Способ изготовления каркасов искусственных клапанов сердца из технически чистого титана

Изобретение относится к способу изготовления сварных изделий, преимущественно сварных каркасов искусственных клапанов сердца ИКС. Способ изготовления каркасов искусственных клапанов сердца из технически чистого титана включает сборку и сварку деформированной волочением проволоки и пластины и термическую обработку. Перед сборкой каркаса проволоку отжигают в вакуумной печи при температуре 550-600°С в течение 30-40 минут и охлаждают с печью, а после сварки проводят отжиг каркаса в вакуумной печи при температуре 550-600°С в течение 1,5-2 часов и охлаждение с печью. Повышается технологичность способа за счет снижения трудоемкости и длительности при высоких механических характеристиках. 1 табл., 1 пр.

 

Изобретение относится к способу изготовления сварных изделий, преимущественно сварных каркасов искусственных клапанов сердца (ИКС).

Известны способы изготовления каркасов ИКС механической обработкой (за рубежом - типа Stellite Haynos) - см. авторское свидетельство СССР № 1712459, C22F 1/10, опубл. 15.02.1992. Однако эти способы трудоемки и не позволяют изготавливать каркасы ИКС сложной формы.

Известен способ изготовления каркасов ИКС из титана ВТ 1-0 (α-β фазы) (пат. РФ N 2012284 A61F 2/24, опубл. 15.05.1994). Способ включает механическое изготовление корпуса и створок, сборку, нанесение углеродного покрытия. Способ включает нагрев прутка, из которого изготавливаются заготовки, его ковку и отжиг. Нагрев прутка проводят до температуры ~900°C, ковка со всесторонним обжатием с двойной или тройной осадкой до 30-50% с последующей протяжкой. Отжиг поковок при термической обработке производят в электрических камерных печах, прогретых до 670-680°C, с последующим охлаждением на воздухе. Корпус закрепляют в фиксированном положении, а створки устанавливают в приспособление, обеспечивающее сжатие створок при занесении в гнезда и расправлении при установке в гнезда. Целью известного изобретения является повышение надежности клапанов. Однако в патенте не содержится показателей, характеризующих эти изделия. Кроме того, способ трудоемок.

Авторами настоящей заявки испытаны цельноточеные образцы, выполненные из прутка титана ВТ 1-0, обработанные вышеизложенным способом (результаты приведены в таблице).

В качестве прототипа принят способ изготовления сварных изделий из сплавов системы кобальт-хром-никель-молибден, преимущественно каркасов ИКС, как наиболее близкий по сумме признаков (авт. свид. СССР № 1712459, C22F 1/10, опубл. 15.02.1992). Способ включает сборку и сварку деформированной волочением проволоки и пластины, термическую обработку. Проволоку предварительно деформируют волочением на 50%. Проводят электронно-лучевую сварку проволоки с пластиной при напряжении 16-18 кВ, ток пучка электронов 22-24 мА, время сварки 0,9-1,2 с, остаточное давление в вакуумной камере 133.10-4-135.10-5 Па. Затем осуществляют закалку с температуры 1100-1180°С в воде, холодную деформацию растяжением со степенью 15-20%, старение при 450-500°C в течение 10-15 ч.

Следует отметить высокую трудоемкость и длительность способа, что в итоге снижает его технологичность. Механические характеристики достаточно высоки (см. таблицу).

Известный способ совершенствуется предлагаемым решением.

Поставлена задача усовершенствования способа по прототипу для изготовления каркасов ИКС из титана, как сплава более технологичного, легкого, что важно для таких специфичных изделий, как каркасы ИКС.

Технический результат - повышение технологичности способа за счет снижения трудоемкости и длительности при высоких механических характеристиках.

Этот технический результат достигается тем, что в способе изготовления каркасов ИКС из технически чистого титана, включающем сборку и сварку деформированной волочением проволоки и пластины и термическую обработку, перед сборкой каркаса проволоку отжигают в вакуумной печи при температуре 550-600°C в течение 30-40 минут и охлаждают с печью, а после сварки проводят отжиг каркаса в вакуумной печи при температуре 550-600°C в течение 1,5-2 часов и охлаждение с печью.

