Электрический погружной насос с возможностью рециркуляции (варианты)



Электрический погружной насос с возможностью рециркуляции (варианты)
Электрический погружной насос с возможностью рециркуляции (варианты)
Электрический погружной насос с возможностью рециркуляции (варианты)
Электрический погружной насос с возможностью рециркуляции (варианты)
Электрический погружной насос с возможностью рециркуляции (варианты)

 


Владельцы патента RU 2516353:

БЕЙКЕР ХЬЮЗ ИНКОРПОРЕЙТЕД (US)

Группа изобретений относится к скважинным насосным системам, погружаемым в скважинные флюиды. Более конкретно, настоящие изобретения относятся к рециркуляции части потока, подаваемого погружным насосом скважинной насосной системы на впуск последней. Обеспечивает повышение надежности работы погружной насосной системы. Сущность решения: скважинная система размещена в скважине и содержит нижний насос с выпуском и впуском; рециркуляционную муфту, соединенную с выпуском нижнего насоса; верхний насос с выпуском и впуском, сообщенным с впуском нижнего насоса через рециркуляционную муфту; двигательный узел, подсоединенный под нижним насосом для приведения насосов в действие; канал впуска флюида в насосную систему, сообщенный с впусками нижнего и верхнего насосов; приводной вал, простирающийся от двигательного узла через нижний насос, рециркуляционную муфту и верхний насос; линию рециркуляции, впуск которой сообщен с рециркуляционной муфтой и с выпускным каналом, предназначенным для выпуска флюида из линии рециркуляции на стороне двигательного узла; канал, проходящий насквозь рециркуляционную муфту и имеющий нижнюю часть, сужающуюся по радиусу внутрь, и вал, проходящий через этот канал, образуя кольцеобразное пространство между валом и каналом, и при этом конфигурация рециркуляционной муфты позволяет направить часть флюида, принятого из выпуска нижнего насоса, на впуск верхнего насоса, а оставшуюся часть принятого потока - в линию рециркуляции. 2 н. и 11 з.п. ф-лы, 5 ил.

 

Настоящее изобретение относится к скважинным насосным системам, погружаемым в скважинные флюиды. Более конкретно, настоящее изобретение относится к рециркуляции части потока, подаваемого погружным насосом скважинной насосной системы на впуск последней.

Погружные насосные системы часто используются в процессе добычи углеводородов для подачи флюидов (текучих сред) из скважины на поверхность. Как правило, эти флюиды представляют собой жидкости, содержащие добываемые углеводороды, а также воду. В одной из систем такого типа, представленной в настоящем описании, используется электрический погружной насос (ЭПН). ЭПНы обычно располагаются на конце лифтовых колонн насосно-компрессорных труб (НКТ) и содержат двигатель с электропитанием. Подача электрической энергии для двигателя насоса часто осуществляется через кабель. Как правило, насосная установка располагается внутри скважины непосредственно над участком перфорации продуктивной зоны. Такое расположение обеспечивает прохождение потока добываемого флюида вдоль наружной поверхности двигателя насоса и создание эффекта охлаждения.

В некоторых ситуациях погружные насосные системы располагаются в скважине таким образом, что впуск насоса находится ниже перфорационных отверстий. В подобной ситуации поток флюида из продуктивного пласта достигает впуска насоса до прохождения мимо двигателя. По существу, добываемый флюид подается на поверхность без предварительного охлаждения двигателя. Для обеспечения охлаждения двигателя система ЭПН может содержать несколько насосов и линию рециркуляции, направляющую поток из выпуска нижнего насоса под двигатель.

Настоящее изобретение относится к скважинной погружной насосной системе, размещаемой в обсаженной скважине. Данная система содержит нижний и верхний насосы, двигатель, взаимодействующий с нижним и верхним насосами, гидрозащиту и рециркуляционную муфту, соединенную одним концом с выпуском нижнего насоса, а другим концом - с впуском верхнего насоса. Кроме того, система включает линию рециркуляции, впуск которой сообщается (находится в связи по потоку флюида) с рециркуляционной муфтой и с выпускным каналом, предназначенным для выпуска флюида из линии рециркуляции на двигатель. Рециркуляционная муфта сначала изготавливается как модульный независимый компонент, а затем подсоединяется к нижнему и верхнему насосам. Взаимодействие между двигателем и насосами может осуществляться через вал, проходящий от двигателя к обоим насосам и имеющий конфигурацию, обеспечивающую вращение крыльчаток, расположенных внутри насосов. Конфигурация рециркуляционной муфты позволяет принять флюид, вышедший из нижнего насоса, и направить часть принятого флюида на впуск верхнего насоса, а оставшуюся часть принятого потока - в линию рециркуляции. В альтернативном варианте нижний и верхний насосы изначально содержат часть многоступенчатой насосной системы, а многоступенчатая насосная система модифицирована посредством установки рециркуляционной муфты между нижним и верхним насосами.

Более конкретно, в настоящем изобретении предлагается скважинная погружная насосная система, размещаемая в скважине и содержащая:

нижний насос с выпуском и впуском;

рециркуляционную муфту, соединенную с выпуском нижнего насоса;

верхний насос с выпуском и впуском, сообщающимся с впуском нижнего насоса через рециркуляционную муфту;

двигательный узел, подсоединенный под нижним насосом для приведения насосов в действие;

канал впуска флюида в насосную систему, сообщающийся с впусками нижнего и верхнего насосов;

приводной вал, простирающийся от двигательного узла через нижний насос, рециркуляционную муфту и верхний насос;

линию рециркуляции, впуск которой сообщается с рециркуляционной муфтой и с выпускным каналом, предназначенным для выпуска флюида из линии рециркуляции на стороне двигательного узла;

канал, проходящий насквозь муфту и имеющий нижнюю часть, сужающуюся по радиусу внутрь, и вал, проходящий через этот канал, образуя кольцеобразное пространство между валом и каналом, и

при этом конфигурация рециркуляционной муфты позволяет направить часть флюида, принятого из выпуска нижнего насоса, на впуск верхнего насоса, а оставшуюся часть принятого потока - в линию рециркуляции.

