Резонансный коммутатор



Резонансный коммутатор
Резонансный коммутатор
Резонансный коммутатор
Резонансный коммутатор
Резонансный коммутатор
Резонансный коммутатор
Резонансный коммутатор
Резонансный коммутатор
Резонансный коммутатор
Резонансный коммутатор
Резонансный коммутатор

 


Владельцы патента RU 2516450:

Открытое акционерное общество Научно-производственное объединение "ЭНЕРГОМОДУЛЬ" (ОАО НПО "ЭНЕРГОМОДУЛЬ") (RU)

Изобретение относится к силовой электронике. Его использование в импульсных регуляторах и инверторах напряжения позволяет обеспечить значительное снижение динамических потерь в силовых ключах схемы. Резонансный коммутатор содержит первый ключ (1) со встречно-параллельным диодом, второй ключ (2), одним выводом соединенный последовательно с первым ключом (1), конденсатор (3) и дроссель (4), соединенный параллельно второму ключу (2), вывод анода встречно-параллельного диода образует отрицательный силовой вывод (6) резонансного коммутатора. Технический результат достигается благодаря тому, что конденсатор (3) присоединен параллельно второму ключу (2), второй вывод которого образует положительный силовой вывод (5) резонансного коммутатора. 1 з.п. ф-лы, 10 ил.

 

Изобретение относится к силовой электронике, в частности к преобразователям с пониженными динамическими потерями в силовых полупроводниковых ключах и может быть использовано в схемах импульсных регуляторов постоянного напряжения, инверторов и активных выпрямителей.

Известна схема преобразователя, в которой с помощью элементов резонансного LC контура обеспечивается мягкое включение транзисторов при нулевом напряжении (см. патент США №4720668, опубл. 19.01.1988).

Недостатком данного решения является то, что интервал паузы в схеме является фиксированным. При этом регулирование выходного напряжения и мощности в схеме можно производить только частотным методом.

Наиболее близким по технической сути является резонансный коммутатор (см. патент США №5262930, опубл. 16.11.1993), включающий в себя первый ключ со встречно-параллельным диодом, второй ключ, одним выводом соединенный последовательно с первым ключом, конденсатор и дроссель, соединенный параллельно второму ключу, вывод анода встречно-параллельного диода образует отрицательный силовой вывод резонансного коммутатора. В данном решении обеспечивается мягкая коммутация ключей при нулевом напряжении, причем отпирание второго ключа позволяет регулировать интервал паузы, за счет временного прерывания резонансного процесса путем шунтирования дросселя. При этом в схеме оказывается возможным широтно-импульсное регулирование выходного напряжения и мощности. Недостатком данной схемы является сложность определения момента отпирания второго ключа, поскольку начальный момент включения зависит от изменения тока нагрузки. Другим недостатком данного решения является относительная сложность его применения к схемам преобразователей с большим количеством основных ключевых элементов, например в трехфазных схемах, поскольку требует большого количества дополнительных ключевых элементов.

Технический результат устройства по настоящему изобретению заключается в следующем:

1. За счет подключения конденсатора резонансного контура параллельно второму ключу обеспечивается непрерывность резонансного процесса коммутации, начальный момент которого не зависит от тока нагрузки и определяется моментом запирания второго ключа.

2. Один вспомогательный силовой ключ с резонансным LC контуром может использоваться для мягкой коммутации сразу двух ключевых элементов преобразователя: основного ключа и противофазного ему.

Указанный технический результат достигается благодаря тому, что в резонансном коммутаторе, содержащем первый ключ со встречно-параллельным диодом, второй ключ, одним выводом соединенный последовательно с первым ключом, конденсатор и дроссель, соединенный параллельно второму ключу, вывод анода встречно-параллельного диода образует отрицательный силовой вывод резонансного коммутатора, конденсатор присоединен параллельно второму ключу, второй вывод которого образует положительный силовой вывод резонансного коммутатора.

При этом точка соединения первого и второго ключей может образовывать дополнительный силовой вывод резонансного коммутатора.

Изобретение иллюстрируется приложенными чертежами, на которых одинаковые элементы обозначены одними и теми же ссылочными позициями.

На Фиг.1 представлен резонансный коммутатор в соответствии с настоящим изобретением.

На Фиг.2 представлен резонансный коммутатор по Фиг.1 с дополнительным силовым выводом.

На Фиг.3 представлена схема ближайшего аналога.