Предлагаемый способ позволяет изготавливать каркасы ИКС из технически чистого титана, он легче, дешевле, обладает хорошей свариваемостью. Способ менее длителен, т.к. исключены операции закалки, холодной деформации и отпуска в течение 10-15 часов, снижается вес изделий в два раза, при высоких усталостных характеристиках.

Эффект досварочного отжига обусловлен тем, что проходящая при нем рекристаллизация делает металл термодинамически более устойчивым к сварочному термическому циклу.

Назначение послесварочного отжига - снижение уровня внутренних напряжений, получение более однородной структуры сварочного соединения, снижение твердости околошовной зоны, обусловленное снятием наклепа, возникающего в результате термодеформационного сварочного цикла, а также перераспределение упрочняющих околошовную зону при сварке примесей внедрения - кислорода и азота.

В результате до- и послесварочного отжигов достигается более равномерное распределение свойств в зонах влияния сварки (шов и зоны термического влияния).

Способ осуществляют следующим образом.

Проволоку из технически чистого титана деформируют волочением и отжигают при температуре 550-600°C в течение 30-40 минут, охлаждение с печью. Сваривают с пластинами из того же материала. После сварки каркасы отжигают при температуре 550-600°C в той же печи в течение 1,5-2 часов. Образцы готовых каркасов ИКС проходили механические испытания.

Пример осуществления способа.

Проволоку из технически чистого титана ВТ 1-0 деформировали волочением на 55% на диаметр 2±0,01 мм, длиной 45 мм и отжигали при температуре 550-600°C в течение 30-40 минут, охлаждали с печью. Готовили из того же материала пластины размером 12×12×1. Осуществляли сварку проволоки с пластиной. Термическая обработка и сварка осуществлялись в вакууме с остаточным давлением 133.10-4-135.10-5. Режим сварки: ускоряющее напряжение электронов 16-18 кВ, ток пучка электронов 18-20 мА, время сварки 1,0-1,2 с (как в прототипе).

После сварки каркасы проходили термическую обработку - отжиг в вакууме при температуре 550-600°C в течение 1,5-2 часов, охлаждение с печью.

После отжига каркасы подвергали механической и электрохимической полировке, а затем - испытаниям на знакопеременный симметричный циклический изгиб с определением предела выносливости на базе испытаний N=107 циклов и интенсивности накопления циклических повреждений, характеризующихся показателями β1, β2 , в физиологическом растворе Рингера-Локка.

Результаты механических испытаний приведены в таблице.

Из таблицы видно, что температура 600°C досварочного отжига и 600°C послесварочного отжига обеспечивают оптимальное сочетание прочностных и пластических (относительного удлинения δ, относительного сужения Ψ) характеристик и наилучшие усталостные характеристики: максимальное значение предела выносливости σ-1=235 МПа на базе испытаний N=107 циклов, минимальные углы наклона левой (β1) и правой (β2) ветвей кривой усталости в двойных логарифмических координатах.

При уменьшении температуры досварочного отжига ниже 550°C (500°C) снижается предел выносливости и достаточно высоки углы наклона кривых усталости. Некоторое снижение предела выносливости, по сравнению с прототипом, связано с разницей в свойствах титана и сплавов системы кобальт-хром-никель-модибден.

При увеличении температуры досварочного отжига выше 600°С (650°C) наблюдается тот же результат.

При уменьшении времени выдержки при досварочном отжиге менее 30 минут (25 минут) процесс кристаллизации проходит менее полно и зерно менее устойчиво к росту в процессе сварки.

Увеличение времени выдержки при досварочном отжиге более 40 минут (45 минут) может привести к росту зерен, что отрицательно скажется на долговечности.

При уменьшении температуры послесварочного отжига ниже 550°C (500°C) менее полно снижается уровень внутренних напряжений, неравномерно распределение свойств в сварных соединениях.

При увеличении температуры послесварочного отжига выше 600°C (650°C) снижается предел выносливости.

