Способ одновременно-раздельной эксплуатации обводненной скважины, оборудованной электроцентробежным насосом

Изобретение относится к нефтяной промышленности и может быть применено при добыче нефти на залежах с существенными различиями параметров работы пластов. Способ включает отбор продукции нижнего пласта через приемный патрубок, проходящий через пакер, разделяющий пласты, поступление ее в смеси с продукцией верхнего пласта из надпакерной зоны скважины к приему насоса, измерение общего дебита жидкости и ее обводненности на дневной поверхности, измерение давления на приеме и параметров работы насоса, измерение давления по глубине приемного патрубка, остановку электроцентробежного насоса и определение дебита верхнего пласта и нижнего пласта, определение пластовых давлений по кривым восстановления давления. Кроме того, при остановке электроцентробежного насоса производится перекрытие поступления продукции нижнего пласта за счет снижения давления на запорный орган в приемном патрубке, гидравлически связанный с участком напорной линии между выкидом насоса и обратным клапаном в колонне насосно-компрессорных труб. Затем определяют обводненность продукции нижнего пласта по глубинам расположения в приемном патрубке уровней раздела «газ-нефть» и «нефть-вода» после расслоения трехфазной смеси в приемном патрубке в период остановки насоса. Технический результат заключается в определении дебитов и обводненности продукции каждого разрабатываемого пласта после остановки работы насосного оборудования в скважине. 3 ил.

 

Предлагаемое изобретение относится к нефтяной промышленности и может быть использовано при добыче нефти на залежах с существенными различиями параметров работы пластов. При одновременно-раздельной эксплуатации скважины, оборудованной установкой электроцентробежного насоса (УЭЦН), необходим раздельный учет дебита каждого пласта, обводненности жидкостей, забойных и пластовых давлений обоих пластов.

Известно, что для одновременно-раздельной эксплуатации скважины (ОРЭ) с УЭЦН применяются установки, в которых отбор продукции нижнего пласта производится приемным патрубком насоса, проходящим через пакер /1, 2 /. Приемный патрубок имеет телескопический разъем для предотвращения нагрузок на корпус насоса при посадке пакера и работе оборудования. Недостатком эксплуатации устройств является отсутствие возможности раздельного учета продукции пластов.

Известно, что для измерения параметров работы пласта (дебит, забойное и пластовое давления) производят остановку скважины и запись кривых восстановления уровня (КВУ) в затрубном пространстве и давления (КВД) на забое скважины /3, 4/. Угловой коэффициент прямолинейного предасимптотического участка КВУ позволяет рассчитать дебит скважины до остановки. Однако способ не позволяет определять раздельно дебиты при одновременном притоке жидкостей из двух пластов.

Известно, что для контроля за работой УЭЦН и измерения давления на приеме насоса применяются телеметрические системы (ТМС), устанавливаемые снизу погружного электродвигателя (ПЭД) и передающие информацию на поверхность через силовой кабель установки 151. Применение ТМС не позволяет получать и передавать полную информацию на поверхность при одновременно-раздельной добыче нефти из двух пластов.

Прежде всего это касается раздельного замера дебитов пластов и обводненности продукции.

Наиболее близким к предлагаемому изобретению является способ мониторинга многопластовой скважины 161.

Способ включает спуск над каждым разрабатываемым пластом автономных приборов для измерения дебитов и параметров флюида каждого пласта с записью показаний в долговременную память. Перед спуском насосного оборудования производят свабирование скважины с контролем параметров флюида, глубины уровня жидкости по ее давлению. После окончания свабирования производят запись кривых восстановления давления и уровня жидкости и после извлечения приборов определяют дебит пласта, включившегося в работу первым, дебит второго и последующих пластов путем вычитания из суммарного дебита, после чего вновь производят спуск автономных приборов, далее насосного оборудования и включение его в работу.

Способ обладает следующими недостатками:

- запись показаний автономных приборов в долговременную память не позволяет получать информацию о работе пластов без подъема насосного оборудования и приборов на поверхность;

- наличие приемного патрубка УЭЦН, проходящего через пакер, обязательно используемый при одновременно-раздельной эксплуатации, не позволяет спускать прибор в интервал перфорации верхнего продуктивного пласта и определять дебиты каждого пласта;

- способ не позволяет разобщать пласты для раздельного учета дебита каждого пласта при остановке УЭЦН и измерении дебита верхнего пласта по кривой восстановления уровня жидкости в скважине с ОРЭ.

