Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины



Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины
Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины
Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины
Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины

 


Владельцы патента RU 2515651:

Открытое акционерное общество "Татнефть" им. В.Д. Шашина (RU)

Изобретение относится к нефтедобывающей промышленности и может быть применено для проведения многократного гидравлического разрыва пласта в зонально-неоднородных пластах. Способ включает определение направления естественной трещиноватости породы и ее максимального главного напряжения, изоляцию интервала разрыва в горизонтальном стволе скважины, проведение гидроразрыва в изолированном интервале, крепление трещины разрыва. Горизонтальную скважину с длиной горизонтальной части не менее 200 м выбирают, либо бурят в направлении, являющемся биссектрисой меньшего угла между вектором естественной трещиноватости и вектором максимального главного напряжения породы. При превышении длины Ln каждого интервала вдоль ствола скважины более 50 м на нем проводят N=Ln/100 ступеней гидроразрыва пласта, где N округляют до целого числа. Первоначально ступень гидроразрыва пласта проводят на интервале с наименьшей проницаемостью, жидкость гидроразрыва закачивают с расходом 1-3 м3/мин, в качестве которой используют последовательно сшитый гель и линейный гель в соотношении 2:1 соответственно, а продавку жидкости с пропантом осуществляют технологической жидкостью с плотностью, равной плотности пластовой воды данного пласта. При этом трещины разрыва в каждом из интервалов крепят фракциями пропанта, которые выбирают из условия обеспечения равенства продолжительности выработки отдельных интервалов пласта с различной проницаемостью по теоретической зависимости. Технический результат заключается в повышении эффективности гидроразрыва зонально-неоднородных коллекторов. 2 ил.

 

Изобретение относится к нефтедобывающей промышленности и может найти применение при проведении многократного гидравлического разрыва пласта (ГРП) в зонально-неоднородных карбонатных и терригенных пластах.

Известен способ многократного гидравлического разрыва горизонтального ствола скважины, включающий формирование трещин последовательно в различных интервалах продуктивного пласта, вскрытого горизонтальным стволом скважины, путем установки пакера, подачи жидкости гидроразрыва через фильтр, установленный в каждой из соответствующих каждому из этих интервалов частей горизонтального ствола с изоляцией остальных его частей. Установку пакера осуществляют в вертикальном стволе скважины, первоначально гидроразрыв осуществляют в интервале пласта с наибольшей проницаемостью подачей жидкости - носителя с пропантом с установкой «головы» пропантовой пробки, перекрывающей соответствующий участок горизонтального ствола, между фильтрами, с указанной изоляцией путем формирования полимерной корки на соответствующих фильтрах, повторяют указанную операцию на каждом из остальных интервалов последовательно по степени снижения их проницаемости с предварительным удалением корки с соответствующего этому интервалу фильтра, причем полимерную корку формируют путем подачи в скважину биополимерного состава, а ее удаление осуществляют жидкостью-растворителем с содержанием разрушителя геля 0,6-1,2 кг/м3 воды (патент РФ №2362010, кл. Е21В 43/267, опубл. 20.07.2009).

Недостатком способа является то, что при разработке залежи нефти горизонтальными скважинами с проведением многократного гидравлического разрыва пласта не учитывается зональная неоднородность, что приводит к низкой нефтеотдаче.

Наиболее близким к предложенному изобретению по технической сущности является способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины, включающий спуск пакера в скважину на колонне труб, с последующей его посадкой в скважине, формирование трещин напротив фильтров последовательно в различных интервалах продуктивного пласта, вскрытого горизонтальным стволом подачей жидкости гидроразрыва через фильтр, установленный в каждой из соответствующих каждому из этих интервалов частей горизонтального ствола с изоляцией остальных его частей. Определяют направление горизонтального ствола относительно направления минимального главного напряжения, затем изолируют интервал, подлежащий гидравлическому разрыву пласта (ГРП) от остальных участков горизонтального ствола посадкой сдвоенных пакеров, затем открывают клапан, размещенный внутри колонны труб между сдвоенными пакерами напротив фильтра, если направление горизонтального ствола параллельно направлению минимального главного напряжения, то гидравлический разрыв пласта производят закачкой разрывной жидкости с образованием поперечных трещин относительно горизонтального ствола, с последующим креплением поперечных трещин закачкой жидкости с алюмосиликатным пропантом, с постепенным увеличением его фракции от 20/40 меш. до 16/30 меш., если направление горизонтального ствола перпендикулярно направлению минимального главного напряжения, то гидравлический разрыв пласта производят закачкой разрывной жидкости с образованием горизонтальных трещин относительно горизонтального ствола, с последующим креплением горизонтальных трещин закачкой жидкости с облегченным пропантом с фракцией 20/40 меш., по окончании ГРП скважину закрывают на технологическую паузу в течение 0,5 ч, после чего на устье скважины на колонну труб устанавливают регулируемый штуцер и производят излив отработанной пропантной жидкости из пласта по колонне труб на устье скважины до закрытия клапана, при этом в процессе излива регулированием штуцера добиваются того, чтобы давление в колонне труб стало на 2-3 МПа меньше давления при открытии скважины после технологической паузы, после чего производят распакеровку пакера и перемещают колонну труб в другую часть горизонтального ствола, и вышеописанный процесс по проведению ГРП в горизонтальном стволе скважины повторяют в зависимости от количества интервалов горизонтального ствола, оснащенных фильтрами в различных его частях (патент РФ №2472926, кл. Е21В 43/267, опубл. 20.01.2013 - прототип).

Недостатком способа является невысокая эффективность гидроразрыва, проявляющаяся в невысокой нефтеотдаче залежи с зонально-неоднородным коллектором, разрабатываемой после проведения гидроразрыва.

В предложенном изобретении решается задача повышения эффективности гидроразрыва, выражающаяся в повышении нефтеотдачи залежи с зонально-неоднородным коллектором.