На Фиг.4 представлен резонансный коммутатор по Фиг.1, подключенный к преобразователю постоянного напряжения (импульсному регулятору повышающего типа).

На Фиг.5 представлен резонансный коммутатор по Фиг.2, подключенный к преобразователю постоянного напряжения (импульсному регулятору повышающего типа).

На Фиг.6 представлен резонансный коммутатор, подключенный к трехфазному инвертору напряжения на стороне переменного тока: для ключей катодной группы по Фиг.1, для ключей анодной группы по Фиг.2.

На Фиг.7 представлен резонансный коммутатор, подключенный к трехфазному инвертору напряжения на стороне переменного тока: для ключей анодной группы по Фиг.1, для ключей катодной группы по Фиг.2.

На Фиг.8 представлен резонансный коммутатор, подключенный к трехфазному активному выпрямителю напряжения на стороне постоянного тока.

На Фиг.9 представлены осциллограммы полного цикла коммутаций в резонансном коммутаторе по Фиг.1 в схеме преобразователя постоянного напряжения по Фиг.4.

На Фиг.10 представлены осциллограммы полного цикла коммутаций в резонансном коммутаторе по Фиг.2 в схеме преобразователя постоянного напряжения по Фиг.5.

Резонансный коммутатор (Фиг.1) содержит: первый ключ 1 со встречно-параллельным диодом, второй ключ 2 и элементы резонансного контура: конденсатор 3 и дроссель 4. На чертежах показаны также положительный силовой вывод 5 и отрицательный силовой вывод 6.

Отрицательный вывод первого ключа 1, соединенный с анодом его встречно-параллельного диода, образует отрицательный силовой вывод 6. Второй ключ 2 соединен последовательно с первым ключом 1. Параллельно второму ключу 2 присоединены дроссель 4 и конденсатор 3, при этом положительный вывод второго ключа 2 образует положительный силовой вывод 5. Как показано на Фиг.2, точка соединения первого ключа 1 и второго ключа 2 образует дополнительный силовой вывод 7 резонансного коммутатора.

Рассмотрим работу резонансного коммутатора с переключением при нулевом напряжении в схеме преобразователя в соответствии с Фиг.4.

В начальный момент времени первый (основной) ключ 1 выключен, а второй (вспомогательный) ключ 2 включен, и через него замыкается начальный ток дросселя 4 равный по величине отрицательному значению I0. Значение I0 будет определено далее. Соответственно состоянию обоих ключей 1 и 2 напряжение на конденсаторе 3 равно нулю, а ток IH нагрузки через противофазный диод D поступает в цепь нагрузки преобразователя, где выходной фильтр заряжен до постоянного напряжения UВЫХ. При включенном диоде D до напряжения UВЫХ в начальный момент времени будет заряжена выходная емкость первого ключа 1.

Представим основные интервалы мягкой коммутации тока нагрузки от диода D на первый ключ 1 и обратно.

В начале цикла коммутаций снятием сигнала управления запирают второй ключ 2.

1. Интервал включения первого ключа 1 при нулевом напряжении.

Поскольку начальное напряжение на конденсаторе 3 равно нулю, второй ключ 2 выключается при нулевом напряжении.

При выключении второго ключа 2 в параллельном LC контуре начинается резонансный процесс:

{ U C 3 ( t ) = I 0 ρ k sin ω p t I L 4 ( t ) = I 0 cos ω p t                                                                                      (1)

где ρ k = L 4 , C 3 - волновое сопротивление LC контура; ω p = 1 L 4 C 3 - круговая частота резонанса; UC3 - напряжение на конденсаторе 3; IL4- ток дросселя 4; С3 - емкость конденсатора 3; L4 - индуктивность дросселя 4.

В процессе резонанса напряжение на конденсаторе 3 вначале будет возрастать, соответственно, напряжение на первом ключе 1 будет снижаться:

U 1 ( t ) = U В Ы Х I 0 ρ k sin ω p t                                                                          (2)

где U1 - напряжение на первом ключе 1.

Если выполняется условие I0ρk≥UВЫХ, через интервал времени Δtl напряжение на конденсаторе 3 достигает значения UВЫХ, а на первом ключе 1 реализуется нулевое напряжение:

Δ t 1 = L 4 C 3 arcsin ( U В Ы Х / I 0 ρ k )                                                                   (3) 

При этом отпирается встречно-параллельный диод первого ключа 1 и в нем появляется отрицательный ток ΔI ключа, равный величине тока дросселя 4 в момент времени Δtl:

Δ I = I 0 cos ω p Δ t 1                                                                                          (4)  

2. Интервал линейного нарастания тока в дросселе 4 и ключе 1.