Целью предлагаемого изобретения является определение дебитов и обводненности продукции каждого разрабатываемого пласта после остановки работы насосного оборудования в скважине.

Поставленная цель достигается тем, что в известном способе, включающем отбор продукции нижнего пласта через приемный патрубок, проходящий через пакер, разделяющий пласты, поступление ее в смеси с продукцией верхнего пласта из надпакерной зоны скважины к приему насоса, измерение общего дебита жидкости и ее обводненности на дневной поверхности, измерение давления на приеме и параметров работы насоса с помощью модуля телеметрической системы, установленного под погружным электродвигателем насоса, измерение давления по глубине приемного патрубка, в том числе на забое нижнего пласта с помощью глубинных манометров, соединенных кабелем с модулем телеметрической системы, остановку электроцентробежного насоса и определение дебита верхнего пласта по кривой восстановления уровня жидкости в затрубном пространстве, определение дебита нижнего пласта путем вычитания из общего дебита скважины дебита верхнего пласта, определение пластовых давлений по кривым восстановление давления, согласно изобретению при остановке электроцентробежного насоса производится перекрытие поступления продукции нижнего пласта за счет снижения давления на запорный орган в приемном патрубке, гидравлически связанный с участком напорной линии между выкидом насоса и обратным клапаном в колонне насосно-компрессорных труб, далее определяют обводненность продукции нижнего пласта по глубинам расположения в приемном патрубке уровней раздела «газ-нефть» и «нефть-вода» после расслоения трехфазной смеси в приемном патрубке в период остановки насоса.

На фиг.1, 2 и 3 показана схема реализации способа.

В скважину 1 на колонне насосно-компрессорных труб 2 спущен электроцентробежный насос 3 с погружным электродвигателем 4 с приводом от кабеля 5. Снизу к погружному двигателю закреплен блок 6 телеметрической системы, передающей информацию на поверхность по кабелю 5. Погружной электродвигатель соединен с приемным патрубком 7, проходящим через пакер 8, разобщающий верхний 9 и нижний 10 продуктивные пласты. В патрубке 7 имеется телескопический разъем 11 для снятия нагрузок на насос при спуске и работе оборудования. К блоку 6 телеметрической системы подсоединен геофизический кабель 12 с расположенными через определенные интервалы патрубка 7 глубинными датчиками давления 13. Электрические сигналы каждого датчика давления передаются независимо через кабель 12, блок 6 и кабель 5 привода двигателя 4 насоса на поверхность, где преобразуются в величины давления в режиме реального времени. На выходе жидкости из насоса 3 в трубах 2 установлены обратный клапан 14 и сливной клапан 15, применяемые при стандартной компоновке оборудования.

В верхней части приемного патрубка 7 расположен запорный орган, состоящий из цилиндра 16 с поршнем 17 и перекрывающей крышкой 18. Крышка 18 размещена в корпусе 19 с отверстиями 20, а между корпусом и крышкой 18 расположена пружина 21. В патрубке 7 выполнены отверстия 22, сообщающие внутреннюю и внешнюю полости патрубка с возможностью их перекрытия крышкой 18. Цилиндр 16 трубкой 23 гидравлически соединен с областью выхода добываемой жидкости из насоса ниже расположения обратного клапана 14. В патрубке 7 выполнено отверстие 24 для возможности измерения давления в затрубном пространстве скважины над пакером 8 блоком 6 телеметрической системы.

Нижняя труба патрубка 7 и последний глубинный датчик давления 13 устанавливаются на уровне кровли нижнего пласта.

Способ осуществляется следующим образом.

В начале в скважину спускаются и устанавливаются пакер 8 с нижней частью патрубка 7 и внешним цилиндром телескопического разъема 11. Далее спускаются электроцентробежный насос 3 в сборе с запорным органом и трубкой 23, верхней частью патрубка 7, внутренним цилиндром телескопического разъема 11, а также блоком 6, кабелем 12 с гирляндой глубинных датчиков давления 13.

После запуска насоса 3 в работу продукция верхнего пласта 9 под напором приподнимает клапан 14, поступает в колонну труб 2 и далее откачивается на поверхность. Возникающее давление под клапаном 14 по трубке 23 передается на поршень 16, который, сжав пружину 21, переместится влево, открыв доступ жидкости нижнего пласта 10 в затрубное пространство скважины над пакером 8 через отверстия 20 и 22. В надпакерном пространстве продукция пласта 10 смешивается с продукцией верхнего пласта 9 и поступает на прием насоса 3.