Каждый из насосов предпочтительно имеет трубчатый корпус, а рециркуляционная муфта крепится к этим корпусам. Приводной вал может представлять собой единственный цельный приводной вал, проходящий через нижний насос, или приводной вал состоит из отдельных приводных валов для верхнего и нижнего насосов, соединенных друг с другом в рециркуляционной муфте.

В одном из частных вариантов каждый из верхнего и нижнего насосов имеет корпус, и при этом корпус верхнего насоса снабжен внутренней резьбой в области впуска насоса, а корпус нижнего насоса снабжен внутренней резьбой в области выпуска, и которые соответственно сопрягаются с резьбами на верхнем и нижнем концах рециркуляционной муфты.

Часть флюида, принятая на впуске верхнего насоса, перекачивается верхним насосом к верхнему концу ствола скважины.

Далее насосная система может содержать крестовину с подшипником, соединенную с приводным валом внутри нижнего насоса, в частности, система может содержать крестовину с подшипником в рециркуляционной муфте для опоры упомянутого по меньшей мере одного приводного вала.

В другом варианте выполнения предлагается скважинная погружная насосная система, размещаемая в обсаженной скважине и содержащая:

нижний насос;

верхний насос, причем верхний и нижний насосы представляют собой центробежные насосы;

насосный узел, содержащий корпус и двигатель, причем двигатель связан с насосами посредством приводного вала;

рециркуляционную муфту, имеющую конец, прикрепленный к выпуску нижнего насоса, и конец, прикрепленный к впуску верхнего насоса;

сопрягающиеся резьбовые участки, сформированные соответственно на верхнем и нижнем насосах и на рециркуляционной муфте;

канал впуска флюида в насосную систему, сформированный в корпусе насосной системы и имеющий конфигурацию, обеспечивающую подачу добываемого флюида из ствола скважины на впуски верхнего и нижнего насосов;

линию рециркуляции, предназначенную для приема флюида из рециркуляционной муфты и выпуска флюида непосредственно вблизи насосного узла, причем поток выпускаемого флюида проходит мимо корпуса насоса, часть потока добываемого скважинного флюида проходит через впуск насосной системы и направляется в линию рециркуляции, а оставшаяся часть направляется через рециркуляционную муфту на впуск верхнего насоса для переноса вверх по стволу скважины; и

канал, проходящий насквозь муфту и имеющий сужающуюся нижнюю часть.

Некоторые особенности и преимущества настоящего изобретения были упомянуты выше, а другие станут ясны из нижеследующего описания, иллюстрируемого приложенными чертежами, на которых представлено:

фиг.1 - вид сбоку скважинной погружной системы в соответствии с настоящим изобретением,

фиг.2 - увеличенное изображение в поперечном разрезе насосной системы, представленной на фиг.1, в скважине,

фиг.3A-3B - подробные изображения в поперечном разрезе второго варианта осуществления насосной системы, представленной на фиг.1.

Хотя настоящее изобретение будет описано применительно к предпочтительным вариантам осуществления, ясно, что изобретение не ограничивается этими вариантами. Напротив, оно охватывает все альтернативные, модифицированные и эквивалентные варианты, находящиеся в пределах сущности и объема изобретения, определяемых прилагаемой формулой изобретения.

Настоящее изобретение более подробно описано ниже со ссылкой на приложенные чертежи, на которых показаны варианты осуществления изобретения. Возможны, однако, и многие другие варианты осуществления данного изобретения, которое не должно толковаться как ограниченное вариантами осуществления, изложенными и проиллюстрированными в настоящем описании; эти варианты осуществления представлены для того, чтобы данное описание в полной мере раскрывало объем и возможность осуществления изобретения для специалистов в данной области. Одинаковые элементы на чертежах и в описании обозначены одинаковыми номерами

В настоящем описании представлены варианты осуществления скважинной погружной насосной системы для доставки флюидов из скважины на поверхность. Более конкретно, описанная здесь скважинная погружная насосная система включает систему для рециркуляции потока из выпуска насоса под двигатель. Поток рециркулирующего флюида проходит мимо двигателя и поглощает образовавшееся там тепло по мере его движения к впуску насоса.

На фиг.1 представлен пример электрической погружной насосной системы, показанной в виде сбоку и расположенной в стволе скважины 5. Электрическая погружная насосная система 20 содержит насосную секцию 26. Насосная секция 26 включает верхний насос 28, нижний насос 29 и рециркуляционную муфту 31, расположенную между этими двумя насосами (28, 29). Насосы (28, 29) представляют собой центробежные насосы, каждый из которых имеет большое количество ступеней, содержащих диффузоры и крыльчатки. Кроме этого, электрическая погружная насосная система 20 содержит уравнительную секцию 24 и двигательную секцию 22, причем двигательная секция 22 расположена непосредственно под уравнительной секцией 24. Уравнительная секция 24 обеспечивает уравнивание давлений между смазкой в двигательной секции 22 и окружающим скважинным флюидом. Болты 36 соединяют верхний конец уравнительной секции 24 с нижним концом 34 насосной секции 26.