После отпирания встречно-параллельного диода первого ключа 1 дроссель 4 и конденсатор 3 через открытый диод D подключаются в параллель к источнику напряжения UВЫХ. При этом напряжение на конденсаторе 3 будет оставаться постоянным, а токи дросселя 4 и первого ключа 1 начнут линейно возрастать:

I L 4 ( t ) = I 1 ( t ) = Δ I + U В Ы Х L 4 t                                                                         (5) 

где I1 - ток первого ключа 1.

Через интервал времени Δt2 ток дросселя 4 пересекает нулевой уровень и встречно-параллельный диод первого ключа 1 выключается: Δ t 2 = Δ I L 4 U В Ы Х                                                                                                         (6)

Очевидно, что для включения первого ключа 1 при нулевом напряжении необходимо в течение интервала времени Δt2 подать на первый ключ 1 сигнал управления. При этом в канале первого ключа 1 появится положительный ток.

Через интервал времени Δt3 ток в первом ключе 1 увеличивается до величины тока нагрузки, и диод D запирается:

Δ t 2 = I Н L 4 U В Ы Х                                                                                             (7)

3. Интервал резонансного перезаряда конденсатора 3 и включение второго ключа 2 при нулевом напряжении.

После запирания диода D через открытый первый ключ 1 параллельный LC контур оказывается нагруженным на источник тока нагрузки, при этом в схеме начинается новый резонансный процесс:

{ U C 3 ( t ) = U В Ы Х cos ω p t I L 4 ( t ) = I Н + U В Ы Х ρ л sin ω p t                                                                   (8)

Через четверть периода этого резонансного процесса напряжение на выводах конденсатора 3 меняет знак и через интервал времени At4 становится равным нулю:

Δ t 4 = 3 π 4 L 4 C 3                                                                                   (9)

При этом второй ключ 2 можно включить при нулевом напряжении, если в течение полупериода резонансной частоты, когда на выводах конденсатора 3 присутствует напряжение отрицательной полярности, на второй ключ 2 подать импульс управления.

После включения второго ключа 2 ток в дросселе 3 остается равным величине:

I L 4 ( Δ t 4 ) = I H U В Ы Х ρ k                                                                               (10)

4. Интервал проводимости тока нагрузки в первом (основном) ключе 1.

При включенных первом и втором ключах 1 и 2 в схеме обеспечивается требуемый интервал проводимости тока нагрузки.

5. Интервал выключение первого ключа 1 при нулевом напряжении.

Перед выключением первого ключа 1 снятием сигнала управления выключают второй ключ 2. Поскольку начальное напряжение на конденсаторе 3 равно нулю, второй ключ 2 выключается при нулевом напряжении. При этом начинается еще один резонансный процесс в LC контуре, который можно рассматривать как продолжение прерванного резонансного процесса в соответствии с уравнением (8). Через четверть периода резонансной частоты напряжение на конденсаторе 3 увеличится до значения UВЫХ и откроется диод D. Тогда первый ключ 1 можно выключать при нулевом напряжении, что обеспечивается соответствующей разностью напряжений на конденсаторе Сф выходного фильтра и конденсаторе 2.

Отметим, что ток дросселя 4 в момент увеличения напряжения на конденсаторе 3 до значения UВЫХ становится равным току 1Н нагрузки.

6. Интервал перезаряда конденсатора 3 и восстановление начальной энергии в дросселе 4.

После включения диода D в схеме изменяются условия резонансного процесса, поскольку от резонансного LC контура отсекается источник тока нагрузки и подключается источник напряжения UВЫХ:

{ U C 3 ( t ) = U В Ы Х I H ρ k sin ω p t I L 4 ( t ) = I Н cos ω p t                                                                   (11)

Через интервал времени Δt5 напряжение на конденсаторе 3 становится равным нулю и затем меняет полярность:

Δ t 5 = L 4 C 3 arcsin ( U В Ы Х / I H ρ k )                                                                  (12) 

Еще через полпериода резонансной частоты напряжение на конденсаторе 3 опять становится равным нулю. Если в течение данного полупериода, когда напряжение на конденсаторе 3 имеет отрицательную полярность, на второй 2 ключ подать сигнал управления, то включение второго ключа 2 будет происходить при нулевом напряжении. При этом через интервал времени Δt6 от начала резонансного процесса в канале второго ключа 2 появится ток:

Δ t 6 = π + Δ t 5                                                                                             (13)

После включения второго ключа 2 при нулевом напряжении в дросселе 4 установится начальное значение отрицательного тока I0, которое из системы уравнений (11) определяется как значение тока дросселя 4 в момент времени Δt6:

I 0 = I L 4 ) ( Δ t 6 ) = I H 1 ( U В Ы Х / I H ρ k ) 2                                                  (14)

При достижении током дросселя 4 значения тока 10 полный цикл коммутаций завершается. Отметим, что в данном цикле была обеспечена мягкая коммутация первого (основного) ключа 1 при нулевом напряжении и мягкая коммутация второго (вспомогательного) ключа 2 при нулевом напряжении.

Точка соединения первого ключа 1 и второго ключа 2 может соединяться с дополнительным силовым выводом 7 резонансного коммутатора (Фиг.5). С помощью дополнительного силового вывода 7 второй ключ 2 с параллельным LC контуром можно перенести в цепь противофазного диода D, при этом принцип работы резонансного коммутатора не изменяется. Это утверждение следует из того факта, что система уравнений, описывающих электрические процессы в схеме, остается неизменной. При этом напряжение на первом ключе 1 при перемещении второго ключа 2 с параллельным LC контуром в цепь диода D остается независимой переменной, которая по-прежнему определяется алгебраической суммой напряжений на конденсаторе 3, противофазном диоде D и источнике напряжения UВЫХ.

Принцип работы резонансного коммутатора также не меняется при применении различных типов ключей: биполярных и полевых транзисторов, тиристоров, биполярных транзисторов с изолированным затвором -IGBT и др.

Представленный резонансный коммутатор может быть применен в любом другом преобразователе путем замены управляемого силового ключа преобразователя на заявляемый резонансный коммутатор с подключением положительного и отрицательного силовых выводов резонансного коммутатора к тем точкам преобразователя, куда ранее подключались соответствующий положительный и отрицательный выводы управляемого силового ключа. При этом с помощью дополнительного силового вывода 7 второй ключ 2 с параллельным LC контуром может быть включен последовательно с противофазным ключевым элементом преобразователя.

Далее рассмотрим другие варианты конкретного применения предложенного устройства.

На Фиг.6 представлены шесть резонансных коммутатора с переключением при нулевом напряжении, подключенных к трехфазному инвертору напряжения на стороне переменного тока. При положительном направлении фазного тока нагрузки для ключей катодной группы их коммутация проводится на основе решения по Фиг.1. При положительном направлении фазного тока нагрузки для ключей анодной группы их коммутация проводится по Фиг.2. Данное решение позволяет использовать одни и те же параллельный LC контур и вспомогательный ключ для коммутации верхнего и нижнего основного ключа в каждой фазе инвертора. При этом коммутация тока в каждом из ключей инвертора, для которого фазный ток нагрузки является положительным, имеет те же основные интервалы коммутации, что и в рассмотренном варианте для Фиг.4.

На Фиг.7 представлены шесть резонансных коммутатора с переключением при нулевом напряжении, подключенных к трехфазному инвертору напряжения на стороне переменного тока. При положительном направлении фазного тока нагрузки для ключей катодной группы их коммутация проводится на основе решения по Фиг.2. При положительном направлении фазного тока нагрузки для ключей анодной группы их коммутация проводится по Фиг.1. Данное решение позволяет использовать одни и те же параллельный LC контур и вспомогательный ключ для коммутации верхнего и нижнего основного ключа в каждой фазе инвертора. При этом коммутация тока в каждом из ключей инвертора, для которого фазный ток нагрузки является положительным, имеет те же основные интервалы коммутации, что и в рассмотренном варианте для Фиг.4.

На Фиг.8 представлен резонансный коммутатор с переключением при нулевом напряжении, подключенный к трехфазному активному выпрямителю напряжения на стороне постоянного тока. В данном решении в качестве первого ключа 1 можно рассматривать эквивалентный ключ, к которому сводится работа системы ключей трехфазного ключевого блока на каждом из интервалов длительностью 60 электрических градусов на периоде частоты источника переменного напряжения на входе выпрямителя. При этом в основных ключах инвертора обеспечивается коммутация при нулевом напряжении каждый раз, когда условия нулевого напряжения реализуются в эквивалентном транзисторе.