Глубина спуска насоса 3 в скважину и его производительность выбираются с учетом возможности отбора продукции нижнего пласта и откачки общей продукции пластов 9 и 10 на поверхность. В период работы насоса на поверхности производят замеры общего дебита скважины Qc и суммарного количества откачиваемой воды Вс. Одновременно измеряется динамический уровень жидкости в скважине Нд, передается информация о забойном давлении нижнего пласта Рзаб.2 и давлении в скважине на уровне приема насоса, которое по плотности добываемой продукции пласта 9 пересчитывается на забойное давление верхнего пласта Рзаб.1.

Для получения требуемой информации о работе пластов и раздельного учета жидкостей производят кратковременную остановку насоса 3. В этот период клапан 14 закроется и гидростатическое давление в насосно-компрессорных трубах 2 будет передаваться уже на клапан 14 сверху. Одновременно давление под клапаном 14 снизится до величины, определяемой высотой столба жидкости в затрубном пространстве выше расположения насоса 3.

Снижение давления будет по трубке 23 передаваться поршню 16, который за счет превалирующей силы упругости пружины 21 переместится вправо до упора, пока крышка 18 не перекроет отверстия 22 выхода продукции пласта 10 в надпакерное пространство.

После этого начинается регистрация изменения динамического уровня жидкости в затрубном пространстве, которое определяется притоком жидкости только из верхнего пласта. Дебит верхнего пласта Q1 определяется по угловому коэффициенту предасимптотического прямолинейного участка кривой восстановления уровня жидкости в скважине. Дебит нижнего пласта Q2 рассчитывается как разница общего дебита скважины Qc и дебита верхнего пласта Q1:

Q 2 = Q c Q 1 ( 1 )

После перекрытия поршнем 16 проходных отверстий 18 и 19 газоводонефтяная смесь в приемном патрубке 7 начинает расслаиваться на компоненты в соответствие с их плотностями. На забое скважины продукция представляет собой неустойчивую смесь, в которой внешней средой является пластовая вода, а внутренней фазой - нефть, которая всплывает в водной среде в виде отдельных капель. Такая же структура будет иметь место и в приемном патрубке 7. Через определенное время после остановки насоса значения давления в точках установки датчиков 13 стабилизируются, что будет свидетельствовать о полном расслоении смеси на компоненты. Проведение линии изменения установившегося давления по глубине патрубка 7 (фиг.3) позволяет получить на графике точки пересечения прямых с разными углами наклона к осям координат: глубина-давление. Точка О на графике соответствует верхнему сечению патрубка 7. Нижняя линия с большим углом наклона будет соответствовать интервалу глубины патрубка 7, заполненному пластовой водой, вышерасположенная линия с меньшим углом наклона - заполненному нефтью. Верхняя линия, расположенная вертикально, будет соответствовать интервалу, занятому газовой фазой. Количество добываемой воды из нижнего пласта 10 по точкам пересечения линии определяется из выражения:

B 2 = Q 2 ( L B L H ) / ( L B L Г ) ( 2 )

где LB - глубина расположения башмака патрубка 7 от точки его подвески.

При необходимости одновременно определяется газосодержание продукции нижнего пласта по формуле: Г2=(LГ/LB).

Объем воды, поступающей из верхнего продуктивного пласта в единицу времени, рассчитывается как разность:

B 1 = B c B 2 ( 3 )

При необходимости производятся измерения пластовых давлении верхнего Рпл.1 и нижнего Рпл.2 пластов по кривых восстановления давления, полученным с помощью блока 6 телеметрической системы и нижнего датчика давления (3).

Для реализации способа возможны и другие устройства для перекрытия нижнего пласта после остановки насоса за счет значительного снижения давления на привод запорного органа. Кроме того, возможны также другие методы определения уровней раздела «газ-нефть» и «нефть-вода» в приемном патрубке насоса после его остановки и разделения трехфазной смеси на компоненты.

Техническим преимуществом предложенного способа является автоматическое отключение поступления продукции нижнего пласта в скважину, а также возможность определения обводненности продукции нижнего пласта при смешении жидкостей в насосе.