В одном варианте осуществления изобретения верхний и нижний насосы (28, 29) представляют собой независимые отдельные насосы, соосно соединенные посредством муфты 31 как показано на чертеже. В контексте настоящего описания термин "независимые отдельные насосы" относится к стандартным погружным насосам, используемым для откачки флюидов из скважины. Таким образом, хотя верхний и нижний насосы (28, 29) скомпонованы в единый узел, они способны производить откачку из скважины без дополнительного насоса. Аналогичным образом, в одном из вариантов осуществления изобретения рециркуляционная муфта 31 также является модульным самостоятельным узлом, изготовленным независимо от верхнего и нижнего насосов (28, 29) и затем присоединенным к этим насосам как показано на фиг.1.

Один из режимов работы электрической погружной насосной системы 20 (фиг.1) включает размещение насосной системы 20 в стволе скважины 5. В этом варианте осуществления ствол скважины 5 содержит обсадную колонну 7, проходящую вдоль ствола скважины 5 на протяжении значительной части его длины. В стволе скважины 5 имеются перфорационные отверстия 10, проходящие сквозь обсадную колонну 7 и открывающиеся в прилегающий подземный продуктивный пласт 8, окружающий часть ствола скважины 5. Поток флюида в форме жидких углеводородов движется из пласта 8 через перфорационные отверстия 10 в ствол скважины 5.

Двигатель 22 передает насосам (28, 29) вращательное усилие, обеспечивая вращение расположенных в них крыльчаток и, тем самым, вызывая закачку пластового флюида в насосную систему 20. В данном варианте осуществления единственный вал (не показан на фиг.1) проходит от насоса 28 до насоса 29. Использование единственного вала вместо специальных валов значительно сокращает время механической обработки и затраты. Впуск 32 насоса предусмотрен на нижней стороне насосной системы 20, обеспечивая вход в эту систему пластового флюида. Как показано на чертеже, двигатель 22 расположен под перфорационными отверстиями 10 и ниже впуска 32 насоса. Поэтому флюид проходит из пласта 8 через перфорационные отверстия 10 во впуск 32 насоса, не контактируя с поверхностью двигателя 22. Следовательно, флюид, попадающий из перфорационных отверстий 10 непосредственно во впуск 32, не может охладить двигатель 22.

Показанный на фиг.1 вариант осуществления изобретения также включает систему рециркуляции, содержащую рециркуляционную муфту 31, находящуюся в связи по потоку флюида с линией (или трубопроводом) рециркуляции 38. Выпускной канал 30 обеспечивает связь по потоку рециркулирующего флюида между рециркуляционной муфтой 31 и линией рециркуляции 38. Вход в линию рециркуляции 38 расположен на стенке рециркуляционной муфты 31. Выпускной канал 30 включает отверстие (обозначено на фиг.2 через 41, а на фиг.3Б - через 72), проходящее сквозь рециркуляционную муфту 31. Система рециркуляции включает выход 39 линии рециркуляции, предназначенный для выпуска пластового флюида в пространство под двигателем 22. Из-за локально низкого давления, создаваемого на впуске 32 насоса, весь рециркулирующий пластовый флюид, попавший в ствол скважины по линии рециркуляции 38 (через выпуск 39 этой линии), будет переноситься вверх по стволу скважины 5. Рециркулирующий пластовый флюид движется вверх по стволу скважины через кольцевое пространство 40 между насосной системой 20 и внутренней поверхностью обсадной колонны 7, проходя по наружной поверхности двигателя 22. Поскольку пластовый флюид, омывающий двигатель 22, охлаждает его, наличие связи по потоку флюида между рециркуляционной муфтой 31 и участком ствола скважины, где расположен двигатель 22, обеспечивает требуемое охлаждение, необходимое для работы двигателя 22 в подземном стволе скважины 5. В альтернативном варианте может быть использован стыковой хомут 42 для соединения нижнего конца линии рециркуляции 38 с удлинительной трубой 44, простирающейся вниз по стволу скважины 5 от нижнего конца двигательной секции 22.

Часть пластового флюида, попадающая во впуск 32 насоса, направляется вверх от нижнего насоса 29 через выход рециркуляционной муфты 31 на впуск верхнего насоса 28. Здесь верхний насос 28 производит нагнетание пластового флюида, выходящего из него в подсоединенную лифтовую колонну НКТ 18 и затем на земную поверхность. Таким образом, впуск 32 насоса обеспечивает попадание потока флюида в насосную систему, а именно в нижний насос 29 и верхний насос 28.

На фиг.2 показано увеличенное изображение в частичном разрезе одного из вариантов осуществления электрической погружной насосной системы 20, содержащей верхний насос, рециркуляционную муфту и нижний насос. В этом варианте осуществления верхний насос 28 имеет на своем нижнем конце внутреннюю резьбу 33, сопрягающуюся с резьбой на верхней части рециркуляционной муфты 31. В этом резьбовом соединении двух указанных элементов могут быть предусмотрены уплотнения. Нижний насос 29 имеет внутреннюю резьбу 35, соединенную с нижней частью рециркуляционной муфты 31. Таким образом, в данном варианте осуществления, представленном в частичном разрезе, показано, что выход рециркуляционной муфты 31 связан с впуском верхнего насоса 28. Аналогичным образом, вход рециркуляционной муфты 31 связан с выпуском нижнего насоса 29.