Рассмотрим пример конкретного выполнения устройства по настоящему изобретению.

Предложенное устройство было выполнено для преобразователя постоянного напряжения (импульсный регулятор повышающего типа), процессы коммутации в котором рассчитаны с помощью программы схемотехнического моделирования PSpice.

Выходное напряжение на конденсаторе Сф фильтра: UВЫХ=50 В.

Среднее значение непрерывного тока нагрузки через дроссель Lф фильтра:

J=30 А.

Первый и второй ключи 1 и 2 - транзисторы МДП, класс напряжения 200 В, средний ток коллектора 20 А, сопротивление в открытом состоянии 0,25 Ом, выходная емкость 0,15 нФ.

Диод D импульсного типа, класс напряжения 200 В, средний ток 50 А, напряжение в открытом состоянии 1,2 В, время обратного восстановления 40 нс.

Дроссель 4 - индуктивность 1,5 мкГн.

Конденсатор 3 - емкость 0,1 мкФ, максимальное напряжение 400 В.

На Фиг.9 представлены осциллограммы полного цикла коммутаций в резонансном коммутаторе в соответствии с Фиг.1 в схеме преобразователя постоянного напряжения по Фиг.4.

Масштаб по вертикали:

Канал 1: напряжение на первом ключе 1; 100 В/дел.

Канал 2: ток первого ключа 1; 100 А/дел.

Канал 3: напряжение на втором ключе 2 и конденсаторе 3; 100 В/дел.

Канал 4: ток второго ключа 2; 100 А/дел.

Канал 5: ток дросселя 4; 100 А/дел.

Масштаб по горизонтали:

Время - 1,5 мкс/дел.

Первый (основной) ключ 1 и второй (вспомогательный) ключ 2 переключаются при нулевом напряжении.

На Фиг.10 представлены осциллограммы полного цикла коммутаций в резонансном коммутаторе в соответствии с Фиг.2 в схеме преобразователя постоянного напряжения по Фиг.5.

Масштаб по вертикали:

Канал 1: напряжение на первом ключе 1; 100 В/дел.

Канал 2: ток первого ключа 1; 100 А/дел.

Канал 3: напряжение на втором ключе 2 и конденсаторе 3; 100 В/дел.

Канал 4: ток второго ключа 2; 100 А/дел.

Канал 5: ток дросселя 4; 100 А/дел.

Масштаб по горизонтали: Время - 1,5 мкс/дел.

Первый (основной) ключ 1 и второй (вспомогательный) ключ 2 переключаются при нулевом напряжении.

1. Резонансный коммутатор, содержащий первый ключ со встречно-параллельным диодом, второй ключ, одним выводом соединенный последовательно с первым ключом, конденсатор и дроссель, соединенный параллельно второму ключу, вывод анода встречно-параллельного диода образует отрицательный силовой вывод резонансного коммутатора, отличающийся тем, что конденсатор присоединен параллельно второму ключу, второй вывод которого образует положительный силовой вывод резонансного коммутатора.

2. Резонансный коммутатор по п.1, отличающийся тем, что точка соединения первого и второго ключей образует дополнительный силовой вывод резонансного коммутатора.



 

Похожие патенты:

Изобретение относится к электронике интегральных микросхем (ИС) и может быть использовано в составе радиоэлектронной аппаратуры наземного, морского и аэрокосмического базирования.

Изобретение относится к электротехнике. Технический результат заключается в разработке формирователя энергии с целью обеспечения мощного импульса тока (напряжения), способного уменьшить коммутационные всплески и резонансные колебания тока (напряжения) в нагрузке, повышении надежности работы ключей и других устройств, физически связанных с данным формирователем энергии, заданного ограничения импульса тока нагрузки.

Изобретение относится к преобразовательной технике и может быть использовано в системах управления тиристорами в преобразователях различной мощности. .

Изобретение относится к области микроэлектроники и, в частности, к сенсорным и микромощным микросхемам. .

Изобретение относится к электронике интегральных микросхем и может быть использовано в составе бортовой радиоэлектронной аппаратуры (БРЭА) для защиты от последствий попадания тяжелых заряженных частиц.

Изобретение относится к микроэлектронике, а также к нано- и микросистемной технике и может быть использовано в интегральных микросхемах с защитой от электрических и/или тепловых перегрузок.