Литература

1. Патент РФ №120461 на полезную модель. Установка

электроцентробежного насоса для одновременно-раздельной эксплуатации нефтяных скважин. Заявл. 10.04.2012. Опубл. 20.09.2012. БИ №26.

2. Патент РФ №120407 на полезную модель. Установка

электроцентробежного насоса для одновременно-раздельной добычи нефти из двух пластов (варианты). Заявл. 21.05.2012. Опубл. 27.09.2012. БИ №27.

3. Авторское свидетельство СССР №1265303. Способ определения пластового давления в добывающих и нагнетательных скважинах. Заявл. 04.06.1984. Опубл. 23.10.1986.

4. Патент РФ №2167289. Способ определения пластового давления в нефтяной скважине. Заявл. 19.01.1999. Опубл. 20.06.2001.

5. Лепихин В.И., Видякин Н.Г., Валеев А.С. и др. ЗАО «Электон»: Разработка и опыт эксплуатации комплекса оборудования для автоматизации добычи нефти. / Нефтяное хозяйство. М.: 2004. - №5. - с.111-112.

6. Патент РФ №2387824. Способ мониторинга многопластовой скважины. Заявл 24.07.2008. Опубл. 27.04.2010.

Способ одновременно-раздельной эксплуатации нефтяной скважины, оборудованной электроцентробежным насосом, включающий отбор продукции нижнего пласта через приемный патрубок, проходящий через пакер, разделяющий пласты, поступление ее в смеси с продукцией верхнего пласта из надпакерной зоны скважины к приему насоса, измерение общего дебита жидкости и ее обводненности на дневной поверхности, измерение давления на приеме и параметров работы насоса с помощью модуля телеметрической системы, установленного под погружным электродвигателем насоса, измерение давления по глубине приемного патрубка, в том числе на забое нижнего пласта с помощью глубинных манометров, соединенных кабелем с модулем телеметрической системы, остановку электроцентробежного насоса и определение дебита верхнего пласта по кривой восстановления уровня жидкости в затрубном пространстве, определение дебита нижнего пласта путем вычитания из общего дебита скважины дебита верхнего пласта, определение пластовых давлений по кривым восстановления давления, отличающийся тем, что при остановке электроцентробежного насоса производится перекрытие поступления продукции нижнего пласта за счет снижения давления на запорный орган в приемном патрубке, гидравлически связанный с участком напорной линии между выкидом насоса и обратным клапаном в колонне насосно-компрессорных труб, далее определяют обводненность продукции нижнего пласта по глубинам расположения в приемном патрубке уровней раздела «газ-нефть» и «нефть-вода» после расслоения трехфазной смеси в приемном патрубке в период остановки насоса.



 

Похожие патенты:

Группа изобретений относится к раздельной эксплуатации нескольких пластов с использованием штанговой насосной установки. Способ включает спуск в скважину установки, включающей колонну лифтовых труб, хвостовик с установленным на нем пакером, обеспечивающим разобщение верхнего и нижнего эксплуатируемых пластов, глубинный штанговый насос для подъема пластового флюида из двух пластов, входы которого сообщены с надпакерным пространством и подпакерным пространством через всасывающие клапаны, а выход сообщен с полостью колонны лифтовых труб через нагнетательный клапан; переходный элемент, обеспечивающий гидравлическую связь подпакерного пространства скважины через хвостовик с одним из всасывающих клапанов глубинного штангового насоса и постоянное отделение попутного газа из флюида, добываемого из нижнего пласта, в линию нефтесбора на устье скважины или в надпакерную полость скважины выше динамического уровня по скважинному трубопроводу.

Изобретение относится к добыче нефти. Установка содержит размещенные в обсадной трубе скважины колонну НКТ, электроприводной насос, силовой кабель и устройство одновременно-раздельной эксплуатации пластов, выполненное в корпусе, состоящее из блоков регулирования и учета дебита пласта, включающих регулировочные клапаны (РК) и контрольно-измерительные приборы (КИП).

Группа изобретений относится к нефтедобывающей промышленности, в частности к скважинным насосным установкам для одновременной раздельной эксплуатации двух продуктивных пластов.

Изобретение относится к нефтедобывающей промышленности и может быть применено для разобщения и управления потоками флюида или закачки рабочего агента в скважину в процессе эксплуатации одного или нескольких пластов.