Задача решается тем, что в способе многократного гидравлического разрыва пласта в горизонтальном стволе скважины, включающем определение направления естественной трещиноватости породы и ее максимального главного напряжения, в горизонтальном стволе скважины изоляцию интервала разрыва, проведение гидроразрыва в изолированном интервале, крепление трещины разрыва, согласно изобретению горизонтальную скважину с длиной горизонтальной части не менее 200 м выбирают, либо бурят в направлении, являющемся биссектрисой меньшего угла между вектором естественной трещиноватости и вектором максимального главного напряжения породы, при превышении длины Ln каждого интервала вдоль ствола скважины более 50 м на нем проводят N=Ln/100 ступеней гидроразрыва пласта, где N округляют до целого числа, первоначально ступень гидроразрыва пласта проводят на интервале с наименьшей проницаемостью, жидкость гидроразрыва закачивают с расходом 1-3 м3/мин, в качестве которой используют последовательно сшитый гель и линейный гель в соотношении 2:1 соответственно, а продавку жидкости с пропантом осуществляют технологической жидкостью с плотностью, равной плотности пластовой воды данного пласта, при этом трещины многократного гидравлического разрыва пласта в каждом из интервалов крепят такими фракциями пропанта, которые выбирают из условия обеспечения равенства продолжительности выработки отдельных интервалов пласта с различной проницаемостью по формуле:

k 1 L n r k r c + S 1 = k 2 L n r k r c + S 2 = = k n L n r k r c + S n ,

где kn - проницаемость пласта n-ого интервала, м2,

rc - радиус скважины, м,

Sn - скин-фактор n-ого интервала призабойной зоны пласта, доли ед.,

rk - радиус контура питания, м.

Сущность изобретения

На нефтеотдачу зонально-неоднородной нефтяной залежи существенное влияние оказывает время работы скважин до полного обводнения и равномерная выработка запасов нефти. Существующие технические решения не в полной мере позволяют выполнить данную задачу. В предложенном изобретении решается задача повышения нефтеотдачи зонально-неоднородной нефтяной залежи посредствам максимально длительной работы скважин до полного обводнения, выравнивания темпов отборов и равномерной выработки запасов нефти. Задача решается следующим образом.

На фиг.1 приведена в плане схема расположения горизонтальной скважины с проведением многократного ГРП. Принятые обозначения: HW- горизонтальная скважина, Sтр - направление естественной трещиноватости, Sгрп - направление трещин многократного ГРП, δmax - направление максимального главного напряжения пород, δmin - направление минимального главного напряжения пород.

На фиг.2 представлена схема участка пласта с горизонтальной скважиной и проведением многократного ГРП. Принятые обозначения: 1 - продуктивный пласт, 2 - горизонтальная скважина, 3-6 - интервалы пласта с различной проницаемостью, 3'-6' - трещины ГРП, 7 - не коллектор, 8 - хвостовик, 9 - фильтры, 10 - водонабухающие пакеры, 11 - насосно-компрессорная труба, 12 - сдвоенные пакеры, 13 - радиальные отверстия гидравлического клапана, 14 - гидравлический клапан, 15 - поршневой и пружинный механизм.

Способ реализуют следующим образом.

На участке пласта 1 (фиг.1) залежи, продуктивные пласты которого представлены зонально-неоднородными карбонатными или терригенными отложениями, определяют направление минимального главного напряжения породы δmin и, соответственно, перпендикулярно ему направление максимального главного напряжения породы δmax. Одним из способов определения является проведение геофизических исследований (ГИС), методом волнового акустического каротажа (например, прибором ВАК-8) на соседних скважинах. Также проводят 3Д-сейсмические исследования и определяют преимущественное направление естественных трещин Sтр.

Горизонтальную скважину (ГС) HW с длиной горизонтальной части ствола не менее 200 м для многократного ГРП выбирают, либо бурят в направлении, являющемся биссектрисой меньшего угла между вектором естественной трещиноватости Sтр и вектором максимального главного напряжения породы δmax. Из опыта проведения многократного ГРП известно, что трещины формируются перпендикулярно направлению минимального главного напряжения пород δmin, т.е. параллельно направлению максимального главного напряжения пород δmax. Расчеты многократного ГРП показали, что для различных геолого-физических характеристик пласта, при расположении горизонтального ствола таким образом, т.е. между меньшим углом направления естественных трещин и трещин, получаемых в результате многократного ГРП, повышается длительность работы скважин до полного обводнения, т.к. вода по трещинам проходит максимальный путь. Также согласно расчетам при длине горизонтального ствола менее 200 м эффективность многократного ГРП снижается, т.к. начинает присутствовать эффект интерференции трещин, что приводит к необходимости проведения обычного ГРП вместо многократного.

В продуктивном зонально-неоднородном пласте 1 (фиг.2) согласно вышеперечисленным условиям бурят горизонтальную скважину 2. Далее проводят ГИС в открытом стволе скважины, по результатам которых определяют участки коллектора и не коллектора, их проницаемость и насыщенность.

Например, в результате исследований, получили 4 интервала (3, 4, 5, 6) продуктивной части пласта 1 вдоль ГС 2. Между интервалами 3 и 4, 4 и 5 есть участки не коллектора 7. В результате интерпретации ГИС также установили, что средняя проницаемость интервалов 3, 4, 5, 6 соответственно k3, k4, k5, k6. Определение проницаемости также возможно проводить на отобранном керне, в этом случае при бурении ГС необходимо закладывать в конструкцию бурильной колонны керноотборник.

При превышении длины Ln каждого интервала вдоль ствола скважины более 50 м на нем проводят N=Ln/100 ступеней гидроразрыва пласта, где N округляют до целого числа. Так, например, если длина интервала равна 250 м, то необходимо на нем проводить N=250/100≈3 ступени многократного ГРП.

