызванные разупорядочением по x, y, необходимо корректировать программными средствами. Для обеспечения адекватной коррекции и/или уменьшения вычислительной мощности разупорядочение по x, y должно быть как можно меньшим.

Соответственно, имеется потребность в таком способе сборки множества детекторных ячеек, который минимизирует или предотвращает артефакты изображения, связанные с неактивной областью и разупорядочением детекторных ячеек. В частности, имеется потребность в способе уменьшения зазоров между соседними детекторными ячейками.

В патенте США US2005/098732 описан детектор, который может включать в себя следующее: плоскую основную плату; матрицу (N×M) детекторных ячеек, закрепленных на основной плате, причем каждая из детекторных ячеек содержит матрицу фотодатчиков, изготовленных на подложке, имеющей необходимые схемы; множество пальчиковых ячеек данных, закрепленных на основной плате, причем каждая пальчиковая ячейка данных содержит множество линий данных; множество пальчиковых ячеек сканирования, закрепленных на основной плате, причем каждая пальчиковая ячейка сканирования содержит множество линий сканирования; электрическая соединительная сеть, соединяющая соседние детекторные ячейки на их передних поверхностях; электрическая соединительная сеть, соединяющая N блоков указанных детекторных ячеек с множеством указанных пальчиковых ячеек данных; электрическая соединительная сеть, соединяющая М блоков указанных детекторных ячеек с множеством указанных пальчиковых ячеек сканирования.

Сущность изобретения

Настоящий способ обеспечивает сборку ячеистого радиационного детектора с матрицей N×M детекторных ячеек, сцинтилляторным слоем, слоем общей подложки, где матрица детекторных ячеек расположена между сцинтилляторным слоем и слоем подложки, причем каждая детекторная ячейка имеет переднюю сторону, обращенную к сцинтилляторному слою, и заднюю сторону, обращенную к слою подложки, и где относительное различие по высоте между соседними краями передних сторон соседних детекторных ячеек составляет менее 2 мкм, предпочтительно менее 1 мкм.

При указанной сборке может быть значительно уменьшено разупорядочение между детекторными ячейками, а значит соответствующие артефакты изображения. Таким образом, значительно повышается качество изображения, выход готовых изделий и надежность произведенных так ячеистых детекторов.

Согласно одному аспекту настоящий подход обеспечивает способ, в котором детекторные ячейки точно подобраны по размеру в горизонтальном направлении (xy), так что неактивная область или зазор между краевыми пикселями и краем ячейки составляет примерно 15 мкм по ширине без повреждения (краевых) пикселей, и где количество осадков, например частиц, появившихся в процессе подгонки размера, абсорбированных на (активной стороне) детекторной ячейке является минимальным. Следовательно, детекторные ячейки оказываются точно подогнанными по размеру в вертикальном направлении (z), так что различия по толщине между детекторными ячейками значительно уменьшены и исключается дополнительное повреждение и загрязнение, например, частицами и органическими соединениями.

В частности, для качества и надежности визуализации критическими являются различия по высоте между плоскостями передних сторон соседних детекторных ячеек вдоль линии стыковки (то есть местах, где соединяются соседние ячейки). При помощи этапов предложенного способа для подгонки размеров эти вариации могут быть уменьшены до <1 мкм.

Согласно другому аспекту настоящий подход обеспечивает способ изготовления ячеистого детектора, содержащий следующий этап: временное расположение матрицы (N×M) детекторных ячеек передней стороной вниз к плоской компоновочной пластине, так что неактивные области между соседними детекторными ячейками имеют ширину в горизонтальном направлении, меньшую четырех пиксельных строк.

Предпочтительно, детекторные ячейки точно выровнены (xyz), так что: (i) неактивная область между детекторными ячейками составляет в ширину ноль или одну пиксельную строку; и (ii) активные или передние стороны детекторных ячеек достаточно выровнены (<1 мкм).

Согласно еще одному аспекту изобретения после указанного выравнивания к задней стороне выровненных детекторных ячеек приклеивают подложку. Для обеспечения указанной точности выравнивания по z, существенно, чтобы выравнивающее приспособление, общая подложка и слой клея были совершенно плоскими и свободны от частиц.

Согласно следующему аспекту изобретения затем к активной стороне детекторных ячеек приклеивают сцинтилляторную панель. Поскольку активные стороны детекторных ячеек выровнены, значительно улучшается оптическая связь между сцинтиллятором и детекторными ячейками, а значит повышается качество изображения.

При использовании изобретения между детекторными ячейками и сцинтиллятором может быть установлен хороший оптический контакт, что является критическим для качества изображения, поскольку активные стороны детекторных ячеек выровнены согласно одному аспекту изобретения (точное выравнивание по z).

Кроме того, можно значительно уменьшить разупорядочение детекторных ячеек по x-y, поскольку детекторные ячейки точно подгоняют по размерам и выравнивают. Указанное точное выравнивание детекторных ячеек в результате может дать меньше артефактов изображения. Следовательно, значительно повышается качество изображения, выход готовых изделий и надежность, что уменьшает издержки.

Согласно еще одному аспекту изобретения необходимо согласовать тепловое расширение сцинтилляторной подложки, детекторной ячейки и общей подложки, чтобы минимизировать артефакты изображения, зависящие от температуры. Поскольку сильно подавляются артефакты изображения, зависящие от температуры, не требуется активное охлаждение, что снижает издержки и повышает надежность.

Согласно следующему аспекту настоящего изобретения относительное различие по высоте между соседними краями передних сторон соседних детекторных ячеек меньше или равно относительному различию по высоте между соседними краями задних сторон указанных соседних детекторных ячеек.

Согласно еще одному аспекту изобретения сцинтилляторный слой и/или слой общей подложки наклеивают на матрицу детекторных ячеек.

Согласно следующему аспекту изобретения сборка, кроме того, содержит оптически прозрачный адгезивный слой между сцинтилляторным слоем и детекторными ячейками.

Согласно еще одному аспекту изобретения сборка, кроме того, содержит адгезивный слой между слоем подложки и детекторными ячейками.

Согласно следующему аспекту изобретения адгезивный слой имеет толщину, не превышающую 25 мкм.

Согласно еще одному аспекту изобретения детекторные ячейки выравнивают так, что активная область между соседними детекторными ячейками имеет ширину менее четырех пиксельных строк, а предпочтительно нуль или одну пиксельную строку.

Согласно следующему аспекту изобретения способ изготовления ячеистого детектора излучения или частиц высоких энергий, таких как рентгеновское излучение, гамма-излучение и фотоны, содержит следующий этап: монтаж детекторных ячеек передней стороной вниз к плоскому вакуумному держателю, удаление материала с задней стороны каждой детекторной ячейки путем шлифования для выравнивания толщины детекторных ячеек.