Изобретение относится к нефтедобывающей промышленности, а именно к способам разработки нефтяного пласта с одновременно-раздельным отбором продукции и воды из пласта с подошвенной водой, в том числе на поздних стадиях разработки.

Использование: изобретение относится к нефтегазодобывающей промышленности и может найти применение при строительстве скважин сложнопостроенных залежей нефти и газа, приуроченных к осложненному, неустойчивому геологическому разрезу со слабосцементированными породами, с использованием технологий бурения на обсадной колонне.

Изобретение относится к нефтяной промышленности и может быть применено при одновременно-раздельной эксплуатации скважин, оборудованных электроцентробежными или штанговыми насосами.

Изобретение относится к скважинным насосным установкам и может быть применено для управления скважиной при одновременно-раздельной или поочередной эксплуатации нескольких продуктивных пластов.

Изобретение относится к нефтедобывающей отрасли промышленности и может быть использовано для одновременно-раздельной добычи нефти и закачки попутно-добываемой воды в нижерасположенный водоносный горизонт.

Изобретение относится к нефтяной промышленности и может быть применено при геофизических исследованиях двух продуктивных пластов в одной добывающей скважине. Установка содержит параллельные длинную и короткую колонны НКТ, децентраторы установленные на длинной колонне НКТ, параллельный якорь, глубинные приборы, размещенные выше и ниже пакера, геофизический кабель, закрепленный в децентраторах посредством замковых устройств, и устройство герметичного перехода кабеля.

Изобретение относится к добыче нефти и может быть применено при одновременно-раздельной эксплуатации двух пластов одной скважиной. Установка содержит колонну НКТ, размещенную в обсадной трубе скважины, образующие межтрубное пространство, пакер, глубинный электроприводной насос, электрический погружной кабель, проходящий через пакер, и регулирующее запорно-перепускное устройство, последнее выполнено в цилиндрическом корпусе, установленном в пакере и ограниченном с торцов муфтами перекрестного течения флюидов из пластов скважины. Верхней муфтой корпус устройства сопряжен с НКТ на уровне выше гравийно-песчаной набивки в межтрубном пространстве выше пакера. Нижней муфтой корпус соединен с насосом посредством трубчатого переходника. В верхней муфте выполнено отверстие, в котором установлен ниппель с упором в торец гнезда, выполненного в нижней муфте, образующие с корпусом канал для прохода флюида из полости трубчатого переходника в НКТ через продольные каналы муфт, для чего на ниппеле установлены две пары манжет. В ниппеле установлена запорная игла с электроприводом. В ниппеле выполнены окна, сообщающиеся с радиальными каналами верхней муфты через проточку, выполненную снаружи ниппеля на уровне окон. Технический результат заключается в исключении влияния депрессии верхнего пласта на возможность регулируемого отбора флюида в зависимости от перепада давлений в пластах. 5 з.п. ф-лы, 1 ил.

Изобретение относится к нефтяной промышленности и может быть применено при разработке многопластовых нефтяных месторождений с залежами нефти в карбонатных и терригенных коллекторах. Согласно способу проводят выделение эксплуатационных объектов, размещение добывающих и нагнетательных скважин, добычу нефти через добывающие скважины и закачку рабочего агента через нагнетательные скважины. При этом в качестве эксплуатационных объектов выделяют четыре объекта: два терригенных и два карбонатных, в конце второй стадии разработки месторождения при начале снижения максимальных годовых показателей добычи нефти на месторождении выполняют мероприятия по годам, считая с первого года начала реализации способа. В первый год бурят две вертикальные добывающие и одну нагнетательную скважины на первый объект, выполняют проводку одного бокового ствола на четвертом объекте из существующей пьезометрической скважины, переводят под закачку воды одну добывающую скважину по второму объекту, вводят в качестве добывающей одну пьезометрическую скважину по первому объекту. Во второй год переводят под закачку одну скважину по второму объекту, одну скважину оборудуют установкой для внутрискважинной перекачки с одного горизонта на другой в пределах первого объекта, одну скважину оборудуют установкой для одновременно-раздельной добычи с первого и второго объектов. На третий год переводят под закачку одну скважину по первому объекту, одну скважину оборудуют установкой для одновременно-раздельной закачки на первый и второй объекты, две скважины оборудуют установкой для одновременно-раздельной добычи: одну с первого и второго объектов и одну с четвертого и первого объектов, выполняют проводку одного бокового горизонтального ствола на первом объекте из существующей добывающей скважины, вводят в качестве добывающей одну пьезометрическую скважину по третьему объекту. На четвертый год бурят одну вертикальную добывающую скважину на четвертый объект, на пятый год переводят одну скважину с третьего объекта на четвертый под добычу, на восьмой год выполняют проводку одного бокового горизонтального ствола на первом объекте из существующей добывающей скважины. Технический результат заключается в повышении нефтеотдачи месторождения путем оптимизации системы разработки. 1 з.п.ф-лы, 7 ил.