Изобретение относится к управлению работой электронных вентилей, имеющих изолированный затвор, в частности к управлению работой биполярного транзистора с изолированным затвором (БТИЗ).

Изобретение относится к электронике и может быть использовано в составе радиоэлектронной аппаратуры наземного, морского и аэрокосмического базирования. .

Изобретение относится к области электронной техники и может быть использовано в коммутируемых источниках питания с защитой от перегрузки по току. .

Изобретение относится к области электронной техники и может быть использовано для коммутации электромагнитных пускателей, электродвигателей, ламп накаливания и целого ряда других электротехнических устройств, пусковые токи которых в несколько раз превышают по величине их рабочий ток в установившемся режиме.

Изобретение относится к силовой электронике. Его использование в импульсных регуляторах и инверторах напряжения позволяет обеспечить технический результат - значительное снижение динамические потерь в силовых ключах схемы. Резонансный коммутатор содержит первый ключ (1) с первым встречно-параллельным диодом, второй ключ (2), конденсатор (3) и дроссель (4), вывод первого ключа (1), соединенный с анодом первого встречно-параллельного диода, образует отрицательный силовой вывод (6) резонансного коммутатора. Технический результат достигается благодаря тому, что второй ключ (2) снабжен вторым встречно-параллельным диодом и включен последовательно с дросселем (4), соединенным последовательно с первым ключом (1), конденсатор (3) включен параллельно второму ключу (2), вывод которого, соединенный с катодом второго встречно-параллельного диода, образует положительный силовой вывод (5) резонансного коммутатора. 2 н.п. ф-лы, 10 ил. Фиг.1.

Изобретение относится к области электронной техники и может быть использовано в источниках питания с защитой от перегрузки по току без использования датчика тока, преимущественно в системах управления космических аппаратов. Технический результат заключается в снижении массы и габаритов коммутатора напряжения и повышении точности при изменении электронного коммутатора в открытом состоянии в зависимости от температуры. Для этого заявленное устройство содержит электронный коммутатор с МОП структурой, который подает питание в блок нагрузки. Подключенный к общей точке коммутатора и блока нагрузки электронный ключ и последовательно соединенные резистор и терморезистор снижают погрешность формирования уровня срабатывания релейного элемента с гистерезисом, который управляют с помощью первого и второго элементов И включением и выключением питания блока нагрузки. При наличии перегрузки по току осуществляется отключение питания от блока нагрузки. 1 ил.

Изобретение относится к области электронной техники и может быть использовано в источниках питания с защитой от перегрузки по току без использования датчика тока, преимущественно в системах управления космических аппаратов. Технический результат заключается в снижении массы и габаритов коммутатора напряжения и повышении точности при изменении сопротивления электронного коммутатора в открытом состоянии в зависимости от температуры. Для этого заявленное устройство содержит электронный коммутатор с МОП структурой, который подает питание в блок нагрузки. Последовательно соединенные источник опорного напряжения, второй электронный ключ, резистор и терморезистор обеспечивают срабатывание релейного элемента с гистерезисом, практически независимым от температуры. Подключенный к общей точке коммутатора и блока нагрузки электронный ключ, выход которого соединен с входом сумматора, позволяют исключить из схемы датчик тока, который требует значительного отвода тепла. При наличии перегрузки по току осуществляется отключение питания от блока нагрузки. 1 ил.

Изобретение относится к вычислительной технике. Технический результат заключается в увеличении реактивного импеданса устройства защиты на высоких частотах. Устройство защиты выводов микросхемы от электростатических разрядов, включающее ключевые n-канальный и р-канальный транзисторы, управляющие n-канальный и р-канальный транзисторы, два нагрузочных резистора, входную шину, шину питания и шину земли, причем в него введены первый и второй дополнительные индукторы, причем сток р-канального ключевого транзистора и исток р-канального управляющего транзистора соединены с первым выводом первого индуктора, второй вывод которого соединен с входной шиной, а также сток n-канального ключевого транзистора и исток n-канального управляющего транзистора соединены с первым выводом второго индуктора, второй вывод которого также соединен с входной шиной. 3 ил.