Согласно указанному аспекту в одном варианте изобретения все детекторные ячейки ячеистого радиационного детектора монтируют одновременно лицевой стороной вниз на вакуумном держателе шлифовального инструмента. Предпочтительно, вакуумный держатель совершенно плоский и свободен от частиц, чтобы обеспечить расположение активных сторон детекторных ячеек на одном уровне. Затем вращающийся шлифовальный круг удаляет слой материала с задней стороны каждой детекторной ячейки, так что задние стороны детекторных ячеек также оказываются точно на одном уровне. Конечным результатом является то, что все детекторные ячейки будут иметь одинаковую толщину. Предпочтительно, чтобы шлифовальный круг продолжался вне площади, образованной детекторными ячейками, поскольку только в этом случае понадобится один проход вместо множества проходов, что повышает однородность по толщине.

Согласно другому аспекту изобретения способ изготовления ячеистого детектора излучения или частиц высоких энергий, таких как рентгеновское излучение, гамма-излучение и фотоны, содержит следующий этап: временное размещение матрицы (N×M) детекторных ячеек передней стороной вниз на плоской компоновочной пластине, так чтобы неактивные области между соседними детекторными ячейками имели ширину в горизонтальном направлении меньше четырех пиксельных строк, а предпочтительно нуль или одну пиксельную строку.

Согласно указанному аспекту обеспечен вариант, в котором детекторные ячейки точно выравнивают (по xyz), причем их активная сторона обращена вниз на выравнивающем приспособлении.

Выравнивающее приспособление конструируют таким образом, что к каждой ячейке в отдельности можно приложить вакуум, как только будет выполнено выравнивание. Выравнивающее приспособление должно быть совершенно плоским и должно быть свободно от частиц, чтобы обеспечить точное выравнивание детекторных ячеек по z. В этот момент детекторные ячейки выравнивают вручную с использованием выравнивающих штырей вдоль не состыкованных краев ячеек и разделителей между ячейками. Ожидается, что этот процесс будет автоматизирован, например, путем использования роботизированной руки, так как это значительно улучшит воспроизводимость, длительность производственного цикла, выход готовых изделий и точность выравнивания (≤1мкм), если это требуется.

Согласно еще одному аспекту изобретения временное размещение матрицы (N×M) детекторных ячеек такова, что относительное расстояние по вертикали между плоскостями передних сторон соседних детекторных ячеек составляет менее 2 мкм, а предпочтительно менее 1 мкм.

Согласно другому аспекту изобретения способ, кроме того, содержит наклеивание слоя общей подложки на заднюю сторону детекторных ячеек.

Здесь в одном варианте согласно указанному аспекту на первом этапе пленочный адгезив (например, OCA 8141, поставляемый корпорацией 3M) наносится в вакууме или посредством ламинирования прокаткой на одну сторону общей подложки (например, боросиликатное стекло). Этот этап должен выполняться в условиях чистого помещения для предотвращения попадания частиц между пленочным адгезивом и общей подложкой. Пленочный адгезив, а также общая подложка должны быть совершенно плоскими и иметь однородную толщину. Затем общую подложку (например, боросиликатное стекло) прикрепляют к задней стороне выровненного детектора в условиях чистого помещения, чтобы гарантировать, что частицы не попадут между детекторными ячейками и общей подложкой.

Согласно еще одному аспекту изобретения способ дополнительно содержит наклеивание общего сцинтилляторного слоя на переднюю сторону детекторных ячеек. В одном варианте сцинтилляторная панель может быть соединена в вакууме с активными сторонами детекторных ячеек в условиях чистого помещения, чтобы избежать попадание воздуха и частиц между детекторными ячейками и сцинтиллятором.

В одном варианте указанного аспекта оптически прозрачный пленочный адгезив толщиной ≤25 мкм (например, OCA 8141, поставляемый корпорацией 3M) наносится в вакууме или посредством ламинирования прокаткой на активную сторону сцинтилляторной панели (CsI:TI, напыляемый на подложку из Al или а-углерода) в условиях чистого помещения для предотвращения попадания частиц между пленочным адгезивом и сцинтиллятором.

Согласно еще одному варианту изобретения выполняется шлифование вращающимся шлифовальным кругом, продолжающимся вне площади, образованной детекторными ячейками. Согласно следующему аспекту изобретения во время этапа временного размещения к каждой детекторной ячейке прикладывается вакуум.

Согласно другому аспекту изобретения подгоняют размер по меньшей мере одной из детекторных ячеек в направлении плоскости с использованием следующих этапов: выравнивание детекторной панели задней стороной вниз на вакуумном держателе, где вакуумный держатель содержит по меньшей мере два вакуумных канала, причем один канал устроен для подачи вакуума в заранее заданную область детекторных ячеек детекторной панели, а второй канал приспособлен для подачи вакуума в заранее определенную область детекторной панели, смежную с указанной областью детекторных ячеек; подачу вакуума в оба канала, обрезку частей, смежных с заранее определенной областью детекторных ячеек детекторной панели, удаление вакуума из второго канала и удаление обрезанных частей из упомянутой области детекторных ячеек.

При использовании указанного аспекта может быть разработан процесс нарезки, позволяющий точно подогнать размеры детекторной ячейки в направлении x-y. Панель, из которой должна быть выделена детекторная ячейка, выравнивают лицевой стороной на специальном вакуумном держателе. Этот вакуумный держатель состоит в основном из двух вакуумных каналов: один для детекторной ячейки и один для частей «крылышек» на каждой стороне детекторной ячейки, которые отрезаются от детекторной ячейки в процессе нарезки. Во время нарезки в оба канала подается вакуум. После нарезки вакуум подается только на детекторную ячейку, так чтобы части «крылышек» можно было удалить с вакуумного держателя. Это выполняется так, что части «крылышек» не могут касаться и, следовательно, не могут повредить детекторную ячейку. Во время нарезки предпочтительно детекторную ячейку непрерывно промывать деионизированной водой, вытекающей из матрицы сопел, для предотвращения осаждения обрезков от пресса нарезки на детекторные ячейки. По сравнению со стандартным процессом нарезки пластин можно значительно уменьшить повреждение детекторной ячейки и объем обрезков, осаждаемых на активной стороне детекторной ячейки.

Согласно еще одному варианту изобретения способ изготовления ячеистого детектора излучения или частиц высоких энергий, таких как рентгеновское излучение, гамма-излучение и фотоны, содержит следующий этап: выравнивание детекторных ячеек одну за другой их активной стороной вниз к сцинтилляторной панели для формирования матрицы детекторных ячеек. Согласно одному аспекту предпочтительно использовать робот, а точнее роботизированную руку, для точного позиционирования (например, ≤2 мкм, а предпочтительно ≤1 мкм) детекторных ячеек. Согласно другому аспекту предпочтительно использовать выравнивающие метки, которые могут быть предусмотрены на сцинтилляторной панели и/или на детекторных ячейках.

Перед тем, как выполняется вышеупомянутое выравнивание, на сцинтилляторную панель накладывают оптически прозрачный пленочный адгезив. В одном аспекте данного варианта изобретения используют условия вакуума и условия чистого помещения по меньшей мере во время нанесения адгезива для предотвращения попадания воздушных пузырьков или частиц между адгезивной пленкой и сцинтилляторной панелью.