Как показано на чертеже, единственный цельный вал 27 расположен соосным образом внутри верхнего насоса 28 и нижнего насоса 29. Вал 27 соединен с крыльчатками 37, расположенными внутри верхнего насоса 28. Опору и центрирование вала 27 внутри верхнего насоса 28 обеспечивает подшипник 84. Нижняя часть вала 27 располагается внутри нижнего насоса 29 и тоже центрируется в нем посредством соответствующего подшипника 87. Пространство, где выпуск нижнего насоса связывается с входом рециркуляционной муфты 31, представляет собой сужающуюся коническую полость 86. На чертеже показано, что линия рециркуляции 38 соединяется одним своим концом с отверстием 41, проходящим сквозь стенку рециркуляционной муфты 31. Для регулирования скорости потока рециркулирующего флюида здесь может быть дополнительно использован дроссель 47. Как видно из чертежа, дроссель 47 расположен в линии рециркуляции 38, однако возможно также размещение в отверстии 41. Размеры и тип дросселя варьируются в зависимости от конструкции и применения насоса, однако выбор размеров дросселя относится к компетенции специалистов в данной области. В альтернативном варианте для подсоединения трубопровода 38 к отверстию 41 может быть использован резьбовый штуцер. В таком варианте осуществления дроссель может быть смонтирован в штуцере. Дроссель 47 может содержать соединительный элемент типа манжеты, имеющий скошенную внутреннюю поверхность с уменьшающимся диаметром. Кроме того, дроссель 47 может содержать пластину, имеющую отверстие меньшего диаметра для ограничения и регулирования потока флюида.

На фиг.3А более подробно представлена в частичном разрезе верхняя насосная секция 52 альтернативного варианта осуществления электрической погружной насосной системы 50. Как показано на данном чертеже, верхний вал 64 соединен с крыльчатками 58, которые вращаются внутри полостей, образованных в диффузорах 60. Вращение крыльчаток 58 обеспечивается вращением вала 64. Выпуск верхней насосной секции 52 сформирован в виде выпускной головки 71. Внутри выпускной головки 71 имеется кольцеобразное пространство 61, сужающееся внутрь в направлении от верхней части верхней насосной секции 52. Выпускная головка 71 соединена с верхним концевым участком верхней насосной секции 52 посредством резьбового соединения 59. Возможны, однако, и другие виды соединений, например с помощью фланцевого фитинга на болтах. Для защиты от проникновения скважинного флюида внутрь насосной системы 50 предусмотрены уплотнения, обеспечивающие герметичность по давлению и флюиду. Верхняя насосная секция 52 также содержит корпус 53, вдоль внутренней круговой поверхности которого соосно расположены диффузоры 60. В корпусе 53, кроме того, имеется резьба, обеспечивающая сопряжение с соответствующей резьбой выпускной головки 71 и образование резьбового соединения 59.

На фиг.3Б представлено увеличенное изображение в поперечном разрезе рециркуляционной муфты 54. Как видно из чертежа, верхний конец рециркуляционной муфты 54 крепится к нижнему концу верхней насосной секции 52 посредством резьбового соединения 67. Вал 64 простирается вниз от верхней насосной секции 52 до соединительной муфты 68, расположенной во внутреннем кольцеобразном пространстве рециркуляционной муфты 54. Корпус 55, образующий верхние границы рециркуляционной муфты, имеет в целом кольцеобразную конфигурацию с полым пространством вдоль оси рециркуляционной муфты 54. В кольцеобразном пространстве 70 также расположены опора и подшипники 76, предназначенные для установки в них верхнего вала 64.

На данном чертеже показано, что отверстие 72 проходит сквозь стенку корпуса 55, тем самым обеспечивая связь по потоку флюида между кольцеобразным пространством 70 и внутренним круговым пространством рециркуляционного трубопровода 74. В соответствии с этим отверстие 72 может иметь форму сужающегося канала, регулирующего проходящий сквозь него поток для подачи требуемого количества охлаждающего флюида из кольцеобразного пространства на наружную поверхность насоса 22. Размеры сужающегося канала зависят от потока на выпуске нижнего насоса 56 и требований, предъявляемых к охлаждению двигателя 22. Специалисты в данной области могут подобрать отверстие требуемого размера, соответствующее этим параметрам. Для регулирования потока рециркуляции в трубопровод 74 может быть включен дроссель 75. Что касается нижнего конца рециркуляционной муфты 54, то на чертеже показано, что он связан с верхним концом нижней насосной секции посредством резьбового соединения.

На фиг.3В представлено увеличенное изображение в частичном разрезе альтернативного варианта осуществления нижней насосной секции 56 электрической погружной насосной системы 50. В этом варианте осуществления вал 65, простирающийся вниз от соединительной муфты 68, проходит через нижнюю насосную секцию и соединен со всеми крыльчатками 78. Соответствующие диффузоры 80 расположены внутри корпуса 57 нижней насосной секции 56. Как известно, группа крыльчаток 78, вращающихся внутри диффузоров 80, передает вытесняющее усилие флюиду, направляя его в область над нижней насосной секцией 56. Через впуск 82, сформированный в фитинге нижней головки 83, обеспечивается попадание пластового флюида из ствола скважины 5 в насосную систему 50.

Одним из многих преимуществ насосной системы, представленной в настоящем описании, является модульная конструкция, позволяющая скомпоновать насосную систему из независимых самостоятельных элементов. В известных насосных системах, имеющих рециркуляционный элемент или функцию рециркуляции, требуется присутствие специальной выпускной головки в соответствующем рециркуляционном насосе, которая направляет рециркулирующий поток выше к двигателю. Описанная здесь модульная конструкция содержит независимые самостоятельные элементы, не требующие специальной механической обработки и проектирования рециркуляционной выпускной головки. Рециркуляционная насосная система, представленная в настоящем описании, может быть легко скомпонована из стандартных компонентов, не требующих специальной механической обработки.