Изобретение относится к оборудованию для одновременно-раздельной добычи углеводородов из двух пластов через одну скважину. Способ включает размещение в скважине насосной установки, содержащей колонну труб, колонну штанг, два пакера, два насоса, верхний из которых выполнен штанговым, а нижний электропогружным с электродвигателем и кабелем, запуск скважины в нужном режиме и ее эксплуатацию. При этом соединяют нижние перепускные клапана, нижний пакер, узел безопасности, прикрепляют телескопическое соединение без полого подвижного штока к колонне труб, затем присоединяют к установке верхние перепускные клапана, далее в телескопическое соединение спускают полый подвижный шток, в который вкручивают трубы меньшего диаметра. Осуществляют подгонку труб и соединяют колонну труб меньшего диаметра с муфтой перекрестного сечения или с переводником, установленным в перфорированной трубе, присоединяют верхний пакер, монтируют разъединитель колонны, осуществляют спуск собранной установки на колонне труб до заданного интервала и перевод пакеров в рабочее положение, производят отсоединение в разъединителе колонны и подъем колонны труб. Затем в скважину на колонне труб спускают извлекаемую часть разъединителя колонны, электропогружной насос, расположенный внутри кожуха, и комплект байпасной линии, состыковывают оставляемую и извлекаемую части разъединителя колонны, осуществляют спуск штангового насоса. Технический результат заключается в повышении эффективности эксплуатации скважины. 3 н. и 7 з. п. ф-лы, 5 ил.

Изобретение относится к оборудованию для эксплуатации нефтедобывающих скважин и может быть применено для одновременно-раздельной и поочередной закачки жидкости в два пласта одной скважины. Устройство смонтировано на колонне насосно-компрессорных труб и содержит подвеску, оснащенную двумя пакерами. В полости подвески выполнены, по меньшей мере, два кольцевых выступа, в последних герметично установлен стакан с упором в торцевой выступ подвески, выполненный с продольными каналами, образующие межтрубные пространства. В стенке стакана по обе стороны от нижнего кольцевого выступа установлены два штуцера с калиброванными проходными сечениями, сообщающими полость стакана, с одной стороны, с верхним пластом скважины через верхний штуцер, межтрубное пространство между кольцевыми выступами и окна, выполненные в стенке подвески, и с другой, - с нижним пластом через нижний штуцер, межтрубное пространство ниже кольцевых выступов и продольные каналы торцевого выступа. Технический результат заключается в обеспечении возможности оперативной закачки запланированных объемов жидкости в пласты скважины с разной приемистостью. 2 н. и 3 з.п. ф-лы, 5 ил.

Изобретение относится к оборудованию одновременно-раздельной эксплуатации двух пластов в одной скважине. Установка содержит пакер, длинную и короткую колонны насосно-компрессорных труб, два штанговых насоса, устьевую арматуру и наземный привод насосов. Установка снабжена разделительно-посадочным устройством, центратором, направляющей втулкой, конусной втулкой, уплотнительным конусным кольцом. Корпус сальникового узла выполнен в виде трубы с внутренней проточкой и выступом и содержит полированный шток с торсионами для соединения с роторами нижнего и верхнего штанговых насосов, последовательно расположенные на штоке упорную втулку, опорное кольцо, уплотнительные манжеты, компрессионное кольцо и поджимную втулку. Установка содержит автоматическое сцепное устройство, которое включает протектор, штанговый сцепной узел, шлицевой якорь и переходник. Установка содержит гидравлическое разгрузочное устройство для слива продукции. В качестве штанговых насосов использованы винтовые. Длина статора уменьшена на 500-750 мм и имеет резьбу со стороны входа винтового штангового насоса. Технический результат заключается в повышении эффективности работы установки и снижении материальных затрат. 2 з.п. ф-лы, 17 ил.
Изобретение относится к нефтяной промышленности и может найти применение при строительстве многозабойной скважины. При строительстве многозабойной скважины выполняют бурение стволов в продуктивные пласты и освоение скважины. Сначала бурят первый ствол в пласт с меньшей продуктивностью. Пробуренный ствол, не осваивая, заполняют жидкостью на углеводородной основе, образующей фильтрационную корку толщиной не более 0,5 мм. Затем бурят второй ствол в пласт с большей продуктивностью с использованием бурового раствора. Осваивают скважину воздействием на оба пласта одновременно. При этом жидкость на углеводородной основе используют с плотностью, не меньшей плотности бурового раствора, используемого при бурении второго ствола. Обеспечивается снижение кольматации стволов скважины и увеличение ее производительности. 1 пр.

