Широкополосный аттенюатор для быстродействующих аналоговых и аналого-цифровых интерфейсов

Широкополосный аттенюатор для быстродействующих аналоговых и аналого-цифровых интерфейсов относится к области измерительной техники, электротехники, радиотехники и связи и может использоваться в структуре различных интерфейсов, в измерительных приборах, быстродействующих аналого-цифровых (АЦП) и цифроаналоговых (ЦАП) преобразователях. Технический результат: расширение диапазона рабочих частот устройства и повышение его быстродействия при работе с импульсными сигналами большой амплитуды. Широкополосный аттенюатор для быстродействующих аналоговых и аналого-цифровых интерфейсов содержит первый резистор (3), источник входного напряжения (4), включенный по переменному току между общей шиной (5) и входом устройства (1), второй резистор (6), включенный по переменному току между выходом устройства (2) и общей шиной (5), эквивалентную емкость нагрузки (7), включенную по переменному току между выходом устройства (2) и общей шиной (5), неинвертирующий повторитель напряжения (8) неинвертирующий повторитель тока (10), а между выходом неинвертирующего повторителя напряжения (8) и входом неинвертирующего повторителя тока (10) включен двухполюсник цепи коррекции (11). 1 з. п. ф-лы, 7 ил.

 

Предлагаемое изобретение относится к области измерительной техники, электротехники, радиотехники, связи и может использоваться в структуре различных интерфейсов, измерительных приборах, быстродействующих аналого-цифровых (АЦП) и цифроаналоговых (ЦАП) преобразователях.

В устройствах информационно-измерительной техники, связи, автоматики и радиотехники широкое применение находят резистивные делители напряжения - аттенюаторы (AT), обеспечивающие заданное деление (ослабление) входного напряжения (uвх) [1-16]. С повышением частоты uвх в таких аттенюаторах возникают существенные погрешности передачи сигнала, обусловленные влиянием паразитного конденсатора Со цепи нагрузки, которая образуется, например, в параллельных АЦП входной емкостью компаратора. Снижение этих погрешностей - одна из проблем современной информационно-измерительной техники, которая решается сегодня как за счет схемотехники AT, так и за счет конструктивных особенностей входных цепей (например, специальных «щупов» СВЧ-вольтметров, осциллографов, антенных систем радиоприемников и т.п.).

В связи с достаточно широким применением резистивных аттенюаторов в различных областях техники они присутствуют в различных классах (МПК H03H 7/24, A61B, G01R 31/02, H01P 1/22, H03K 5/08, H03L 5/00, G01R 27/00, G05F 3/00, H01H 47/00, H03G 3/20).

Предполагаемое схемотехническое решение относится к подклассу аттенюаторов, в которых коэффициент передачи может изменяться в широких пределах за счет изменения сопротивлений резисторов, образующих его структуру. Такие задачи характерны при проектировании цифроуправляемых аттенюаторов [патенты US 4.837.530, US 4.839.611 fig.2, US 7.477.085, ЕР 2.337.219 fig. 2] и параллельных АЦП [патенты US 8.076.995 fig. 1,2, 7.394.420 fig.2, 7.253.700 fig. 1, 5.231.399 fig.2, 6.437.724, патентные заявки US 2007/0176664 fig. 5, 2008/0036536 fig. 43, патенты US 5.307.067 fig.3, 7.248.192 fig.5].

Ближайшим прототипом заявляемого устройства является резистивный делитель напряжения фиг.1, представленный в патентной заявке US 2012/0086528 fig. 8 В. Он имеет вход 1 и выход 2 устройства, между которыми включен первый резистор 3, источник входного напряжения 4, включенный по переменному току между общей шиной 5 и входом устройства 1, второй резистор 6, включенный по переменному току между выходом устройства 2 и общей шиной 5, эквивалентная емкость нагрузки 7, включенная по переменному току между выходом устройства 2 и общей шиной 5.