На основе этих данных конструируют и спускают в не обсаженный горизонтальный ствол хвостовик 8 с фильтрами 9, расположенными в нефтенасыщенных интервалах 3, 4, 5, 6 пласта 1. Хвостовик 8 также оборудуют водонабухающими пакерами 10 (например, компании «ТАМ»), которые располагают на интервалах ствола, вскрывшего не коллектор 7, а также в местах, где проницаемость коллектора отличается (уменьшается или увеличивается). Также при проведении на одном из интервалов нескольких ступеней ГРП, их также отделяют водонабухающими пакерами.

Далее приступают к проведению ГРП в каждом из интервалов, начиная с того, где минимальная проницаемость коллектора, т.к. необходимо подбирать для такого участка пропант с фракцией, обеспечивающей необходимую максимальную проницаемость трещины, по сравнению с интервалами с большей проницаемостью коллектора. В результате многократного ГРП получают трещины 3', 4', 5', 6'.

Рассмотрим проведение этапа многократного ГРП на одном из интервалов, например 5-м. Для остальных интервалов процесс ГРП аналогичный.

К интервалу 5 пласта спускают на колонне насосно-компрессорных труб (НКТ) 11 сдвоенные пакеры 12, которые размещают до и после радиальных отверстий 13, гидравлического клапана 14 и фильтра 9. Пакеры должны обеспечивать герметичное отсечение интервала горизонтального ствола скважины 2 с фильтром 9.

Вместе с радиальными отверстиями 13 расположен гидравлический клапан 14, который при нагнетании в НКТ жидкости с устья скважины перемещается посредствам поршневого и пружинного механизма 15 вперед и назад вдоль оси НКТ 11 при увеличении и уменьшении давления закачки. При этом радиальные отверстия 13 открываются при давлении закачки более определенного значения. При меньших давлениях закачки гидравлический клапан 14 обеспечивает герметичное перекрытие радиальных отверстий 13.

Спуск НКТ 11 прекращается тогда, когда сдвоенные пакеры 12 окажутся перед и за фильтром 9.

Рассчитывают объем жидкости гидроразрыва, в качестве которой используют сшитый гель и линейный гель в соотношении 2:1 соответственно. Например, принимают объем сшитого геля - 40 м3, линейного геля - 20 м3. Закачивают жидкость гидроразрыва (сшитый гель) с расходом 1-3 м3/мин. Такая скорость расхода, согласно расчетам, обеспечивает эффективное создание трещин, которую выбирают в зависимости от глубины залегания коллектора. Чем глубже залегает коллектор, тем больший расход требуется.

По манометру фиксируют рост давления закачки. О разрыве породы пласта и образования трещины 5' свидетельствует падение давления закачки и увеличение приемистости пласта. Так через некоторое время непрерывной закачки, давление резко падает на 20-30%, а приемистость пласта увеличивается. При этом в процессе образования трещины 5' в колонну труб 8 скважины 2 было закачано гелеобразной жидкости разрыва (сшитого геля) в объеме 30 м3.

Далее оставшийся объем сшитого геля 10 м3 закачивают с добавлением пропанта, например, фракции 12/20 меш (выбор пропанта для ГРП на первом участке производят так же как и при одиночном ГРП в вертикальных скважинах, используют известные пропанты, например, песок фирмы «Боровичевский Комбинат Огнеупоров») с расходом 1,5 м3/мин. Для лучшего крепления производят закачку различной плотности пропанта начиная от 200 кг/м3, который заполняет отдаленные зоны трещины, и заканчивая 1000 кг/м3, заполняющий ближние зоны трещины от скважины.

Не прерывая процесса ГРП, переходят на закачку линейного геля с пропантом с расходом 2 м3/мин в объеме 20 м3. Для лучшего крепления плотность пропанта также увеличивают, как при закачке сшитого геля.

После закачки последней стадии линейного геля с пропантом концентрации 1000 кг/м3 производят его продавку в пласт технологической жидкостью плотностью, равной плотности пластовой воды данного пласта, которая, согласно исследованиям, эффективнее менее или более плотных жидкостей.

Производят выдержку в течение 10 мин, т.е. до спада давления закачки до 11,0 МПа. Далее распакеровывают сдвоенные пакеры и извлекают их с колонной труб 11 из скважины.

Далее микросейсмическими исследованиями определяют параметры трещины (толщина, длина, азимут, асимметрия).

Трещины ГРП создают для каждого интервала (3, 4, 5, 6) определенной длины и проницаемости с целью обеспечить равенство притоков по каждой трещине.

В общем случае для n-го интервала зонально-неоднородного пласта по формуле Дюпюи с учетом скин-фактора имеем:

q n = 2 π k n h Δ P μ ( L n r k r c + S n ) , ( 1 )

где qn - дебит жидкости (нефти) к n-му интервалу скважины, м3/с,

kn - проницаемость пласта n-го интервала, м2,

h - мощность пласта, м,

ΔР - депрессия (между давлением в пласте на контуре питания и в скважине), Па,

µ - вязкость нефти в пластовых условиях, Па·с,

rk - радиус контура питания, м,

rc - радиус скважины, м,

Sn - скин-фактор n-го интервала призабойной зоны пласта, доли ед.

Необходимо отметить допущение. Для горизонтальных скважин вместо формулы Дюпюи используют формулы Джоши, Борисова, Григулецкого и др., однако при проведении многократного ГРП, на каждом из интервалов, приток можно рассматривать как к единичной вертикальной скважине, т.к. жидкость движется в основном по трещине ГРП.

Записав уравнение (1) для каждого из интервалов и приравняв их правые части, получим соотношение, определяющее равенство притоков к каждому из интервалов:

k 3 L n r k r c + S 3 = = k 6 L n r k r c + S 6 ( 2 )

Выражение для скин-фактора горизонтальной скважины в однородном пласте:

S = β h l ( k k s 1 ) L n r s r c , ( 3 )

где l - длина ГС, м,

β = k в / k r - коэффициент анизотропии пласта, доли ед.,

kв - проницаемость пласта по вертикали, м2,

kr - проницаемость пласта по горизонтали, м2,

ks - проницаемость призабойной зоны пласта, м2,

rs - радиус призабойной зоны пласта, м.