Согласно следующему варианту изобретения способ изготовления ячеистого детектора содержит следующий этап: выравнивание детекторных ячеек одну за другой их активной (передней) стороной вниз на выравнивающем приспособлении для формирования матрицы детекторных ячеек; затем временное прикрепление механического приспособления к задней стороне выровненных детекторных ячеек, образующих матрицу, где механическое приспособление адаптировано для перемещения в вертикальном направлении отдельно для каждой детекторной ячейки, а затем удаление матрицы детекторных ячеек из выравнивающего приспособления. Указанное механическое приспособление позволяет во время регулировки легкое вертикальное перемещение (в направлении z) каждой соответствующей части приспособления, закрепленной по отдельности на одной из детекторных ячеек. Перемещение в направлении z может компенсировать различия по высоте между передними, или активными сторонами детекторных ячеек, например, различия из-за разной высоты ячеек, например, во время подсоединения сцинтиллятора на следующем этапе способа.

Согласно одному аспекту указанного способа вакуум можно обеспечить для каждой детекторной ячейки, причем предпочтительно индивидуально в одном дополнительном варианте изобретения. Согласно одному аспекту вакуум может быть обеспечен по меньшей мере одним каналом, который проходит одним из своих концов к одной из детекторных ячеек. Согласно другому аспекту указанный канал располагают в выравнивающем приспособлении, и тогда он подходит к активной, или фронтальной стороне соответствующей ячейки. Согласно еще одному аспекту или как дополнение, канал располагают в механическом приспособлении и он соответственно подходит к задней стороне выровненной детекторной ячейки.

Далее описываются примерные варианты настоящего изобретения. Необходимо подчеркнуть, что, конечно, возможна любая комбинация признаков, относящихся к различным аспектам изобретения.

Следует заметить, что варианты изобретения описаны со ссылками на различные объекты изобретения. В частности, некоторые варианты описаны со ссылками на пункты формулы изобретения, относящиеся к устройству, в то время как другой вариант описан со ссылками на пункт формулы изобретения, относящейся к способу. Однако специалисты в данной области техники, исходя из вышесказанного и последующего описания, сделают однозначный вывод о том, что, если не утверждается иное, то данная заявка, вдобавок к любой комбинации признаков, принадлежащих к объекту изобретения одного типа, также раскрывает любую комбинацию признаков, относящихся к другим объектам изобретения, в частности, признаков в пунктах формулы изобретения, относящихся к устройству, и признаков в пункте формулы изобретения, относящихся к способу.

Определенные выше аспекты и дополнительные аспекты настоящего изобретения станут очевидными из примеров осуществления изобретения, раскрытых далее и объясненных со ссылками на соответствующие примеры. Далее изобретение описывается более подробно со ссылками на примеры его осуществления, которыми изобретение не ограничивается. Для лучшего понимания чертежи показаны с увеличением в вертикальном направлении.

На основе вышесказанного и последующего описания способа изготовления ячеистой структуры специалисты в данной области техники смогут преобразовать этапы способа в компьютерную программу для его реализации.

Краткое описание чертежей

Фиг.1 - вид сбоку известного из уровня техники ячеистого детектора;

фиг.2 - блок-схема способа согласно изобретению;

фиг.3 - схематический вид сверху детекторной панели;

фиг.4 - вид сбоку двух детекторных ячеек, смонтированных на вакуумном держателе;

фиг.5 - вид сбоку детекторных ячеек по фиг.4 на выравнивающем приспособлении;

фиг.6 - вид сбоку слоя подложки;

фиг.7 - вид сбоку слоя подложки по фиг.6, прикрепленного к задней стороне двух детекторных ячеек согласно фиг.4 и 5;

фиг.8 - вид сбоку сборки, перевернутой лицевой стороной вверх, согласно фиг.7;

фиг.9 - вид сбоку сцинтилляторного слоя между слоем подложки и пленочным адгезивом;

фиг.10 - вид сбоку детекторной сборки согласно изобретению;

фиг.11 - блок-схема другого способа согласно изобретению;

фиг.12 - вид в разрезе сбоку сцинтилляторного слоя и адгезивного слоя;

фиг.13 - вид в разрезе сбоку детекторных ячеек на сцинтилляторном слое по фиг.12;

фиг.14 - вид сбоку слоя подложки;

фиг.15 - вид в разрезе дополнительной детекторной сборки согласно изобретению;

фиг.16 - блок-схема еще одного способа согласно изобретению;

фиг.17 - вид в разрезе сбоку выравнивающего приспособления с двумя детекторными ячейками;

фиг.18 - вид в разрезе сбоку детекторных ячеек на механическом приспособлении;

фиг.19 - вид в разрезе сбоку сцинтилляторного слоя;

фиг.20 - вид в разрезе сбоку сцинтилляторного слоя с двумя детекторными ячейками;

фиг.21 - вид в разрезе сбоку слоя подложки; и

фиг.22 - вид в разрезе сбоку дополнительной детекторной сборки согласно изобретению.

Подробное описание вариантов осуществления изобретения

На фиг.1 показана плоская ячеистая детекторная сборка 100 на основе непрямого преобразования, где сцинтиллятор 102 соединен с панелью считывания, состоящей из одной или нескольких детекторных ячеек 104, 104', скомпонованных на слое 110 подложки. Сцинтиллятор 102 может быть либо непосредственно осажден на панель считывания, либо сначала осажден на подложку (здесь не показана), которую затем соединяют с панелью считывания, например, оптическим клеем или гелем. Оптические и механические свойства этого соединительного слоя оказывают большое влияние на качество изображения (IQ). Следовательно, разупорядочение по всем трем направлениям x, y, z между детекторными ячейками 104 в ячеистой детекторной сборке 100 приводит к появлению артефактов изображения. Разупорядочение по z приводит к различиям по высоте между детекторными ячейками. Это может привести к внедрению пустот 108 или воздушных пузырьков в соединительном слое, где объединяются детекторные ячейки 104, 104'. Указанные дефекты влияют на локальную чувствительность пикселей каждой детекторной ячейки, что приводит к артефактам изображения.

Согласно фиг.2 один из предложенных способов сборки позволяет изготовить ячеистые плоские детекторы, содержащие детекторные ячейки, в конфигурации (N×M), где N и M - целые числа. Ниже подробно описан предложенный процесс сборки, включая схематические виды согласно фигурам 3-10 для ячеистого детектора при N=2 и M=1.