Использование: в области электротехники. Технический результат - уменьшение энергопотребления. Схема энергоснабжения, соединенная сетевой линией с положительным потенциалом и GND-потенциалом блока питания, содержит катушку, подключенную первым выводом к положительному потенциалу, и вторым выводом - к GND-потенциалу, полупроводниковый переключатель, включенный между катушкой и GND-потенциалом, полупроводниковый переключатель, включенный между положительным потенциалом и катушкой, диод, включенный между вторым выводом катушки и положительным потенциалом в прямом направлении, и диод, включенный между GND-потенциалом и первым выводом катушки в прямом направлении. Аккумулятор, заряжаемый энергией сетевого блока питания по меньшей мере в одной фазе технологического процесса, имеет возможность зарядки накопленной в катушке энергией по меньшей мере в одной из фаз технологического процесса с последующим снабжением данной рекуперированной энергией катушки. Микроконтроллер активирует полупроводниковые переключатели в зависимости от параметров отслеженного детектирующей схемой сигнала, при достижении током на катушке порогового значения выключает полупроводниковые переключатели, что приводит к протеканию тока по рекуперирующему контуру, а при снижении тока до минимально допустимого, включает их, что приводит к использованию катушкой рекуперированной энергии. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области формирования выходных сигналов высокочастотных КМОП микросхем и защиты выходов от электростатических разрядов. Техническим результатом является повышение быстродействия формирователя импульсов. Формирователь содержит выходной каскад на основе комплементарных выходных транзисторов и логических элементов 3ИЛИ/НЕ, 3И/НЕ. Устройство защиты содержит два комплементарных ключевых транзистора, два комплементарных управляющих транзистора и два нагрузочных резистора. В рабочем режиме ключевые транзисторы закрыты, а выходные транзисторы включаются поочередно в соответствии с уровнем входного сигнала. В режиме возникновения электростатического разряда оба ключевых транзистора и оба выходных транзистора открыты. Это позволяет уменьшить размеры ключевых транзисторов и паразитную электрическую емкость выходной шины. 1 ил.

Предлагаемое изобретение относится к области электронной техники и может быть использовано в коммутируемых источниках питания с защитой от перегрузки по току. Достигаемый технический результат - уменьшение времени срабатывания защиты при перегрузке по току и защиты нагрузки от выходного напряжения при его значениях ниже допустимых. Устройство защиты от перегрузки по току содержит последовательно соединенные шину положительного потенциала входного напряжения, датчик тока и электронный ключ, управляющий вход которого соединен с выходом элемента управления электронным ключом и через защитный резистор - с входом датчика тока, апериодическое звено, пороговый элемент, вход которого соединен через резистор с выходом датчика тока и выходом апериодического звена, шины отрицательного потенциала напряжения. 10 ил.

Изобретение относится к области электронной техники и может быть использовано в источниках питания с защитой от перегрузки по току, преимущественно в системах управления космических аппаратов. Технический результат заключается в уменьшении массы и габаритов. Коммутатор напряжения с защитой от перегрузки по току содержит электронный коммутатор с МОП структурой, который подает питание в блок нагрузки. Подключенный к общей точке коммутатора и блока нагрузки электронный ключ и релейный элемент с гистерезисом управляют с помощью первого и второго элементов И включением и выключением питания блока нагрузки. При наличии перегрузки по току осуществляется отключение питания от блока нагрузки. 1 ил.

Изобретение относится к области электроники и может быть использовано в системах управления ракетоносителя, в системах управления разгонным блоком для контроля прохождения команд в коммутационных системах. Техническим результатом является повышение надежности работы коммутирующего устройства. Устройство содержит первый и второй КМДП-ключи, пороговый элемент, D-триггер, диод, токозадающий резистор, вторичный источник питания, развязывающий диод. 1 ил.

Изобретение относится к импульсной технике и может быть использовано в различных устройствах автоматики, в том числе в информационно-управляющих системах, в качестве силового транзисторного ключа с защитой от короткого замыкания. Технический результат заключается в повышении надежности работы транзисторного ключа. Технический результат достигается за счет того, что транзисторный ключ с защитой от короткого замыкания содержит нагрузку, полупроводниковый ключ, схему выключения полупроводникового ключа, элемент ИЛИ-НЕ, элемент ИЛИ, первый, второй, третий, четвертый, пятый и шестой резисторы, n-p-n- и p-n-p-транзисторы, релейный элемент, задатчик порога срабатывания релейного элемента, диод, первую и вторую шины питания, общую шину. Схема выключения полупроводникового ключа содержит p-n-p- и n-p-n-транзисторы, первый, второй, третий и четвертый резисторы и инвертор. 1 з.п. ф-лы, 1 ил.
Наверх