Так как при ГРП трещины формируют в призабойной зоне, проницаемость их намного выше проницаемости пласта и приток происходит не по всей длине фильтра, а в основном только в месте трещины, т.е. точечный сток, то формулу (3) можно переписать для скин-фактора n-го интервала, где приток к скважине в призабойной зоне происходит только по трещинам и множителем βh/ln пренебрегают:

S n = ( k n k m p n 1 ) L n r m p n r c , ( 4 )

где kn - проницаемость пласта n-го интервала, м2,

kmp n - проницаемость трещины ГРП на n-м интервале, м2,

rmp n - полудлина трещин ГРП на n-м интервале, м.

Микросейсмическими исследованиями устанавливают полудлину трещины ГРП на 5 интервале rmp 5. Для фракции пропанта 12/20 меш проницаемость при пластовом давлении составляет kmp 5 (подбирают по известным графикам зависимости проницаемости от давления для различных фракций, например, графикам компании «Шлюмберже»). Тогда по формуле (4) находят значение 85.

Из формулы (2), зная скин-фактор S5, рассчитывают скин-фактор других интервалов:

S n = k n ( L n r k r c + S 5 ) k 5 L n r k r c ( 5 )

Из формулы (4) видно, что переменные значения при расчете скин-факторов Sn - это проницаемость трещин и полудлина трещин ГРП. Возможно три случая:

1) закачка в каждую трещину пропанта различной фракции при создании трещин одинаковой длины,

2) закачка пропанта одинаковой фракции, при этом трещины создаются различной длины, исходя из пропорциональности объемов и скорости закачки жидкости гидроразрыва с пропантом, полученных при проведении ГРП на 5-м участке,

3) комбинация проницаемости и длины трещин.

Расчеты показали, что в реальных условиях создать и контролировать систему по п.1 и 2 довольно сложно. Поэтому задаются одинаковой длиной и шириной трещин, что можно получить при одинаковых объемах и скорости закачки жидкости гидроразрыва с пропантом. Тогда из пропорциональности можно записать:

k m p n k m p n + 1 = S n S n + 1 ( 6 )

Действительно, для более отрицательного скин-фактора, т.е. «улучшения» призабойной зоны пласта, необходимо создавать при ГРП трещины с большей проницаемостью, что подтверждает формула (6).

Проницаемость трещин остальных интервалов рассчитывают из формулы (6):

k m p n = S n S n + 1 k m p n + 1 ( 7 )

Далее по полученным значениям проницаемости подбирают фракции пропанта и приступают к проведению ГРП на следующем интервале. Процесс создания трещин на 3, 4, 6 интервалах аналогичен процессу ГРП на 5 интервале.

При выработке запасов нефти происходит прорыв воды к горизонтальной добывающей скважине 2. При обводненности боле 98% добывающей скважины ее останавливают, проводят геофизические исследования, определяют интервалы обводнения по горизонтальному стволу. Далее отсекают обводнившиеся интервалы водонабухающими пакерами 10 и вновь пускают скважину в работу.

Разработку ведут до полной экономически рентабельной выработки участка.

Результатом внедрения данного способа является повышение степени нефтеизвлечения.

Пример конкретного выполнения способа

На участке пласта 1 (фиг.1) массивной залежи, продуктивные пласты которого представлены порово-трещинными зонально-неоднородными карбонатными отложениями (глубина пласта 1100 м, начальное пластовое давление 12 МПа, пласт чисто нефтенасыщенный, мощностью 20 м), определяют направление минимального главного напряжения пород δmin прибором ВАК-8 на соседних скважинах, а также проводят 3Д-сейсмику и определяют преимущественное направление естественных трещин Sтр. В результате исследований получили направление δmin и соответственно перпендикулярно ему δmax - северо-восточное, а направление Sтр - северо-западное. Угол между Sтр и δmax составил 60° или 120°. Выбирают меньший угол и бурят в направлении, являющемся биссектрисой данного угла, горизонтальную скважину HW длиной горизонтальной части 300 м. Проводят ГИС в открытом стволе скважины, по результатам которых определяют интервалы коллектора и не коллектора, их проницаемость и насыщенность.

Так, в результате исследований, получили 4 интервала (3, 4, 5, 6) (фиг.2) продуктивной части пласта 1 вдоль ГС 2. Между интервалами 3 и 4, а также 4 и 5 есть участки не коллектора 7.

Длины каждого из интервалов 3, 4, 5, 6 составляют не более 150 м, поэтому на каждом из них планируют по одной ступени ГРП.

В результате интерпретации ГИС также установили, что средняя проницаемость интервалов 3, 4, 5, 6 соответственно k3=55 мД, k4=34 мД, k5=27 мД, k6=48 мД.

На основе этих данных конструируют и спускают в не обсаженный горизонтальный ствол хвостовик 8 с фильтрами 9, расположенными в нефтенасыщенных интервалах 3, 4, 5, 6 пласта 1. Хвостовик 8 также оборудуют водонабухающими пакерами 10, которые располагают на интервалах ствола, вскрывшего не коллектор 7, а также в местах, где проницаемость коллектора отличается (уменьшается или увеличивается).

Далее приступают к проведению ГРП в каждом из интервалов, в результате которого получают трещины 3', 4', 5', 6'.

Процесс многократного ГРП начинают на интервале 5 с наименьшей проницаемостью. Для остальных участков процесс ГРП аналогичный.

К интервалу 5 пласта 1 спускают на колонне насосно-компрессорных труб (НКТ) 11 диаметром 89 мм сдвоенные пакеры 12, которые размещают до и после радиальных отверстий 13, гидравлического клапана 14 и фильтра 9. Пакеры должны обеспечивать герметичное отсечение интервала горизонтального ствола скважины 2 с фильтром 9.