На первом этапе 201 реализуется процесс нарезки с учетом предпочтений потребителя, позволяющий точно задать размеры детекторной ячейки 304 в направлении x-y (фиг.3). Панель 320, из которой необходимо выделить детекторную ячейку 304, выравнивают лицевой стороной вверх на специальном вакуумном держателе (здесь не показан). Этот вакуумный держатель в основном состоит из двух вакуумных каналов: один для детекторной ячейки, а другой для частей «крылышек» 330 на каждой стороне детекторной ячейки, которые срезаются с детекторной ячейки в процессе нарезки. Во время нарезки вакуум подается в оба канала. После нарезки вакуум подается только на детекторную ячейку 304, так что части «крылышек» 330 могут быть удалены с вакуумного держателя. Это предпочтительно выполнять таким образом, чтобы части «крылышек» 330 не могли контактировать и, следовательно, повреждать детекторную ячейку 304. Во время нарезки предпочтительно, чтобы детекторная ячейка 304 непрерывно промывалась деионизированной водой 350, вытекающей из матрицы 360 сопел, для предотвращения осаждения обрезков, создаваемых в процессе нарезки, на детекторную ячейку 304. По сравнению с традиционным процессом нарезки пластин значительно уменьшается повреждение детекторной ячейки 304 и объем обрезков, осаждаемых на активную сторону детекторной ячейки 304.

Второй этап 202 относится к точной подгонке размеров детекторных ячеек в направлении z (фиг.4). Все детекторные ячейки 304, 304', образующие ячеистый радиационный детектор 400, монтируют одновременно их активными, или передними сторонами вниз на вакуумном держателе 406 заднего шлифовального инструмента (здесь не показан). Предпочтительно, чтобы вакуумный держатель 406 был совершенно плоским и свободным от частиц, что обеспечивает выравнивание активных сторон детекторных ячеек 304, 304' с заданной точностью. Затем вращающийся шлифовальный круг (не показан) удаляет слой материала 420, 420' с задней стороны каждой детекторной ячейки 304, 304', так что также точно выравнивают задние стороны детекторных ячеек. В результате шлифования все детекторные ячейки будут иметь одинаковую толщину 408. На задней стороне детекторных ячеек имеются шлифовальные отметины (не показаны) вследствие указанного процесса шлифования. Предпочтительно, чтобы шлифовальный круг продолжался вне площади, образованной детекторными ячейками 304, 304', поскольку в этом случае вместо множества проходов потребуется только один проход, что повышает однородность по толщине.

Важно, чтобы относительное различие по высоте между соседними краями 505, 505' передних сторон, показанными на фиг.5, для соседних детекторных ячеек 304, 304', было меньше (без этапа шлифования, но с выровненными передними сторонами) или равно (например, в результате шлифования) относительному различию 409 по высоте между соседними краями 407, 407' задних сторон указанных соседних детекторных ячеек.

На третьем этапе 203 детекторные ячейки 304, 304' выравнивают на выравнивающем приспособлении 508 (фиг.5). Детекторные ячейки 304, 304' точно выравнивают (по направлениям xyz) активной стороной вниз на выравнивающем приспособлении 508. В одном варианте выравнивающее приспособление 508 создано таким образом, что вакуум можно приложить к каждой ячейке 304, 304' в отдельности, как только ячейка будет выровнена. Предпочтительно, выравнивающее приспособление 508 является совершенно плоским и свободно от частиц, чтобы обеспечить точное выравнивание детекторных ячеек 304, 304' по z. В этот момент детекторные ячейки 304, 304' выравнивают вручную с использованием выравнивающих штырей вдоль не состыкованных краев ячеек 304, 304' и разделителей между ячейками 304, 304'. Предполагается, что этот процесс будет автоматизирован в одном варианте изобретения, например, путем использования роботизированной руки, так как это значительно улучшит воспроизводимость, длительность производственного цикла, выход готовых изделий и точность выравнивания (≤ 1мкм), если это потребуется.

На четвертом этапе 204 на общую подложку 604 наносят пленочный адгезив 602.

Пленочный адгезив 602 (например OCA 8141, поставляемый корпорацией 3M) наносится в вакууме или посредством ламинирования прокаткой на одну сторону общей подложки 604 (например, боросиликатное стекло). Этот этап должен выполняться в условиях чистого помещения для предотвращения попадания частиц между пленочным адгезивом 602 и общей подложкой 604. Пленочный адгезив 602, также как общая подложка, должны быть совершенно плоскими и однородными по толщине.

На пятом этапе 205 на задней стороне выровненных детекторных ячеек 304, 304' закрепляют общую подложку 604. Общую положку 604 предпочтительно прикрепляют к задней стороне выровненных детекторных ячеек 304, 304' в условиях чистого помещения, чтобы исключить попадание частиц между детекторными ячейками 304, 304' и общей подложкой 604.

На шестом этапе 206 (фиг.8) сборку снимают с выравнивающего приспособления и переворачивают, так что активные стороны детекторных ячеек 304, 304' обращены вверх (фиг.8).

На седьмом этапе 207 (фиг.9) оптически прозрачный пленочный адгезив 908 толщиной ≤25 мкм (например OCA 8141, поставляемый корпорацией 3M) наносится в вакууме или посредством ламинирования прокаткой на активную сторону сцинтилляторного слоя 910 (CsI:Tl, нанесенный на подложку 912 из Al или а- углерода) в условиях чистого помещения, для предотвращения попадания воздуха или частиц между пленочным адгезивом 908 и сцинтиллятором 910.

На восьмом этапе 208 (фиг.10) сцинтилляторный слой 910 соединяют в вакууме с активными сторонами детекторных ячеек 304, 304' в условиях чистого помещения, во избежание попадания воздуха и частиц между детекторными ячейками 304, 304' и сцинтилляторным слоем 910 детекторной сборки 1000.

Возможно окажется важным, что при дополнительных способах сборки, предложенных в других независимых пунктах формулы изобретения, ячеистые детекторы также точно подгоняются по размерам и выравниваются так, что значительно уменьшаются артефакты изображения. Сначала детекторные ячейки можно точно подогнать по размерам в горизонтальном (xy) направлении так, что неактивная область между краевыми пикселями и краем ячейки составляет, например, примерно 15 мкм в ширину, без повреждения (краевых) пикселей, и объем остатков (например, частиц, появившихся в процессе подгонки размеров), абсорбированных на (активной стороне) детекторной ячейки минимален.

Затем детекторные ячейки можно прикрепить к сцинтилляторной панели либо все вместе (фиг.16), либо по отдельности (фиг.11), так что их активные или передние стороны автоматически выровнены. В результате оптическое соединение между сцинтиллятором и детекторными ячейками, а значит качество изображения значительно улучшится. Согласно первому варианту (фиг. 16) детекторные ячейки сначала точно выравнивают, а затем все вместе соединяют в вакууме со сцинтилляторной панелью. Согласно фиг.11 детекторные ячейки выравнивают по отдельности, а затем соединяют в вакууме со сцинтилляторной панелью. Благодаря процессу точной подгонки размеров ширина неактивной области между соседними детекторными ячейками предпочтительно составляет не более одной пиксельной строки (50 мкм). Специальное оборудование для выравнивания позволяет обеспечить точность выравнивания по xy≤2 мкм, а предпочтительно ≤1 мкм. Процесс подгонки размеров, способ прикрепления (не обязательной) общей подложки к задней стороне детекторных ячеек и межкомпонентная сборка, могут быть одинаковыми для обоих вариантов сборки, подробно описанных ниже.

Возможно, для обеспечения точного выравнивания существенным является, что выравнивание и присоединение сцинтиллятора проводятся в условиях чистого помещения, чтобы минимизировать загрязнения посторонними частицами.