При уменьшении времени выдержки при послесварочном отжиге менее 1,5 часов (1 час) имеет место неполное снижение внутренних напряжений, неравномерное распределение свойств по длине сварных соединений, неполное снятие наклепа, возникающего в результате термодеформационного сварочнго цикла.

Увеличение времени выдержки при послесварочном отжиге более 2 часов приводит к снижению уровня механических свойств из-за роста зерна.

Опытная партия каркасов ИКС прошла испытания на физиобиологических стендах в условиях, максимально приближенных к эксплуатационным, и показала увеличение долговечности в 1,4-1,5 раза по сравнению с каркасами, не прошедшими предлагаемую обработку - отжиг.

Предлагаемый способ позволяет изготавливать каркасы ИКС более технологичным способом, более легкие, более дешевые, с более высоким пределом выносливости, что повышает их долговечность.

Способ соответствует критериям новизны, изобретательского уровня и промышленной применимости.

Таблица
Режим ТМО Механические свойства
Т досварочного отжига, °C Т послесварочного отжига, °C σв, МПа σв, МПа σ-1, МПа β1 β2 δ, % Ψ, %
500 600 390 394 206,5 0,131 0,029 36,5 78
550 600 400 300 211,5 0,114 0,031 33,0 78
время 30 мин время 1,5 часа
600 600 390 300 235 0,116 0,028 39 84
650 600 376 275 201 0,187 0,033 40 85
550 500 420 330 200 0,135 0,034 23 74,5
550 550 400 300 211,5 0,114 0,031 33,0 78
550 650 355 252,5 177 0,228 0,04 49,5 83,5
по прототипу другие единицы
1400-1525 Н/мм2 1295-1415 Н/мм2 540-560 Н/мм2 0,153-0,146 0,286-0,280 16-22 51,5-54,5
цельноточеные каркасы ИКС 440 384 230 0,131 0,034 35 78

Способ изготовления каркасов искусственных клапанов сердца из технически чистого титана, включающий сборку и сварку деформированной волочением проволоки и пластины и термическую обработку, отличающийся тем, что перед сборкой каркаса проволоку отжигают в вакуумной печи при температуре 550-600°С в течение 30-40 минут и охлаждают с печью, а после сварки проводят отжиг каркаса в вакуумной печи при температуре 550-600°С в течение 1,5-2 часов и охлаждение с печью.



 

Похожие патенты:

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении термомеханической детали турбомашины из бета- или альфа/бета-титанового сплава.

Изобретение относится к области металлургии, а именно к получению труб из технически чистого титана с радиальной структурой. Для получения трубы из технически чистого титана с радиальной текстурой изготавливают заготовки в виде колец, деформируют с уменьшением толщины их стенок и увеличением их диаметра, а затем сваривают торцами встык с получением трубы.

Изобретение относится к способам термической обработки литых заготовок из заэвтектоидных интерметаллидных сплавов на основе фаз γ-TiAl и α2-Ti3Al. Способ термической обработки литых заготовок из заэвтектоидных интерметаллидных сплавов на основе фаз γ-TiAl+α2-Ti3Al, затвердевающих полностью через β-фазу, содержащих легирующие элементы, по крайней мере, бор и элементы, стабилизирующие β-фазу, включает охлаждение заготовок от температур β-фазовой области.

Изобретение относится к деформационно-термической обработке сплавов с эффектом памяти формы, в частности сплавов на основе TiNi. Наноструктурный сплав титан-никель с эффектом памяти формы характеризуется структурой из наноскристаллических аустенитных зерен В2 фазы, в которой объемная доля зерен с размером менее 0,1 мкм и с коэффициентом формы зерен не более 2 во взаимно перпендикулярных плоскостях составляет не менее 90%.

Изобретение относится к области металлургии, в частности к способам термообработки отливок сплавов на основе гамма алюминида титана, и может быть использовано при получении изделий ответственного назначения, работающих при температурах до 800°С, в частности лопаток газотурбинных двигателей.