В описанных выше вариантах осуществления изобретения компрессия на ступени нижнего насоса может быть достигнута посредством использования сжимаемого элемента, например волнистой шайбы, которая сжимается, прикладывая усилие к пакету диффузоров, и компенсирует различия в длине диффузоров и/или корпусов, обусловленные допусками изготовления. Кроме того, для сжимания пакета диффузоров в нижнем насосе можно смонтировать крестовину с подшипником.

В одном из альтернативных вариантов осуществления система рециркуляции, соответствующая настоящему изобретению, сформирована посредством модификации многоступенчатой насосной системы. Многоступенчатая насосная система включает два или более отдельных, специально подобранных насосов, установленных соосно в различных положениях вдоль оси насосной системы. Рециркуляционная муфта, соответствующая настоящему описанию, может быть расположена в пространстве между этими разъединенными насосами. В этом варианте осуществления вход и выход рециркуляционной муфты будут связаны с соответствующими разъединенными концами многоступенчатой насосной системы. Соединив рециркуляционную муфту с этими концами, можно скомпоновать единую рециркуляционную насосную систему для размещения и работы в скважине. Может быть подготовлен комплект для модификации, включающий все компоненты, необходимые для переоборудования имеющегося стандартного насоса с целью использования в системе рециркуляции.

Следует иметь в виду, что настоящее изобретение не ограничивается показанными и описанными в подробностях элементами конструкции, режимами работы, конкретными материалами и вариантами осуществления, поскольку их модифицированные и эквивалентные формы будут очевидны для специалистов в данной области. На чертежах и в описании раскрыты иллюстративные варианты осуществления изобретения, и хотя там используются специальные термины, они приводятся лишь в типологическом и описательном смыслах, но не в целях ограничения. Поэтому настоящее изобретение ограничено лишь объемом прилагаемой формулы изобретения.

1. Скважинная погружная насосная система, размещенная в скважине и содержащая:
нижний насос с выпуском и впуском;
рециркуляционную муфту, соединенную с выпуском нижнего насоса;
верхний насос с выпуском и впуском, сообщенным с впуском нижнего насоса через рециркуляционную муфту;
двигательный узел, подсоединенный под нижним насосом для приведения насосов в действие;
канал впуска флюида в насосную систему, сообщенный с впусками нижнего и верхнего насосов;
приводной вал, простирающийся от двигательного узла через нижний насос, рециркуляционную муфту и верхний насос;
линию рециркуляции, впуск которой сообщен с рециркуляционной муфтой и с выпускным каналом, предназначенным для выпуска флюида из линии рециркуляции на стороне двигательного узла;
канал, проходящий насквозь рециркуляционную муфту и имеющий нижнюю часть, сужающуюся по радиусу внутрь, и вал, проходящий через этот канал, образуя кольцеобразное пространство между валом и каналом, и при этом конфигурация рециркуляционной муфты позволяет направить часть флюида, принятого из выпуска нижнего насоса, на впуск верхнего насоса, а оставшуюся часть принятого потока - в линию рециркуляции.

2. Насосная система по п.1, в которой каждый из насосов имеет трубчатый корпус, а рециркуляционная муфта крепится к этим корпусам.

3. Насосная система по п.1, в которой приводной вал представляет собой единственный цельный приводной вал, проходящий через нижний насос.

4. Насосная система по п.1, в которой приводной вал состоит из отдельных приводных валов для верхнего и нижнего насосов, соединенных друг с другом в рециркуляционной муфте.

5. Насосная система по п.1, в которой каждый из верхнего и нижнего насосов имеет корпус, при этом корпус верхнего насоса снабжен внутренней резьбой в области впуска насоса, а корпус нижнего насоса снабжен внутренней резьбой в области выпуска, и которые соответственно сопрягаются с резьбами на верхнем и нижнем концах рециркуляционной муфты.

6. Насосная система по п.1, в которой часть флюида, принятая на впуске верхнего насоса, имеет возможность перекачивания верхним насосом к верхнему концу ствола скважины.

7. Насосная система по п.1, содержащая крестовину с подшипником, соединенную с приводным валом внутри нижнего насоса.

8. Насосная система по п.1, содержащая крестовину с подшипником в рециркуляционной муфте для опоры упомянутого по меньшей мере одного приводного вала.

9. Скважинная погружная насосная система, размещенная в обсаженной скважине и содержащая
нижний насос,
верхний насос, причем верхний и нижний насосы представляют собой центробежные насосы,
насосный узел, содержащий корпус и двигатель, причем двигатель связан с насосами посредством приводного вала,
рециркуляционную муфту, имеющую конец, прикрепленный к выпуску нижнего насоса, и конец, прикрепленный к впуску верхнего насоса,
сопрягающиеся резьбовые участки, сформированные соответственно на верхнем и нижнем насосах и на рециркуляционной муфте,
канал впуска флюида в насосную систему, сформированный в корпусе насосной системы и имеющий конфигурацию, обеспечивающую подачу добываемого флюида из ствола скважины на впуски верхнего и нижнего насосов, и
линию рециркуляции, предназначенную для приема флюида из рециркуляционной муфты и выпуска флюида непосредственно вблизи насосного узла, причем поток выпускаемого флюида имеет возможность прохождения мимо корпуса насоса, часть потока добываемого скважинного флюида имеет возможность прохождения через впуск насосной системы и направления в линию рециркуляции, а оставшаяся часть - направления через рециркуляционную муфту на впуск верхнего насоса для переноса вверх по стволу скважины; и
канал, проходящий насквозь рециркуляционную муфту и имеющий сужающуюся нижнюю часть.