Предпочтительно, тепловое расширение сцинтилляторной подложки, детекторных ячеек и общей подложки согласовано для минимизации артефактов изображения, зависящих от температуры.

Согласно фиг.11 один способ позволяет обеспечить изготовление плоских ячеистых детекторов, содержащих детекторные ячейки в конфигурации (N×M), где N и M - целые числа. Ниже более подробно описывается предложенный процесс сборки, включая схематические виды согласно фиг.3 и 12-15 для ячеистого детектора при N=2 и M=1.

На первом этапе 1101 реализуют процесс нарезки с учетом предпочтений потребителя, предоставляющий возможность точно подогнать размер детекторной ячейки 304 в направлении x-y (фиг. 3). Этап 1101 совпадает с этапом 201, описанным выше. Указанный процесс нарезки предпочтительно, но не обязательно использовать в описанных способах.

На втором этапе 1102 (фиг.12) на сцинтилляторную панель 910 (CsI:Tl, осажденный на подложку из алюминия, α-углерода или оптического волокна (FOP)) наносят оптически прозрачный пленочный адгезив 908 (например, толщиной 25 мкм, например, OCA 8141, поставляемый корпорацией 3М) в условиях чистого помещения и вакуума для предотвращения попадания воздуха и частиц между адгезивной пленкой 908 и сцинтилляторной панелью 910 (фиг.12). В случае использования подложки из FOP оптический адгезив наносят на сторону FOP, в противном случае, на сторону сцинтиллятора. Альтернативно, адгезив наслаивается прокаткой на активной стороне сцинтилляторного слоя.

На третьем этапе 1103 (фиг.13) детекторные ячейки 304, 304' выравнивают и соединяют одну за другой со сцинтилляторной панелью 910 в условиях чистого помещения и вакуума во избежание попадания воздуха и частиц между детекторными ячейками 304, 304' и сцинтилляторной панелью 910/адгезивным слоем 908. В случае использования сцинтилляторной панели с подложкой из FOP активную сторону детекторных ячеек 304, 304' соединяют с помощью адгезивного слоя 908 со стороной FOP, в противном случае, со стороной сцинтиллятора. Точное позиционирование (например, ≤2мкм, а лучше ≤1 мкм) детекторных ячеек можно выполнить с использованием роботизированной руки и выравнивающих меток (здесь не показаны), заданных на сцинтилляторной панели и/или детекторных ячейках. Другими словами, в одном из заявленных способов предлагается выравнивание детекторных ячеек (304, 304') одну за другой активной стороной вниз на сцинтилляторной панели для формирования матрицы детекторных ячеек.

На четвертом этапе 1104 (фиг.14) адгезив 602 наносят на одну сторону общей подложки 604 (например, из боросиликатного стекла). Существенно, чтобы адгезив 602 был способен компенсировать небольшие отклонения по высоте на задней стороне между детекторными ячейками, которые вызваны, например, разницей высоты ячеек (см. фиг.13). Примером такого адгезива является пенистый адгезив.

На пятом этапе 1105 (фиг.15) общую подложку 604 (например, из боросиликатного стекла) прикрепляют к задней стороне выровненных детекторных ячеек 304, 304' в условиях чистого помещения для исключения попадания частиц между детекторными ячейками и общей подложкой.

Согласно фиг.16 дополнительный способ позволяет обеспечить упомянутое изготовление плоских ячеистых детекторов, содержащих детекторные ячейки в конфигурации (N×M), где N и M целые числа. Далее более подробно описывается предложенный процесс сборки, включая схематические виды согласно фиг.3 и 17-22 для ячеистого детектора при N=2 и M=1.

На первом этапе 1601 реализуют процесс нарезки с учетом предпочтений потребителя для обеспечения точной подгонки размеров детекторной ячейки 204 в направлении x-y (фиг.3). Этап 1601 совпадает с этапом 201 или этапом 1101, описанным выше. Процесс нарезки предпочтительно, но не обязательно использовать в описанном способе.

На втором этапе 1602 (фиг.17) детекторные ячейки 304, 304' точно подгоняют по размерам (xyz) активной стороной вниз на выравнивающем приспособлении 1702.

Выравнивающее приспособление 1702 сконструировано таким образом, что вакуум можно подать к каждой ячейке в отдельности, как только она выровнена. Выравнивающее приспособление должно быть совершенно плоским и свободно от частиц, чтобы обеспечить точное выравнивание детекторных ячеек 304, 304'. В этот момент детекторные ячейки выравнивают вручную с использованием выравнивающих штырей (здесь не показаны) вдоль не состыкованных краев ячеек и разделителей между ячейками. Предполагается, что этот процесс будет автоматизирован, например, путем использования роботизированной руки, так как это значительно улучшит воспроизводимость, длительность производственного цикла, выход готовых изделий и точность выравнивания (≤2 мкм или ≤1мкм), если это потребуется.

На третьем этапе 1603 (фиг.18) к задней поверхности выровненных детекторных ячеек 304, 304' временно прикрепляют механическое приспособление 1802, например, путем приложения вакуума к каждой ячейке с использованием по меньшей мере одного канала. Механическое приспособление 1802 позволяет обеспечить слабое вертикальное перемещение (направление 1804 по z) каждой детекторной ячейки 304, 304' в отдельности, поддерживая ее выравнивание по xy. Таким путем во время присоединения сцинтиллятора (этап 1605, фиг.20) автоматически компенсируются различия по высоте между активными сторонами детекторных ячеек, возникшие, например, из-за разностей высот ячеек, как показано на фиг.18. После закрепления механического приспособления 1802 сборку 304, 304' ячеек удаляют с выравнивающего приспособления 1802, и они могут быть перевернуты, так что активные стороны детекторных ячеек 304, 304' ориентированы лицевой стороной вверх.

Затем на четвертом этапе 1604 (фиг.19) на сцинтилляторную панель 910 (CsI:Tl, осажденный на подложку из алюминия, а-углерода или оптического волокна (FOP)) наносят оптически прозрачный пленочный адгезив 908 (например, толщиной 25 мкм, например, OCA 8141, поставляемый корпорацией 3М) предпочтительно в условиях чистого помещения и вакуума для предотвращения попадания воздуха и частиц между адгезивной пленкой и сцинтилляторной панелью. В случае подложки из FOP оптический адгезив 908 наносят на сторону FOP, в противном случае, на сторону сцинтиллятора.

На пятом этапе 1605 (фиг.20) детекторные ячейки 304, 304' соединяют со сцинтилляторной панелью 910 с использованием адгезивного слоя 908. Все детекторные ячейки 304, 304' вместе соединяют со сцинтилляторной панелью 910 предпочтительно в условиях чистого помещения и вакуума во избежание попадания воздуха и частиц между детекторными ячейками 304, 304' и адгезивным слоем/сцинтилляторной панелью. В случае использования сцинтилляторной панели с подложкой из FOP активную сторону детекторных ячеек соединяют со стороной FOP, в противном случае, со стороной сцинтиллятора. Когда детекторные ячейки приводят в контакт со сцинтилляторной панелью, их активные стороны автоматически выравниваются механическим приспособлением, прикрепленным к их задней стороне. После присоединения сцинтилляторной панели механическое приспособление удаляют.