В месте с радиальными отверстиями 13 расположен гидравлический клапан 14, который при нагнетании в НКТ жидкости с устья скважины перемещается посредствам поршневого и пружинного механизма 15 вперед и назад вдоль оси НКТ 11 при увеличении и уменьшении давления закачки. При этом радиальные отверстия 13 открываются при давлении закачки более 12 МПа. При давлении закачки менее 12 МПа гидравлический клапан 14 обеспечивает герметичное перекрытие радиальных отверстий 13.

Спуск НКТ 11 прекращается тогда, когда сдвоенные пакеры 12 окажутся перед и за фильтром 9.

Рассчитывают объем жидкости гидроразрыва, в качестве которой используют сшитый гель и линейный гель в соотношении 2:1 соответственно. Принимают объем сшитого геля - 40 м3, линейного геля - 20 м3. Закачивают жидкость гидроразрыва (сшитый гель) с расходом 1,5 м3/мин. По манометру фиксируют рост давления закачки. О разрыве породы пласта и образовании трещины 5' свидетельствует падение давления закачки и увеличение приемистости пласта. Так, через 20 мин непрерывной закачки при достижении 35 МПа давление резко падает на 25% до 26 МПа, а приемистость пласта увеличивается на 30% - до 2,6 м3/мин. При этом в процессе образования трещины 5' в колонну труб 8 скважины 2 было закачано гелеобразной жидкости разрыва (сшитого геля) в объеме 30 м3.

Далее оставшийся объем сшитого геля 10 м3 закачивают с добавлением пропанта фракции 12/20 с расходом 1,5 м3/мин. Для лучшего крепления производят закачку различной плотности пропанта, начиная от 200 кг/м3, который заполняет отдаленные зоны трещины, и заканчивая 1000 кг/м3, заполняющий ближние зоны трещины от скважины.

Не прерывая процесса ГРП, переходят на закачку линейного геля с пропантом с расходом 2 м3/мин в объеме 20 м3. Для лучшего крепления плотность пропанта также увеличивают, как при закачке сшитого геля.

После закачки последней стадии линейного геля с пропантом концентрации 1000 кг/м3 производят его продавку в пласт технологической жидкостью плотностью 1130 кг/м3, равной плотности пластовой воды данного пласта.

Производят выдержку в течение 10 мин, т.е. до спада давления закачки до 11,0 МПа. Далее распакеровывают сдвоенные пакеры и извлекают их с колонной труб 11 из скважины.

Микросейсмическими исследованиями определяют параметры трещины (толщина, длина, азимут, асимметрия). Было установлено, что полудлина трещины ГРП на интервале 5 составляет rmp 5=8 м. Для фракции пропанта 12/20 меш проницаемость при пластовом давлении составляет kmp 5=1000 Д. Тогда по формуле (4) получают с учетом того, что радиус скважины rc=0,168 м:

S 5 = ( 0,027 1000 1 ) L n 8 0,168 = 3,86

Далее, зная скин-фактор S5, можно рассчитать скин-фактор других интервалов по формуле (5), с учетом того, что радиус контура питания rk=150 м:

S 3 = 55 ( L n 150 0,168 3,86 ) 27 L n 150 0,168 = 0,82

S 4 = 34 ( L n 150 0,168 3,86 ) 27 L n 150 0,168 = 3,10

S 6 = 48 ( L n 150 0,168 3,86 ) 27 L n 150 0,168 = 1,58

Проницаемость трещин интервалов 3, 4, 6 определяют по формуле (7):

k m p 3 = S 3 S 5 k m p 3 = 0,82 3,86 1000 = 212 Д

k m p 4 = S 4 S 5 k m p 5 = 3,10 3,86 1000 = 803 Д

k m p 6 = S 6 S 5 k m p 5 = 1,58 3,86 1000 = 409 Д

Далее по полученным значениям проницаемости подбирают фракции пропанта, выбирают как и на 5-м интервале песок:

- для 3-го интервала проницаемости 212 Д соответствует фракция 30/40 меш,

- для 4-го интервала проницаемости 803 Д соответствует фракция 16/30 меш,

- для 6-го интервала проницаемости 409 Д соответствует фракция 20/40 меш.

Процесс создания трещин на 3, 4, 6 интервала аналогичен процессу ГРП на 5 интервале.

В процессе выработки запасов нефти происходит прорыв воды к горизонтальной добывающей скважине 2. При обводненности добывающей скважины более 98% ее останавливают, проводят геофизические исследования, определяют интервалы обводнения по горизонтальному стволу. Далее отсекают обводнившиеся интервалы водонабухающими пакерами 10 и вновь пускают скважину в работу.

Разработку ведут до полной экономически рентабельной выработки участка. В результате за время разработки, которое ограничили обводнением добывающей скважины до 98%, либо достижением минимально рентабельного дебита нефти по скважине 0,5 т/сут, было добыто с участка 104,4 тыс. м3 нефти, коэффициент извлечения нефти составил 0,320. По варианту без учета различной проницаемости в создаваемых при многократном ГРП трещинах, при прочих равных условиях, было добыто 88,7 тыс. м3 нефти, коэффициент извлечения нефти составил 0,272, основной причиной меньшего накопленного отбора стало более раннее обводнение скважины. Прирост коэффициента извлечения нефти по предлагаемому способу составил 0,048 или 17,6%.

Предлагаемый способ, за счет максимально длительной работы скважины до полного обводнения и за счет выравнивания темпов отборов и равномерной выработки запасов нефти в зонально-неоднородных пластах при разработке их горизонтальными скважинами с проведением многократного ГРП, позволяет увеличить нефтеотдачу продуктивного пласта и, как следствие, добычу нефти на 15-20%.

Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины, включающий определение направления естественной трещиноватости породы и ее максимального главного напряжения, в горизонтальном стволе скважины изоляцию интервала разрыва, проведение гидроразрыва в изолированном интервале, крепление трещины разрыва, отличающийся тем, что горизонтальную скважину с длиной горизонтальной части не менее 200 м выбирают, либо бурят в направлении, являющемся биссектрисой меньшего угла между вектором естественной трещиноватости и вектором максимального главного напряжения породы, при превышении длины Ln каждого интервала вдоль ствола скважины более 50 м на нем проводят N=Ln/100 ступеней гидроразрыва пласта, где N округляют до целого числа, первоначально ступень гидроразрыва пласта проводят на интервале с наименьшей проницаемостью, жидкость гидроразрыва закачивают с расходом 1-3 м3/мин, в качестве которой используют последовательно сшитый гель и линейный гель в соотношении 2:1 соответственно, а продавку жидкости с пропантом осуществляют технологической жидкостью с плотностью, равной плотности пластовой воды данного пласта, при этом трещины многократного гидравлического разрыва пласта в каждом из интервалов крепят такими фракциями пропанта, которые выбирают из условия обеспечения равенства продолжительности выработки отдельных интервалов пласта с различной проницаемостью по формуле:
k 1 L n r k r c + S 1 = k 2 L n r k r c + S 2 = = k n L n r k r c + S n ,
где kn - проницаемость пласта n-го интервала, м2,
rc - радиус скважины, м,
Sn - скин-фактор n-го интервала призабойной зоны пласта, доли ед.,
rk - радиус контура питания, м.



 

Похожие патенты:

Изобретение относится к гелеобразующим жидкостям на водной основе для обработки подземных формаций. Композиция для уменьшения времени сшивания водных растворов сшиваемого органического полимера, включающая: указанный полимер, смешанный с водной базовой жидкостью, боратный сшивающий агент, имеющий растворимость в воде при 22°С (71.6°F) в диапазоне от 0,01 кг/м3 до 10 кг/м3, и композицию модификатора сшивания в количестве, уменьшающем время сшивания, которая увеличивает скорость, с которой сшивающий агент обеспечивает гелеобразование сшиваемого органического полимера, где композиция модификатора содержит 90-98% об.
Настоящее изобретение касается способа изготовления пеностеклянного гранулята. Техническим результатом изобретения является снижение водопоглощения изделий.

Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии получения керамических магнезиальнокварцевых проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче нефти или газа методом гидравлического разрыва пласта.

Изобретение относится к консолидации жидкостных стадий и применимо в жидкостной системе, используемой для закачивания в скважину. Способ поддержания консолидации жидкостных стадий в жидкостной системе, используемой для закачивания в скважину, содержащей контактирующую жидкость иного характера, прилегающую к жидкостной стадии, включает подмешивание твердых частиц по меньшей мере к жидкостной стадии или к соседней контактирующей жидкости в количестве, при котором между стадией и соседней контактирующей жидкостью образуются дискретные границы контактирующей жидкости, и закачивание жидкостной системы в ствол скважины.

Изобретение относится к нефтяной промышленности и может найти применение при осуществлении гидравлического разрыва пласта преимущественно в карбонатных пластах.

Изобретение относится к способам обработки подземной формации с использованием сшитых полимеров. Способ обработки подземной формации, пронизанной буровой скважиной, включает введение обрабатывающей текучей среды в буровую скважину, сшивание гидратируемого полимера для повышения вязкости обрабатывающей текучей среды по меньшей мере для части вводимой таковой и сверхсшивание сшитого полимера для замедленного разрушения структуры обрабатывающей текучей среды.

Изобретение относится к горному делу и может быть применено для освоения и восстановления дебита эксплуатационных скважин, понизившегося вследствие кольматации призабойной зоны АСПО и мехпримесями.

Изобретение относится к области добычи углеводородов и может быть применено для интенсификации притока флюида к скважине за счет образования трещин в продуктивном пласте.
Изобретение относится к керамическому проппанту и к способу его изготовления, а также к способу гидравлического разрыва пласта. Техническим результатом изобретения является снижение плотности и повышение стойкости к разрушению проппанта.

Изобретение относится к биоцидным композициям для водных текучих средств, применяемых в нефте- и газопромысловых операциях. Композиция водной текучей среды для обработки скважин с биоцидной активностью содержит полимер или сополимер для модификации вязкости текучей среды, монокарбоновую перкислоту в антимикробном количестве, составляющем от приблизительно 1 части на миллион до приблизительно 1000 частей на миллион, и пероксид водорода в концентрации меньше, чем концентрация перкислоты, в водной среде.