10. Система по п.9, в которой приводной вал представляет собой единственный цельный приводной вал, проходящий через нижний насос.

11. Система по п.9, в которой приводной вал состоит из отдельных приводных валов для верхнего и нижнего насосов, соединенных друг с другом в рециркуляционной муфте.

12. Система по п.9, содержащая крестовину с подшипником, соединенную с приводным валом внутри нижнего насоса.

13. Система по п.9, содержащая крестовину с подшипником в рециркуляционной муфте для опоры приводного вала.



 

Похожие патенты:

Изобретение относится к нефтяной промышленности и может быть использовано при разработке обводненной нефтяной залежи для разделения продукции нефтяных скважин на нефть и воду.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при добыче текучих сред из глубоких скважин с применением глубинных насосов типа электроцентробежных насосов - ЭЦН.

Изобретение относится к нефтегазодобывающей промышленности и, в частности, к способу добычи нефти из обводненных скважин. Обеспечивает повышение эффективности способа за счет более эффективной сепарации газа, охлаждения пластовой жидкости, притекающей к приему насоса, а также за счет исключения засорения бокового ствола цементным раствором.
Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации нефтепромыслового оборудования с использованием его радиочастотной идентификации.

Изобретение относится к области энергетики и может быть использовано для выработки электроэнергии, полученной при утилизации топлив в факелах путем сжигания жидких, газообразных отходов лесной и сельскохозяйственной промышленности, биогаза, продуктов переработки бытовых отходов, продуктов подземной или промышленной газификации твердых топлив, отходов нефтедобычи и нефтепереработки.

Изобретение относится к способам и устройствам для дистанционного отслеживания, управления и автоматизации работы насосов, например для добычи углеводородов и осушения, а конкретнее к контроллеру для штоковых насосов, насосов с поступательной полостью, для управления впрыском скважины, приводов с переменной скоростью и т.п.

Изобретение относится к газовой промышленности, в частности к способам ликвидации подземных хранилищ газа. Способ включает отбор активного объема газа и последующий отбор буферного объема газа.

Изобретение относится к области нефтяной промышленности и, более конкретно, к поиску и добыче нефти. Обеспечивает возможность создания системы разработки, обеспечивающей добычу нефти непосредственно из нефтеподводящего канала, соединяющего глубинный резервуар с нефтяной залежью.

Группа изобретений относится к области добычи полезных ископаемых из подземных месторождений, в частности касается способа обеспечения доступа к подземному угольному пласту.

Изобретение относится к горному делу, в частности к добыче газа из сланцевых месторождений. Обеспечивает создание в газосланцевой залежи коллекторов большого сечения с хорошо развитой трещиноватой структурой как на боковой поверхности бурового канала, так и в виде площадных трещин в массиве газосланцевой залежи.

Изобретение относится к компенсаторам давления, предназначенным для компенсации давления между окружающей средой вокруг подводного устройства и жидкой средой, заполняющей объем подводного устройства. Компенсатор давления имеет, по меньшей мере, один внешний сильфон и первую камеру, ограниченную внешним сильфоном. Компенсатор дополнительно содержит, по меньшей мере, один внутренний сильфон, расположенный внутри первой камеры, и вторую камеру, ограниченную внутренним сильфоном. Между внешним сильфоном и внутренним сильфоном имеется ограниченный компенсационный объем, сообщенный с объемом подводного устройства. Обеспечивается защита подводного оборудования во время эксплуатации от проникновения морской воды. 2 н. и 15 з.п. ф-лы, 10 ил.

Группа изобретений относится к горному делу и может быть применена в соединительных звеньях электрического погружного насоса. Электрическая погружная насосная система включает протектор и двигательную секцию, и уплотнители, препятствующие утечке из протектора и двигательной секции во время сборки. Уплотнители взаимодействуют с узлом муфты для соединения валов протектора и двигательной секции. Наружный диаметр узла муфты увеличивается на уступе, который окружает узел муфты. В одном примере, уплотнитель, препятствующий утечке из уплотнительного узла, образует герметизирующую границу раздела вокруг части с большим диаметром узла муфты, которая удаляется при сдвигании муфты так, что ее часть с меньшим диаметром граничит с уплотнительным узлом. Двигательная секция герметизируется другим уплотнительным узлом, включающим корпус, окружающий вал двигателя с образованием кольцевого пространства, которое выборочно заполняется уплотнительным диском. Уплотнительный диск также может быть сдвинут внутри корпуса при соединении валов посредством узла муфты. Технический результат заключается в повышении надежности соединения звеньев погружных электрических насосов. 3 н. и 15 з.п. ф-лы, 6 ил.

Изобретение относится к добыче жидкости из скважин с помощью погружных электроцентробежных насосных установок и может быть использовано при эксплуатации добывающих нефтяных скважин, преимущественно малодебитных и среднедебитных. Технический результат - обеспечение производительной и надежной безотказной работы оборудования. Сущность изобретения: способ включает повторение циклов откачки жидкости из скважины, чередующейся с накоплением жидкости в скважине при выключенной погружной электроцентробежной насосной установке, регулирование соотношения продолжительностей откачки и накопления в зависимости от динамического уровня жидкости в скважине. Согласно изобретению продолжительность всех циклов устанавливают равной в пределах от 40 мин до 80 мин. Номинальную производительность погружной электроцентробежной насосной установки выбирают в 3-5 раз больше действительной продуктивности скважины. Продолжительность откачки жидкости в разных циклах периодически регулируют изменением предыдущего значения на 10-20% до момента достижения заданного уровня жидкости. 2 з.п. ф-лы.

Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации скважины. Устройство включает обсадную колонну, дополнительную эксплуатационную колонну и колонну насосно-компрессорных труб. Используют дополнительную эксплуатационную колонну, не доходящую до устья скважины. Колонну насосно-компрессорных труб выше дополнительной эксплуатационной колонны и вблизи от верха дополнительной эксплуатационной колонны снабжают неподвижно закрепленной наружной муфтой. В качестве муфты используют муфту с наружным диаметром больше внутреннего диаметра дополнительной эксплуатационной колонны и не больше наружного диаметра стандартного колонного шаблона для обсадной колонны и с соотношением наружного диаметра к высоте муфты в пределах от 0,70 до 0,83. Упрощается процесс ликвидации аварий, сокращается время ремонта. 2 ил., 2 табл.

Группа изобретений относится к области добычи нефти и может быть использована для эксплуатации скважин, оборудованных электронасосами, в частности погружными центробежными электронасосами. Обеспечивает повышение эффективности способа и надежности работы устройства как в малодебитных, так и в высокопродуктивных скважинах. Сущность изобретений: способ заключается в периодическом повторении циклов, включающих откачку, поиск частоты прекращения подачи и накопление. При этом для обеспечения отбора такого количества жидкости из скважины, которое равно ее притоку, выбирают насосную установку с более высокой производительностью по сравнению с притоком жидкости из пласта в скважину. В процессе выполнения циклов производят коррекцию соотношения времени откачки-накопления в зависимости от результатов работы в предыдущих циклах до тех пор, пока соотношение откачки-накопления не перестанет изменяться. Момент наступления прекращения подачи определяют по равенству значений текущего момента на валу погружного электродвигателя и контрольного момента, который определяют предварительно по скачкообразному падению значения момента на валу двигателя в точке наступления прекращения подачи при снижении частоты питающего напряжения. Устройство содержит размещенную в колонне эксплуатационных труб скважины насосную установку, состоящую из центробежного насоса и погружного электродвигателя, подвешенную на колонне подземных труб. При этом погружной электродвигатель токопроводящим кабелем связан с находящимися на поверхности преобразователем частоты и управляющим устройством. Устройство содержит также согласующий трансформатор, блок определения частоты, тока, момента, мощности, блок связи, блок индикации и управления. При этом токопроводящий кабель связан с первым входом-выходом согласующего трансформатора, который вторым входом-выходом связан со входом-выходом преобразователя частоты. Преобразователь частоты своим вторым входом-выходом связан с блоком питания, а третьим входом-выходом - с первым входом-выходом блока определения частоты, тока, момента, мощности, который своим вторым входом-выходом связан с первым входом-выходом блока связи, второй вход-выход которого связан с четвертым входом-выходом преобразователя частоты, а третьим входом-выходом связан с первым входом-выходом контроллера управления, второй вход-выход которого связан с блоком индикации и управления. При этом обеспечена возможность поступления всех сигналов на блоки, находящиеся на поверхности, через токопроводящий кабель непосредственно с вала погружного электродвигателя. 2 н.п. ф-лы, 3 ил.
Изобретение относится к нефтяной промышленности и может найти применение при строительстве скважины. При строительстве нефтедобывающей скважины проводят бурение вертикального ствола через горные породы, в том числе через неустойчивые глинистые породы с входом в продуктивный пласт, спуск эксплуатационной колонны до продуктивного пласта, цементирование заколонного пространства, бурение ствола из эксплуатационной колонны в продуктивный пласт. При вскрытии горизонта с неустойчивыми глинистыми породами механическую скорость бурения назначают не более 6 м/час, бурение ведут с повышенным расходом промывочной жидкости порядка 30-40 л/с с применением буровых растворов плотностью от 1,12 до 1,40 г/см3, после бурения ствола скважины выполняют очистительный рейс буровой компоновки по стволу скважины с проработкой ствола скважины роторным способом при частоте вращения ротора от 40 до 100 об/мин, прокачкой бурового раствора, смешанного с фиброволокном, в объеме 6-15 м3 и расхаживанием буровой компоновки на длину ведущей трубы, для обсаживания ствола скважины производят секционный спуск эксплуатационной колонны, первую секцию эксплуатационной колонны длиной 400-1000 м спускают к забою скважины на бурильном инструменте и цементируют заколонное пространство в интервале от забоя и до головы первой секции, проводят технологическую выдержку на затвердение цемента, производят спуск второй секции эксплуатационной колонны, стыкуют секции, цементируют заколонное пространство, проводят технологическую выдержку на затвердение цемента, опрессовывают эксплуатационную колонну. Обеспечивается предотвращение прихвата бурового инструмента при разбуривании неустойчивых глинистых пород. 1 з.п. ф-лы, 3 пр.