На шестом этапе 1606 (фиг.21) на одну сторону слоя 604 общей подложки (например, из боросиликатного стекла) наносят адгезив 602. Существенно, чтобы этот адгезив мог компенсировать небольшие различия по высоте на задней стороне между детекторными ячейками, которые вызваны разностями высот ячеек, как показано, например, на фиг.17. Примером такого адгезива является пенистый адгезив.

На седьмом этапе 1607 (фиг.22) к задней стороне выровненных детекторных ячеек 304, 304' прикрепляют общую подложку 604 в условиях чистого помещения для исключения попадания частиц между детекторными ячейками и адгезивом 602 или общей подложкой.

Предложенный способ сборки можно использовать для изготовления ячеистых (рентгеновских) детекторов для формирования изображений в медицинских целях, а также для неразрушающего контроля. Хотя предложенный способ совместим с детекторными ячейками различных типов, например а-Si, моно-Si, он особенно подходит для изготовления плоских детекторов большой площади из моно-Si, поскольку технология моно-Si является дальнейшим развитием технологии на основе аморфного Si (а-Si), являющейся в настоящее время стандартной технологией производства детекторных ячеек в плоских детекторах, поскольку она может обеспечить лучшие рабочие характеристики и больше функциональных возможностей. Для детекторов большой площади на основе моно-Si требуется ячеистая конфигурация, поскольку размеры детекторных ячеек на основе моно-Si ограничены максимальным размером пластины Si, который в настоящее время составляет 12 дюймов.

1. Ячеистая радиационная детекторная сборка (1000), причем сборка содержит:
матрицу (NхМ) детекторных ячеек (304, 304');
сцинтилляторный слой (910);
слой (604) общей подложки;
где матрица детекторных ячеек (304, 304') расположена между сцинтилляторным слоем и слоем подложки;
где каждая детекторная ячейка (304, 304') имеет переднюю сторону, обращенную к сцинтилляторному слою, и заднюю сторону, обращенную к слою подложки; и
где относительное различие по высоте между соседними краями (505, 505') передних сторон соседних детекторных ячеек (304, 304') составляет менее 2 мкм, а предпочтительно менее 1 мкм.

2. Сборка (1000) по п.1, в которой каждая задняя сторона детекторных ячеек содержит шлифовальные отметины.

3. Сборка (1000) по п.1, в которой детекторные ячейки содержат по меньшей мере одно выравнивающее средство, предпочтительно выравнивающий штырь и/или разделительный элемент, закрепленный по краю ячейки.

4. Сборка (1000) по п.1, в которой относительное различие по высоте между соседними краями (505, 505') передних сторон соседних детекторных ячеек (304, 304') меньше или равно относительному различию (409) по высоте между соседними краями (407, 407') задних сторон указанных соседних детекторных ячеек.

5. Сборка (1000) по п.1, в которой сцинтилляторный слой (910) и/или слой (604) общей подложки наклеен на матрицу детекторных ячеек (304, 304').

6. Сборка (1000) по п.1, дополнительно содержащая оптически прозрачный адгезивный слой (908) между сцинтилляторным слоем (910) и детекторными ячейками (304, 304') и/или содержащая адгезивный слой (602) между слоем (604) подложки и детекторными ячейками (304, 304').

7. Сборка (1000) по п.1, в которой детекторные ячейки выровнены так, что неактивная область между соседними детекторными ячейками (304, 304') имеет ширину менее чем четыре пиксельных строки, а предпочтительно нуль или одну пиксельную строку.

8. Рентгеновская система, содержащая:
рентгеновский источник и рентгеновский детектор, поворотно смонтированный на опорном устройстве, где рентгеновский детектор (1000) содержит ячеистую радиационную детекторную сборку (1000) согласно по меньшей мере одному из предшествующих пунктов.

9. Способ изготовления ячеистого детектора излучения или частиц высоких энергий, таких как рентгеновское излучение, гамма-излучение и фотоны, содержащий следующие этапы:
выравнивание детекторных ячеек (304, 304') одну за другой и их активной стороной вниз на сцинтилляторной панели для формирования матрицы детекторных ячеек,
где относительное различие по высоте между соседними краями (505, 505') передних сторон соседних детекторных ячеек (304, 304') составляет менее 2 мкм, а предпочтительно менее 1 мкм.

10. Способ изготовления ячеистого детектора излучения или частиц высоких энергий, таких как рентгеновское излучение, гамма-излучение и фотоны, содержащий следующие этапы:
выравнивание детекторных ячеек (304, 304') одну за другой и их активной стороной вниз на выравнивающем приспособлении для формирования матрицы детекторных ячеек;
временное прикрепление механического приспособления к задней стороне выровненных детекторных ячеек, образующих матрицу, где механическое приспособление адаптировано для перемещения в вертикальном направлении для каждой детекторной ячейки в отдельности;
удаление матрицы детекторных ячеек с выравнивающего приспособления.

11. Способ изготовления ячеистого детектора излучения или частиц высоких энергий, таких как рентгеновское излучение, гамма-излучение и фотоны, содержащий следующие этапы:
монтаж детекторных ячеек (304, 304') передней стороной вниз на плоском вакуумном держателе (406);
удаление материала (420, 420') с задней стороны каждой детекторной ячейки (304, 304') путем шлифования для выравнивания толщины (408) детекторных ячеек.

12. Способ изготовления ячеистого детектора (1000) излучения или частиц высоких энергий, таких как рентгеновское излучение, гамма-излучение и фотоны, содержащий следующий этап:
временное размещение матрицы (NхМ) детекторных ячеек (304, 304') передней стороной вниз на плоской компоновочной пластине (508), так что неактивные области между соседними детекторными ячейками имеют в ширину в горизонтальном направлении меньше, чем четыре пиксельных строки, а предпочтительно нуль или одну пиксельную строку.

13. Способ по одному из пп.9-12, содержащий этап:
прикрепление слоя подложки на задней стороне детекторных ячеек, образующих матрицу, в котором слой подложки содержит адгезивный слой.

14. Способ по п.13, в котором адгезивный слой адаптирован компенсировать различия по высоте между задними сторонами соседних детекторных ячеек.

15. Способ по одному из пп.9-12, в котором по меньшей мере одну из детекторных ячеек (304, 304') подгоняют по размеру в направлении плоскости с использованием следующих этапов:
выравнивание детекторной панели задней стороной вниз на вакуумном держателе, где вакуумный держатель содержит по меньшей мере два вакуумных канала, где один канал приспособлен прикладывать вакуум к заранее определенной области (304, 304') детекторных ячеек детекторной панели и второй канал приспособлен прикладывать вакуум к заранее определенной области детекторной панели, смежной с указанной областью детекторных ячеек;
приложение вакуума в оба канала;
обрезку частей, смежных с заранее определенной областью детекторных ячеек детекторной панели;
удаление вакуума из второго канала;
удаление обрезанных частей из области (304, 304') детекторных ячеек.