Группа изобретений относится к выполнению операций во множестве скважин через один основной ствол с операциями одновременного бурения и заканчивания одним станком. Обеспечивает повышение эффективности подготовки и эксплуатации множества скважин. Сущность изобретения: система для эксплуатации множества скважин с кольцевым пространством, имеющим возможность сообщения по текучей среде через один основной ствол, содержит, по меньшей мере, одну обсадную трубу, по меньшей мере, одну камеру, образующую кольцевой проход, который имеет возможность сообщения по текучей среде со множеством скважин, и первый канал, имеющий возможность сообщения с, по меньшей мере, одной обсадной трубой и множеством дополнительных каналов. Каждый из этих каналов имеет возможность сообщения с выбранной скважиной из множества скважин. Система содержит инструмент выбора ствола, имеющий необходимый размер для введения через первый канал и имеющий возможность совмещения с, по меньшей мере, одним дополнительным каналом из множества дополнительных каналов и содержащий верхнее отверстие, имеющее возможность совмещения с первым каналом, и, по меньшей мере, одно нижнее отверстие, имеющее возможность поворотного совмещения со множеством дополнительных каналов. Каждое нижнее отверстие выполнено с возможностью избирательного совмещения с одним из множества дополнительных каналов. При этом инструмент выбора ствола предотвращает сообщение с, по меньшей мере, одним из дополнительных каналов. 3 н. и 30 з.п. ф-лы, 97 ил.

Изобретение относится к горному делу и может быть применено в качестве привода с канатной связью для одновременной раздельной эксплуатации двух пластов через одну скважину штанговыми насосами. Привод используется для приведения в действие двух штанговых насосов, расположенных на разных горизонтах одной скважины в двух параллельных колоннах насосно-компрессорных труб. При этом используются два каната, прикрепленных к общей траверсе, один из которых перекинут через один, а другой - через два канатных шкива. При движении траверсы, создаваемом двумя гидродомкратами, канатные подвески совершают встречное движение, передаваемое скважинным насосам. Технический результат заключается в снижении энергетических затрат на привод двух штанговых насосов в одной скважине. 1 ил.

Группа изобретений относится к горному делу и может быть применена в скважинных клапанных системах. Скважинная система включает в себя насосно-компрессорную трубу, проходящую в изолированную зону скважины, и множество модулей штуцеров, расположенных в изолированной зоне, для управления перемещением текучей среды между проходным каналом насосно-компрессорной трубы и зоной. Каждый модуль штуцера включает в себя соответствующий штуцер, сменяемый в модуле штуцера без разборки насосно-компрессорной трубы. Каждый модуль штуцера является независимо управляемым по отношению к другому модулю (модулям) штуцера для избирательного пропуска и блокировки потока через соответствующий штуцер. Центральный перепускной канал блока модулей является независимым от штуцеров или размеров штуцеров. Модули штуцеров расположены по периметру вокруг внешней части колонны насосно-компрессорной трубы. Технический результат заключается в обеспечении возможности снижения давления, вырабатываемого наземным оборудованием скважины. 2 н. и 18 з.п. ф-лы, 22 ил.