Изобретение относится к способам гидроразрыва продуктивного пласта и может быть применено для формирования в продуктивном пласте трещин гидроразрыва необходимых размеров. Способ включает закачку в пласт жидкости гидроразрыва с высокой скоростью и добавление в жидкость гидроразрыва расклинивающего наполнителя. При этом жидкость гидроразрыва закачивают в несколько стадий с различной интенсивностью с добавлением расклинивающего наполнителя и без него. Причем в первую стадию закачивают жидкость гидроразрыва без расклинивающего наполнителя в объеме не менее 5 м3 с первоначальным расходом 1,6-3 м3/мин, во вторую и последующие четные стадии закачивают жидкость гидроразрыва с добавлением расклинивающего наполнителя в объеме не менее 5 м3 со снижением расхода на 10% от первоначального. В третью и последующие нечетные стадии закачивают жидкость гидроразрыва без расклинивающего наполнителя в объеме не менее 5 м3 с увеличением расхода на 10% от первоначального. Добавление расклинивающего наполнителя в жидкость гидроразрыва производят порционно с возрастанием его концентрации в смеси с жидкостью гидроразрыва от 600 до 800 кг/м3. Количество стадий закачки жидкости гидроразрыва с добавлением расклинивающего наполнителя определяют из расчета обеспечения закачки минимального количества расклинивающего наполнителя - 3500 кг на 1 м вскрытой толщины пласта, но не менее двух. Технический результат заключается в повышении эффективности гидравлического разрыва пласта. 2 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для гидравлического разрыва пласта. Способ включает перфорацию в интервале пласта, спуск колонны труб с пакером, посадку пакера, закачку в подпакерную зону гелированной жидкости разрыва, заполнение колонны технологической жидкостью, определение общего объема гелированной жидкости разрыва, создание в подпакерной зоне давления гидроразрыва пласта и продавку в образовавшуюся трещину пласта гелированной жидкости разрыва с проппантом, выдержку в течение времени, необходимого для спада давления на 70%, распакеровку и извлечение пакера с колонной труб из скважины. После определения общего объема гелированной жидкости разрыва закачивают в скважину по колонне труб гелированную жидкость разрыва - линейный гель - до образования трещин разрыва в пласте, оставшийся объем гелированной жидкости разрыва после образования трещин разрыва в пласте разделяют на две части: сшитый гель и линейный гель, циклически производят поочередную закачку сначала линейного, а затем сшитого геля с добавлением проппанта в 3-5 циклов. Причем линейный гель закачивают равными порциями с расходом 4-6 м3/мин и концентрацией проппанта 400 кг/м3, а сшитый гель закачивают со ступенчатым увеличением объема закачки от 3 до 7 м3 с расходом 1-2 м3/мин и концентрацией проппанта 1200 кг/м3. При этом в последние порции линейного и сшитого гелей с проппантом добавляют стекловолокно в количестве 1,5% от веса проппанта в каждой из последних порций линейного и сшитого гелей. Технический результат заключается в повышении эффективности гидравлического разрыва пласта. 2 ил.

Изобретение относится к доставке зернистого материала на участок, расположенный под землей. Скважинный флюид является жидкостью-носителем на водной основе, содержащим первый и второй гидрофобные зернистые материалы - частицы, суспендированные в нем, где первые частицы имеют больший удельный вес, чем вторые, и флюид содержит газ для смачивания поверхности частиц и связывания их вместе в агломераты. Способ доставки зернистого материала под землю, включающий подачу указанного выше флюида так, что агломераты из частиц, удерживаемых газом, находятся ниже грунта. Способ гидравлического разрыва подземного газонефтеносного пласта включает доставку указанного выше флюида к трещине и подачу его в трещину так, что агломераты из частиц, удерживаемые газом, находятся в трещине. Изобретение развито в зависимых пунктах формулы. Технический результат - облегчение транспортирования и размещения зернистых материалов в трещине гидравлического разрыва или гравийной набивке. 3 н. и 12 з.п. ф-лы, 5 табл., 8 пр., 6 ил.

Представлен способ отклонения закачиваемой рабочей жидкости, содержащей понизитель трения, при гидравлическом разрыве пласта. Способ гидравлического разрыва подземной формации включает закачивание промежуточной жидкости с вязкостью менее чем приблизительно 50 мПа·с при скорости сдвига 100 с-1 при внешних условиях. Далее закачивают суспензию расклинивающего агента с вязкостью менее чем приблизительно 50 мПа·с при скорости сдвига 100 с-1 при внешних условиях. Закачивают загущенную жидкость с вязкостью более чем приблизительно 50 мПа·с при скорости сдвига 100 с-1 при внешних условиях или загущенную жидкость, которая во время закачки обладает вязкостью менее чем приблизительно 20 мПа·с, после чего загустевает. Техническим результатом является повышение эффективности гидроразрыва. 3 пр., 3 ил.

Изобретение относится к нефте-, газодобычи с применением проппантов. Способ получения проппанта включает получение смеси олигоциклопентадиенов путем нагрева дициклопентадиена до температуры 150-220°С и выдержки при данной температуре в течение 15-360 мин, охлаждение смеси до 20-50°С, последовательное введение в полученную смесь олигоциклопентадиенов следующих компонентов: по крайней мере одного из полимерных стабилизаторов, выбранных из указанной группы, по крайней мере одного из радикальных инициаторов, выбранных из указанных соединений, или их смеси, и катализатора - соединения приведенной формулы, при этом компоненты полимерной матрицы находятся в следующих количествах, масс.%: полимерные стабилизаторы 0,1-3; радикальные инициаторы 0,1-4; катализатор 0,001-0,02; смесь олигоциклопентадиенов - остальное, полученную полимерную матрицу выдерживают при температуре 20-50°С в течение 1-40 минут, после чего вводят в виде ламинарного потока в предварительно нагретую не ниже температуры матрицы воду, содержащую ПАВ из указанной группы, где смесь воды с ПАВ имеет вязкость ниже вязкости полимерной матрицы, в процессе постоянного перемешивания воду нагревают до 50-100°С, продолжая перемешивать в течение 1-60 мин, образовавшиеся микросферы отделяют от воды, нагревают в среде инертного газа до температуры 150-340°С и выдерживают в указанной среде при данной температуре в течение 1-360 мин. Полимерный проппант получен указанным выше способом. Технический результат - повышение термопрочности. 2 н.п. ф-лы, 33 пр.