 

Похожие патенты:

Изобретение относится к детекторам радиационного излучения. Узел (20) детектора радиационного излучения содержит сцинтилляционный детектор (22) радиационного излучения, предназначенный для генерации светового сигнала, являющегося функцией регистрируемого радиационного излучения.

Изобретение относится к детектору спектральной визуализации. Одномерный многоэлементный фотодетектор (120), содержащий матрицу фотодиодов (122), включающую в себя первый верхний ряд фотодиодных пикселей и второй нижний ряд фотодиодных пикселей, при этом матрица фотодиодов (122) является частью фотодетектора (120), причем фотодетектор (120) является двухсторонним; матрица сцинтилляторов (126), включающая в себя первый верхний ряд и второй нижний ряд сцинтилляторных пикселей, причем первый верхний и второй нижний ряды сцинтилляторных пикселей соответственно оптически связаны с первым верхним и вторым нижним рядами фотодиодных пикселей; считывающее электронное устройство (124), при этом считывающее электронное устройство (124) является частью фотодетектора (120), и электрические соединения (512), которые осуществляют взаимосвязь фотодиодных пикселей и считывающего электронного устройства (124).

Изобретение относится к медицинской технике, а именно к спектральной компьютерной визуализации. Система визуализации содержит стационарный гентри, поворотный гентри, установленный на стационарном гентри, рентгеновскую трубку, закрепленную на поворотном гентри, которая поворачивается и испускает полихроматическое излучение, пересекающее область исследования.

Изобретение относится, в частности, к системам построения ядерных изображений, в особенности, включающим в себя гигроскопические сцинтилляционные кристаллы и т.п.

Изобретение относится к области неразрушающего контроля материалов и изделий радиографическими методами и может быть использовано в производственных и полевых условиях для обнаружения опасных материалов на контрольно-пропускных пунктах, на железнодорожных станциях, в аэропортах, таможенных службах, а также в научных исследованиях.
Изобретение может быть использовано при детектировании ионизирующего излучения и для создания источников белого света на основе нитридных гетеропереходов. Предложена гибкая (самонесущая) поликарбонатная пленка, наполненная неорганическими люминофорами из твердых растворов алюминатов и силикатов редкоземельных элементов.

Использование: для регистрации различных видов ионизирующих излучений, в том числе альфа-частиц, в ядерной физике для контроля доз и спектрометрии указанных излучений, в космической технике, медицине, в устройствах, обеспечивающих контроль, в промышленности.

Изобретение относится к сцинтилляционной технике, прежде всего к эффективным, быстродействующим сцинтилляционным детекторам. Описан способ получения прозрачной керамики, заключающийся в том, что предварительно в металлический порошкообразный цинк добавляют металлический порошкообразный магний, далее газофазным методом проводят синтез порошка для получения гранул в форме тетраподов и имеющих трехмерную наноструктуру, содержащую оксид магния в количестве 0,5-2,3 мас.%, затем полученную смесь подвергают горячему прессованию при температуре 1100-1200°C и давлении 100-200 МПа.

Изобретение относится к области нейтронных детекторов, а именно сцинтилляционных нейтронных детекторов для дозиметрического контроля поверхностного загрязнения персонала, радиационных портальных мониторов и систем контроля радиационной обстановки.

Изобретение относится к области детектирования частиц ионизирующего излучения, в частности к сцинтилляционным детекторам на основе пластмассовых или кристаллических сцинтилляторов, в которых для вывода излучения применяются спектросмещающие волокна. Сцинтилляционный детектор содержит рабочий объем с зеркально или диффузно отражающими стенками, заполненный сцинтилляционным пластмассовым или кристаллическим сцинтиллятором, спектросмещающие волокна, проходящие внутри рабочего объема, фотодетектор, к которому пристыкованы торцы волокон, при этом в качестве сцинтиллятора используют заполняющие рабочий объем сцинтилляционные гранулы. Технический результат - упрощение технологии изготовления сцинтилляторов сцинтилляционных детекторов на их основе. 2 з.п.ф-лы, 1 ил.

Изобретение относится в целом к детекторам излучения. В частности, изобретение относится к гибкому несущему механизму для элементов детектора излучения и к способу обслуживания детектора излучения. Детектор (20) излучения содержит инструментальный кожух (24), имеющий по существу цилиндрическую трубчатую форму, датчик (42) излучения, предназначенный для генерирования сигнала в ответ на обнаружение излучения и выполненный с возможностью размещения в инструментальном кожухе (24), процессор (44) сигнала, выполненный с возможностью функционального соединения с датчиком (42) излучения и предназначенный для получения сигнала от датчика излучения и генерирования электрического сигнала как функции принятого сигнала, при этом процессор сигнала выполнен с возможностью размещения в инструментальном кожухе (24), гибкий рукав (22), предназначенный для удержания датчика (42) излучения или процессора (44) сигнала или их обоих в инструментальном кожухе (24) и содержащий по существу цилиндрическую часть (60) и многоугольную часть (62), проходящую коаксиально цилиндрической части с обеспечением зацепления и удерживающего взаимодействия с этой частью. Технический результат - уменьшение повреждений инструментального кожуха при установке или извлечении детектора. 7 з.п. ф-лы, 7 ил.

Изобретение относится к области диагностической визуализации. Сущность изобретения заключается в том, что модуль детектора излучения для использования в визуализации содержит множество детекторных пикселов, причем каждый детекторный пиксел включает в себя сцинтиллятор (35), оптически связанный с по меньшей мере одним сенсорным фотодиодом (34), работающим в режиме счетчика Гейгера; по меньшей мере один экранированный от света опорный фотодиод (36), который работает в режиме счетчика Гейгера при таких же условиях, что и по меньшей мере один сенсорный фотодиод (34); схему управления (42), которая измеряет напряжение (84) пробоя на опорном фотодиоде (36) импульсов (68) темнового тока, сгенерированных посредством опорного фотодиода (36) при пробое опорного фотодиода (36); регулирует напряжение (80) смещения на по меньшей мере одном опорном фотодиоде (36) и по меньшей мере одном сенсорном фотодиоде (34) для приведения импульсов (68) темнового тока, сгенерированных по меньшей мере одним опорным фотодиодом (36), по существу в равенство с предварительно выбранным характерным логическим уровнем (70) напряжения. Технический результат - повышение чувствительности фотодиодов. 4 н. и 11 з.п. ф-лы, 7 ил.