Изобретение относится к технике и технологии нефтегазодобычи и может быть применено для одновременно-раздельной добычи флюида из нескольких пластов одной насосной скважины с возможностью исследования и учета их параметров. Система по одному из вариантов включает оснащение колонны труб, по меньшей мере, пакером без или с разъединителем из двух - съемной и несъемной - частей; электропогружной установкой, без или с кожухом, снабженной телеметрией и расположенной над или между пластами выше пакера; хвостовиком ниже электропогружной установки; отсекателем для нижнего пласта, расположенным ниже электропогружной установки. При этом отсекатель состоит из корпуса с пропускным каналом, внутри которого размещен, по крайней мере, управляемый элемент, взаимодействующий непосредственно или через шток с запорным узлом. Колонна труб выше электропогружной установки снабжена либо муфтой с боковым отводом, либо как муфтой с боковым отводом, так и ниже ее ниппелем со сквозным осевым каналом, либо же ниппелем с боковым отводом, со сквозным эксцентричным и несквозным или сквозным осевым каналами. В осевой канал ниппеля спущен разделитель двух полостей на дополнительной колонне труб меньшего диаметра, без или с боковым обратным клапаном, или же установлен съемный клапан с помощью канатной техники или путем свободного падения. Ниже электропогружной установки отсекатель для нижнего пласта выполнен с боковым вводом или хвостовик снабжен дополнительной муфтой с боковым вводом. Ниже и выше электропогружной установки боковой ввод и боковой отвод, соответственно, отсекателя и муфты, или отсекателя и ниппеля, или же дополнительной муфты и муфты, соединены между собой гидравлической трубкой, проходящей снаружи электропогружной установки или внутри ее кожуха. Отсекатель жестко размещен непосредственно под телеметрией или под кожухом, или над пакером, или под пакером, или на любой части хвостовика, или же в съемной части разъединителя. Пакер между пластами установлен либо раздельно перед спуском в скважину электропогружной установки, либо же одновременно с электропогружной установкой на ее хвостовике. Если пакер гидравлического действия, то при увеличении давления в его гидрокамере, сообщенной с колонной труб или дополнительной колонной труб через гидравлическую трубку, он посажен либо автоматически при запуске электропогружной установки и, соответственно, повышения трубного давления на ее выходе, либо при целенаправленном создании и поддержании избыточного давления в дополнительной колонне труб, либо же при целенаправленном создании избыточного давления в колонне труб. Отсекатель образует между корпусом и управляемым элементом рабочую камеру, связанную гидравлически с колонной труб или дополнительной колонной труб через гидравлическую трубку. При этом его управляемый элемент выполнен в виде либо поршня, без или со сквозным осевым каналом, либо сильфона, без или с заполненным сжатым газом, а запорный узел выполнен в виде пары «цилиндр - затвор плунжерный» или «седло опорное - затвор упорный», причем поршень или сильфон и/или затвор находится под заданным усилием упругого элемента. Рабочая камера отсекателя или полость его корпуса над поршнем со сквозным осевым каналом гидравлически соединена непосредственно с телеметрией. Отсекатель перемещением в одну и другую стороны управляемого элемента закрывает и открывает запорный узел от создаваемого и/или стравливаемого избыточного давления в колонне труб или дополнительной колонне труб, а значит и в его рабочей камере, с помощью устьевого насоса или компрессора, или с помощью электропогружной установки, изменяя обороты ее двигателя, или же путем временного перекрытия и затем открытия на устье проходного сечения задвижки или регулятора при работе электропогружной установки, а именно он либо при создании и поддержании заданного избыточного трубного давления в рабочей камере принудительно закрывает или открывает запорный узел, а при стравливании давления из нее, наоборот, открывает или закрывает запорный узел под усилием упругого элемента, либо же при каждом кратковременном создании и затем стравливании заданного избыточного трубного давления в рабочей камере поочередно закрывает и открывает запорный узел по принципу действия авторучки. Отсекатель в последнем случае для фиксации закрытия и открытия его состояния дополнительно снабжен регулирующим механизмом любого исполнения, например, в виде вращающейся на штоке или в корпусе кодовой втулки со сквозными или глухими фигурными пазами под ограничитель, соответственно, в корпусе или на штоке, вследствие этого при создании избыточного давления в колонне труб или дополнительной колонне труб управляемый элемент отсекателя принудительно переходит от одного фиксированного - верхнего крайнего или среднего положения до не фиксированного - нижнего положения, и наоборот, при стравливании давления из нее, управляемый элемент под усилием упругого элемента переходит, соответственно, до другого фиксированного - среднего или верхнего крайнего положения. Также раскрыты еще 9 вариантов системы. Технический результат заключается в возможности управления с устья скважины гидравлическим и/или механическим воздействием через колонну труб одним или двумя отсекателями, под и/или над электропогружной установкой, для исследования и учета параметров пластов. 10 н.п. ф-лы, 55 ил.
Наверх