Изобретение относится к области металлургии, а именно к производству проволоки волочением, и может быть использовано для нагрева при изготовлении тонкой и тончайшей проволоки из никелида титана.

Изобретение относится к области получения наноструктурированных материалов путем обработки потоком порошковых частиц с использованием энергии взрыва, высокие физико-механические и химические свойства которых позволяют использовать для целей медицины, в том числе имплантатов.

Изобретение относится к области металлургии, а именно к высокопрочным титановым сплавам, и может быть использовано в авиационной промышленности. Высокопрочный псевдо-бета титановый сплав содержит, мас.%: 5,3-5,7 алюминия, 4,8-5,2 ванадия, 0,7-0,9 железа, 4,6-5,3 молибдена, 2,0-2,5 хрома, 0,12-0,16 кислорода, остальное титан и примеси и, при необходимости, один или более дополнительных элементов, выбранных из N, С, Nb, Sn, Zr, Ni, Co, Cu и Si, причем каждый дополнительный элемент присутствует в количестве менее 0,1%, и общее содержание дополнительных элементов составляет менее 0,5 мас.%.

Изобретение относится к области металлургии, а именно к способам обработки титанового сплава для использования в выхлопных системах двигателя внутреннего сгорания.

Изобретение относится к обработке металлов давлением, в частности к термомеханической обработке двухфазных титановых сплавов в процессе получения толстых листов и плит.

Изобретение относится к области сварки, в частности к электронно-лучевой сварке в вакууме разнотолщинных деталей. Стыковое замковое соединение осуществляется между деталью с большей толщиной, на торце свариваемой кромки которой выполняют основание замка, и деталью с меньшей толщиной, которая пристыковывается к ней.

Изобретение относится к металлургии, в частности к сварке и пайке металлов, и может быть использовано для изготовления различных изделий в ядерной энергетике и других отраслях машиностроения.

Изобретение относится к области машиностроения и может быть использовано в технологии производства ответственных сварных конструкций. .

Изобретение относится к электронно-лучевой обработке и позволяет получить качественные сварные соединения изделий большой толщины путем повышения стабильности формирования шва при глубоком несквозном проплавлении с конструктивно заданным зазором.

Изобретение относится к устройству для удержания деталей при ремонте лопатки моноблочного турбинного диска турбины посредством электронно-лучевой сварки вставки с лопаткой по плоскости стыка.

Изобретение относится к способу электронно-лучевой сварки немагнитных металлов и сплавов. .

Изобретение относится к способу электронно-лучевой сварки и предназначено для получения неразъемных сварных соединений. .

Изобретение относится к способам наплавки при восстановлении изношенных и упрочнении новых деталей ГТД, ГТУ и паровых турбин, а именно лопаток турбомашин. .

Изобретение относится к области ремонта деталей, в частности к способам ремонта деталей из высоколегированных жаропрочных сталей и сплавов, и может найти применение в авиационной и судостроительной промышленности, а также в энергетическом машиностроении.

Изобретение относится к ремонту моноблочного оснащенного лопатками диска турбомашины. .

Группа изобретений относится к медицине. Интракардиальное устройство для восстановления функциональной упругости кардиоструктур, накапливающее энергию от кардиоструктур и передающее энергию кардиоструктурам в течение сердечного цикла, имеет удлиненную форму, навито в спирали вдоль заданной секции и может крепиться к кардиоструктуре.

Изобретение относится к способу изготовления сварных изделий, преимущественно сварных каркасов искусственных клапанов сердца ИКС. Способ изготовления каркасов искусственных клапанов сердца из технически чистого титана включает сборку и сварку деформированной волочением проволоки и пластины и термическую обработку. Перед сборкой каркаса проволоку отжигают в вакуумной печи при температуре 550-600°С в течение 30-40 минут и охлаждают с печью, а после сварки проводят отжиг каркаса в вакуумной печи при температуре 550-600°С в течение 1,5-2 часов и охлаждение с печью. Повышается технологичность способа за счет снижения трудоемкости и длительности при высоких механических характеристиках. 1 табл., 1 пр.

Наверх