Группа изобретений относится к области регистрации ионизирующих излучений с помощью сцинтилляционных детекторов, а именно к регистрации формы импульсов рентгеновского и электронного излучений, в частности к области волоконно-оптической дозиметрии. Сущность изобретения заключается в том, что осуществляют преобразование ионизирующего излучения в световой сигнал в сцинтилляторе, передачу сигнала по волоконно-оптическому каналу и раздвоение сигнала с последующим выделением из одного сигнала черенковского излучения, а из другого - сцинтилляционного излучения с долей черенковского путем пропускания каждого сигнала через свой узкополосный светофильтр, отличающийся один от другого спектральным диапазоном, преобразование сигналов в электрические, которые учитывают при обработке для определения характеристик ионизирующего излучения, при этом обработку электрических сигналов осуществляют с помощью аналогового вычитающего устройства, где производят вычитание одного сигнала из другого с последующей регистрацией: формы полученного сигнала, дозы за импульс, длительности, максимальной мощности без влияния черенковского излучения, причем на любом участке прохождения одного из сигналов до его преобразования в электрический или после осуществляют задержку этого сигнала для синхронизации прихода обоих преобразованных электрических сигналов на аналоговое вычитающее устройство. Технический результат - расширение функциональных возможностей. 2 н. и 3 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам для регистрации ядерных излучений, в частности к криогенным детекторам на основе жидкого аргона, и может быть использовано при решении ряда фундаментальных физических задач, а также при регистрации ядерных излучений в системах ядерной энергетики, безопасности, медицины, неразрушающего контроля. Способ калибровки криогенного детектора частиц на основе жидкого аргона заключается в определении коэффициента пропорциональности между энергией детектируемой частицы и амплитудой сигнала криогенного детектора, при этом для определения коэффициента калибровки используют ядра отдачи с известной энергией, возникающие при неупругом рассеянии на малый угол моноэнергетичных нейтронов на ядрах аргона. Для реализации способа калибровки источник нейтронов, криогенный детектор и детектор рассеянных нейтронов устанавливаются таким образом, чтобы геометрический центр мишени источника нейтронов, геометрический центр криогенного детектора частиц и ось симметрии сцинтиллятора детектора рассеянных нейтронов располагались на одной прямой. Технический результат - повышение скорости набора статистики при определенной точности калибровки. 2 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к способам нанесения люминесцентных покрытий на экраны, с помощью которых регистрируется и/или преобразуется изображение, в частности к способам формирования структурированного сцинтиллятора на поверхности фотоприемника, предназначенного для регистрации рентгеновского или гамма-излучения. Сущность изобретения заключается в том, что в способе формирования структурированного сцинтиллятора на поверхности пикселированного фотоприёмника формируют, по меньшей мере, один структурный элемент непосредственно на фоточувствительной зоне поверхности фотоприёмника, материал которого наносят посредством двухкоординатного или трёхкоординатного устройства дискретного нанесения однородных жидких или гетерогенных веществ. Технический результат - повышение технологичности при одновременном расширении области применения. 4 н. и 27 з.п. ф-лы, 7 ил.

Изобретение относится к сбору информации, а также находит конкретное применение в компьютерной томографии (СТ). Сущность изобретения заключается в том, что детектор формирования изображения содержит матрицу (204) фотодетекторов, имеющую светочувствительную сторону и противоположную считывающую сторону; матрицу (202) сцинтилляторов, оптически соединенную со светочувствительной стороной матрицы (204) фотодетекторов; и обрабатывающие электронные схемы (208), электрически соединенные со считывающей стороной матрицы (204) фотодетекторов, причем матрица (204) фотодетекторов, матрица (202) сцинтилляторов и обрабатывающие электронные схемы (208) находятся в термическом контакте, а значение термического коэффициента обрабатывающих электронных схем (208) приблизительно равно отрицательному значению суммы термического коэффициента матрицы (204) фотодетекторов и термического коэффициента матрицы (202) сцинтилляторов. Технический результат - повышение эффективности формирования изображения. 4 н. и 10 з.п. ф-лы, 13 ил., 1 табл.

Изобретение относится к технологиям визуализации и, в частности, к системе измерения данных, пригодной для средств КТ (компьютерной томографической) и другой визуализации. Сущность изобретения заключается в том, что система визуализации содержит источник излучения, который поворачивается вокруг центральной z-оси системы визуализации для выполнения визуализирующих сканирований; матрицу органических фотодиодов, содержащую несколько дискретных органических фотодиодов, расположенных рядами и столбцами на изогнутой подложке таким образом, что каждый ряд органических фотодиодов выровнен вдоль кривой изгиба изогнутой подложки, и каждый столбец органических фотодиодов выровнен параллельно центральной z-оси системы визуализации; и токопроводящие пути, функционально соединяющие каждый из органических фотодиодов с одним или более активными электронными компонентами, расположенными на изогнутой подложке; причем изогнутая подложка состоит более чем из одного слоя, содержащего верхний слой и один или более нижних слоев, причем органические фотодиоды расположены на верхнем слое, и каждый нижний слой содержит верхнюю поверхность, которая является ближней к верхнему слою, и на которой расположен по меньшей мере один из токопроводящих путей. Технический результат - повышение точности формирования детекторной матрицы. 3 н. и 26 з.п. ф-лы, 1 табл., 20 ил.

Изобретение относится к сбору данных и находит конкретное применение в компьютерной томографии (СТ). Сущность изобретения заключается в том, что детектор формирования изображения содержит матрицу (202) сцинтилляторов; матрицу (204) фотодатчиков, оптически сопряженную с матрицей (202) сцинтилляторов; преобразователь (314) тока в частоту (I/F), содержащий интегратор (302) и компаратор (310), который преобразует, во время текущего периода интегрирования, заряд, выведенный матрицей (204) фотодатчиков, в цифровой сигнал, имеющий частоту, указывающую на заряд; логику (312), которая устанавливает усиление интегратора (302) для следующего периода интегрирования на основе цифрового сигнала для текущего периода интегрирования, и переключатель (308) сброса, который сбрасывает интегратор (302) на основе усиления, установленного логикой (312), причем переключатель (308) сброса содержит, по меньшей мере, первый конденсатор (402) сброса с первой емкостью и второй конденсатор (406) сброса с второй отличающейся емкостью. Технический результат - повышение пространственного разрешения. 2 н. и 11 з.п. ф-лы, 10 ил., 2 табл.

Изобретение относится к устройствам для регистрации гамма-излучения, предназначено для определения положения бурового инструмента относительно кровли и подошвы разбуриваемого пласта и может быть использовано в скважинных приборах телеметрических систем. Скважинный гамма-детектор содержит установленные в корпусе сцинтилляционный кристалл, фотоэлектронный умножитель (ФЭУ), делитель напряжения, элементы крепления и компенсации тепловых деформаций, при этом корпус выполнен из материала, коэффициент теплового расширения которого обеспечивает превышение величины удлинения корпуса по сравнению с суммарным удлинением кристалла и ФЭУ при нагревании, компенсатор теплового расширения выполнен в виде втулки из материала, коэффициент теплового расширения которого меньше, чем у материала корпуса, кристалл и ФЭУ совместно установлены в корпус, а оставшееся свободное пространство корпуса заполнено полимерным материалом, залитым под вакуумом с последующей полимеризацией. Технический результат - повышение чувствительности детектора и его стойкости к механическим воздействиям в широком температурном интервале. 2 з.п. ф-лы, 1 ил.
Наверх