Изобретение относится к нефтедобывающей отрасли. Техническим результатом является получение максимальной информативности промыслового исследования с закачкой в пласт агента нагнетания и добычей флюидов из пласта в различных условиях, включая исследования в условиях автономии, при наличии толщи многолетнемерзлых пород, а также при низкой приемистости продуктивного интервала. Предложен способ компоновки внутрискважинного и устьевого оборудования для проведения исследований скважины, предусматривающих закачку в пласт агента нагнетания и добычу флюидов из пласта, включающий спуск в скважину колонны насосно-компрессорных труб (НКТ) со струйным насосом или циркуляционными клапанами, предназначенными для компрессорной эксплуатации с разобщением пакером НКТ и затрубного пространства. При этом башмак НКТ спускают до уровня или как можно ближе к уровню верхних дыр перфорации. Пакер размещают на удалении не более 20 метров от башмака НКТ, над пакером как можно ближе к нему на одной из труб НКТ размещают один или два циркуляционных клапана или струйный насос и под ними мандрель с одним или двумя, для трубного и затрубного пространства дистанционными (перманентными) кварцевыми датчиками давления и температуры. Устье скважины оборудуют компоновкой, содержащей лубрикатор, два устьевых датчика давления и температуры для контроля буферных и затрубных параметров, штуцерной камерой с регулируемым штуцером, многофазным расходомером, пробоотборником, позволяющим в условиях работы скважины отбирать устьевые пробы нефти, воды и газа, нагнетательным узлом, состоящим из двух уголков и двух штуцерных камер. Предусматривают возможность подключения подающего агрегата для закачки агента нагнетания или подачи рабочего агента из емкости к буферной линии или затрубному пространству. Линию от подающего агрегата оборудуют отводом через штуцерную камеру с регулируемым штуцером обратно в емкость; на линии от подающего агрегата к скважине после отводной линии устанавливают расходомер для контроля объемов подачи агента к скважине. Для повышения надежности измерения давления и температуры под пакером размещают один или два автономных или дистанционных датчика давления и температуры. Для повышения точности замера дебита фаз в притоке из пласта на колонне НКТ над или под пакером размещают забойный многофазный расходомер с функциями постоянного контроля расхода фаз, а также с функцией замера забойного давления и температуры. Для обеспечения возможности прямой и обратной циркуляции в стволе скважины в состав внутрискважинной компоновки включают прямой и обратный циркуляционные клапаны. 3 з.п. ф-лы, 2 ил.

Изобретение относится к нефтедобывающей промышленности и, в частности, к добыче скважинной жидкости на нефтяных месторождениях. Обеспечивает повышение эффективности добычи за счет возможности температурного воздействия на добываемую скважинную жидкость. Сущность изобретения: способ включает подъем скважинной жидкости по колонне лифтовых труб с воздействием на нее для изменения ее физических свойств. Согласно изобретению воздействие на скважинную жидкость осуществляют путем ее электродного нагрева в закрытой рабочей камере установки посредством подачи электрического тока с поверхности земли через многожильный электрический кабель на расположенные внутри рабочей камеры электроды. В результате этого обеспечивают тепловое расширение скважинной жидкости и ее перетекание в колонну лифтовых труб через подъемный канал с малым поперечным сечением относительно его длины. При этом для осуществления процесса заполнения рабочей камеры установки и электродного нагрева скважинной жидкости, с последующим ее расширением, установка оборудована всасывающим клапаном для обеспечения поступления скважинной жидкости в рабочую камеру, нагнетательным клапаном для обеспечения перетекания части скважинной жидкости из рабочей камеры в колонну лифтовых труб и порционной транспортировки скважинной жидкости на поверхность и клапаном принудительного действия, имеющим возможность его закрытия после полного заполнения рабочей камеры скважинной жидкостью и его открытия после нагрева скважинной жидкости до установленной величины. 1 з.п. ф-лы, 1 ил.

Изобретение относится к горному делу и может быть применено для эксплуатации проблемных заклинивающих скважин штанговыми насосами. Способ включает возвратно-поступательное движение и вращение колонны штанг. Скорость движения колонны штанг вниз изменяют пропорционально изменению нагрузки на устьевом штоке. Длину хода колонны штанг могут изменять пропорционально изменению нагрузки на устьевом штоке. Вращение колонны штанг могут осуществлять непрерывно. Технический результат заключается в обеспечении возможности устранения заклинивания колонны насосных штанг без разборки скважинного оборудования. 2 з.п. ф-лы, 3 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано, в частности, для продления безводного режима эксплуатации нефтяных скважин. Обеспечивает упрощение устройства и возможность переключения потоков добываемой продукции неограниченное количество раз. Сущность изобретения: устройство включает спущенную в скважину колонну труб, пакер с установленным в нем отключателем потока, который выполнен в виде полого корпуса с отверстиями. При этом внутри полого корпуса концентрично его оси расположена труба, жестко соединенная с колонной труб, выполненная с верхним и нижним рядами отверстий, а также срезными штифтами и кольцевыми уплотнениями. Верхний конец полого корпуса оснащен центратором. Выше верхнего ряда отверстий труба оснащена срезными штифтами, а выше срезных штифтов труба на расстоянии, равном длине между ее верхним и нижним рядами отверстий, оснащена упорным кольцом. Верхний ряд отверстий полого корпуса выполнен выше пакера, а нижний ряд отверстий полого корпуса - ниже пакера. В исходном положении верхние и нижние ряды отверстий трубы и полого корпуса сообщены между собой и одновременно сообщают надпакерное и подпакерное пространства скважины с внутренним пространством трубы. Срезные штифты трубы упираются в верхний торец полого корпуса. Для отключения потока добываемой продукции из подпакерного пространства скважины труба имеет возможность ограниченного осевого перемещения вверх относительно полого корпуса и сообщения надпакерного пространства скважины с внутренним пространством трубы через его верхний ряд отверстий. Для отключения потока добываемой продукции из надпакерного пространства скважины труба имеет возможность ограниченного осевого перемещения вниз после разрушения срезных штифтов до опоры упорного кольца трубы в верхний торец полого корпуса и сообщения подпакерного пространства скважины с внутренним пространством трубы через совмещенные нижний ряд отверстий полого корпуса и верхний ряд отверстий трубы. 3 ил.
Наверх