Изобретение относится к производству проппантов, используемых при добыче нефти и газа. Способ получения материала для проппанта включает получение смеси олигоциклопентадиенов с содержанием тримеров и тетрамеров 5-60 мас.% путем нагрева дициклопентадиена до температуры 150-220°С и выдержки при данной температуре в течение 15-360 мин, охлаждение смеси до 20-50°С, последовательное введение в полученную смесь олигоциклопентадиенов следующих компонентов: по крайней мере, один из полимерных стабилизаторов, выбранных из приведенной группы, по крайней мере, один из радикальных инициаторов, выбранных из приведенной группы, по крайней мере, один из метакрилатов, выбранных из приведенной группы, и катализатор - соединение приведенной общей формулы, при этом компоненты полимерной матрицы находятся в следующих количествах, мас.%: полимерный стабилизатор или смесь стабилизаторов 0,1-3, радикальный инициатор или смесь инициаторов 0,1-4, метакрилат или смесь метакрилатов 0,3-30, катализатор 0,001-0,02, смесь олигоциклопентадиенов - остальное, полученную полимерную матрицу нагревают до температуры 50-340°С и выдерживают при данной температуре в течение 1-360 мин, после чего охлаждают до комнатной температуры. Материал для проппанта получен указанным выше способом. Технический результат - повышение термопрочности. 2 н.п. ф-лы, 33 пр.
Изобретение относится к нефтяной промышленности и может быть применено при интенсификации работы скважин методом гидроразрыва пластов. Способ включает тестовую закачку жидкости разрыва и пачки жидкости разрыва с проппантом, корректирование проекта разрыва и проведение основного процесса разрыва с закачкой «подушки» жидкости разрыва. Для проведения гидроразрыва выбирают многопластовую залежь с продуктивными пластами, разделенными непроницаемой перемычкой толщиной не менее 10 м. По скорректированному проекту разрыва давление разрыва поддерживают достаточным для раскрытия трещин разрыва одновременно в двух пластах, проводят основной процесс гидроразрыва пластов с закачкой «подушки» жидкости разрыва в объеме не менее 8 м3. Расход жидкости разрыва поддерживают достаточным для поддержания трещин в открытом состоянии одновременно в двух пластах и исключения закрытия одной из них. Массу закачиваемого проппанта определяют с учетом закрепления трещин в двух пластах. Технический результат заключается в возможности проведения гидроразрыва одновременно в двух продуктивных пластах. 1 табл.

Изобретение относится к доставке зернистого материала на участок, расположенный под землей. Скважинный флюид включает жидкость-носитель на водной основе и гидрофобный зернистый материал, суспендированный в нем, где гидрофобный зернистый материал имеет объемный медианный размер частиц d50 не больше чем 200 микрон, определяемый как медианный диаметр сфер эквивалентного объема, при этом флюид дополнительно включает газ для смачивания поверхности частиц и связывания их вместе в агломераты. Скважинный флюид включает жидкость-носитель на водной основе и гидрофобный зернистый материал, суспендированный в нем, где гидрофобный зернистый материал имеет площадь поверхности, по меньшей мере, 30 м2 на литр (30000 м2/м3 или 0,03 м2/мл), определяемую как площадь поверхности ровных сфер эквивалентного объема, при этом флюид также включает газ, чтобы смачивать поверхность частиц и связывать их вместе в агломераты. Способ доставки зернистого материала под землю включает подачу под землю композиции флюида, включающего жидкость-носитель на водной основе, в которой суспендирован гидрофобный зернистый материал, имеющий объемный медианный размер частиц d50 не больше чем 200 микрон, определяемый как медианный диаметр сфер эквивалентного объема, при этом также включающей газ, смачивающий поверхность частиц и связывающий частицы вместе так, что агломераты зернистого материала, удерживаемые вместе газом, находятся ниже грунта. Технический результат - повышение эффективности доставки под землю. 3 н. и 12 з.п. ф-лы, 8 пр., 5 ил.

Изобретение относится к обработке подземных пластов, конкретно к добавкам, улучшающим свойства используемых при этом композиций, и способам обработки с использованием этих добавок. Добавка к обрабатывающей жидкости для повышения проницаемости проппантной упаковки содержит агент для регулирования рН и агент, контролирующий выпадение осадка, при их массовом соотношении от 1:1 до 200:1 и добавка выбрана в гранулированном виде. Способ повышения проницаемости проппантной упаковки включает подготовку обрабатывающей жидкости, содержащей вязкоупругое поверхностно-активное вещество, имеющее, по меньшей мере, одну разлагаемую связь, или загущающий полимер, гидролизуемый материал, указанную выше добавку, и введение подготовленной обрабатывающей жидкости в пласт. Изобретение развито в зависимых пунктах формулы. Технический результат - снижение или устранение остаточных твердых компонентов в разломе. 2 н. и 23 з.п. ф-лы, 5 пр., 2 табл., 5 ил.

Группа изобретений относится к нефте-, газодобыче с использованием проппантов из полимерных материалов. Способ получения полимерного проппанта повышенной термопрочности, включающий смешивание дициклопентадиена с, по крайней мере, одним из метакриловых эфиров, выбранных из приведенной группы, и, по крайней мере, одним из полимерных стабилизаторов, выбранных из приведенной группы, нагрев исходной смеси до температуры 150-220°C и выдержку при данной температуре в течение 15-360 мин с последующим охлаждением до 20-50°C, последовательное введение в полученную смесь олигоциклопентадиенов и эфиров метилкарбоксинорборнена, по крайней мере, одного из радикальных инициаторов, выбранных из приведенной группы, и катализатора - соединения приведенной общей формулы, где заместитель выбран из приведенной группы, компоненты полимерной матрицы находятся в следующих количествах, мас.%: полимерные стабилизаторы 0,1-3, радикальные инициаторы 0,1-4, катализатор 0,002-0,02, смесь олигоциклопентадиенов и эфиров метилкарбоксинорборнена - остальное, затем полученную жидкую полимерную матрицу выдерживают при температуре 0-50°C в течение 1-40 минут, вводят ее в виде ламинарного потока в предварительно нагретую не ниже температуры матрицы воду при ее постоянном перемешивании, содержащую ПАВ, выбранное из приведенной группы, причем смесь воды с ПАВ имеет вязкость ниже вязкости полимерной матрицы, в процессе постоянного перемешивания воду нагревают до 50-100°C, продолжая перемешивать в течение 1-60 мин, затем образовавшиеся микросферы отделяют от жидкости, нагревают в среде инертного газа до температуры 150-340°C и выдерживают в этой среде и при данной температуре в течение 1-360 мин. Полимерный проппант повышенной термопрочности, характеризующийся тем, что он получен указанным выше способом. Технический результат - повышение температурной стойкости, прочности и маслостойкости. 2 н.п. ф-лы, 35 пр.
Наверх