Существенный недостаток аттенюатора-прототипа фиг.1 состоит в том, что с повышением частоты входного сигнала его коэффициент передачи существенно уменьшается из-за шунтирующего влияния эквивалентной емкости нагрузки 7. Это ограничивает частотный диапазон аттенюатора и, как следствие, быстродействие, например, параллельных АЦП. Еще более значительные частотные погрешности в аттенюаторе-прототипе возникают при большом изменении сопротивлений его первого 3 и второго 6 резисторов, что на практике осуществляется использованием вместо резистора 6 управляемого по затвору полевого транзистора или цифроуправляемых импедансов.

Основная задача предлагаемого изобретения состоит в существенном расширении диапазона рабочих частот устройства и повышении его быстродействия при работе с импульсными сигналами большой амплитуды. Причем достижение данных качественных показателей обеспечивается в широком диапазоне изменения коэффициентов передачи AT (K0), который определяется отношением K0=R6/(R6+R3). Это является одной из замечательных особенностей предлагаемого устройства, которая расширяет области его применения, например, в широкополосных цифроуправляемых аттенюаторах, R-2R делителей напряжения быстродействующих аналого-цифровых преобразователей и т.п.

Поставленная задача достигается тем, что в аттенюаторе фиг.1, содержащем вход 1 и выход 2 устройства, между которыми включен первый резистор 3, источник входного напряжения 4, включенный по переменному току между общей шиной 5 и входом устройства 1, второй резистор 6, включенный по переменному току между выходом устройства 2 и общей шиной 5, эквивалентная емкость нагрузки 7, включенная по переменному току между выходом устройства 2 и общей шиной 5, предусмотрены новые элементы и связи - выход устройства 2 связан по переменному току со входом неинвертирующего повторителя напряжения 8 и токовым выходом 9 неинвертирующего повторителя тока 10, причем между выходом неинвертирующего повторителя напряжения 8 и входом неинвертирующего повторителя тока 10 включен двухполюсник цепи коррекции 11.

На фиг.1 приведена схема аттенюатора-прототипа.

На фиг.2 представлена схема заявляемого устройства в соответствии с п.1 и 2 формулы изобретения.

На фиг.3 приведена частотная зависимость коэффициента передачи аттенюатора фиг.2 от емкости конденсатора 12 (C12к) при R3=10 кОм, R6=1 кОм, т.е. при K0≈0,1. Эти, а также последующие графики получены в результате моделирования схемы фиг.2 в среде Cadence на моделях интегральных компонентов.

На фиг.4 показана частотная зависимость коэффициента передачи аттенюатора фиг.2 от емкости конденсатора 12 (C12к) при R3=R6=1 кОм, т.е. при K0=5.

На фиг.5 представлена частотная зависимость коэффициента передачи аттенюатора фиг.2 от емкости конденсатора 12 (С12к) при R3=1 кОм, R6=100 Ом, т.е. при К0=R6/(R6+R3)=0,09.

На фиг.6 показана частотная зависимость коэффициента передачи аттенюатора фиг.2 при R6=1 кОм, C12к=l,9 пФ и различных значениях сопротивления резистора R3 (1 кОм, 5 кОм, 10 кОм). Данным номиналам элементов соответствуют К0=0,5; 0,166; 0,09.

На фиг.7 показана частотная зависимость коэффициента передачи аттенюатора фиг.2 при R6=1 кОм, C12к=2 пФ и различных значениях сопротивления резистора R3 (1 кОм, 5 кОм, 10 кОм). В этом идеальном случае при выходе C12к=2 пФ обеспечивается предельно-возможное расширение частотного диапазона AT независимо от К0.

Широкополосный аттенюатор фиг.2 содержит вход 1 и выход 2 устройства, между которыми включен первый резистор 3, источник входного напряжения 4, включенный по переменному току между общей шиной 5 и входом устройства 1, второй резистор 6, включенный по переменному току между выходом устройства 2 и общей шиной 5, эквивалентная емкость нагрузки 7, включенная по переменному току между выходом устройства 2 и общей шиной 5. Выход устройства 2 связан по переменному току со входом неинвертирующего повторителя напряжения 8 и токовым выходом 9 неинвертирующего повторителя тока 10, причем между выходом неинвертирующего повторителя напряжения 8 и входом неинвертирующего повторителя тока 10 включен двухполюсник цепи коррекции 11.

На фиг.2, в соответствии с п.2 формулы изобретения двухполюсник цепи коррекции выполнен в виде конденсатора 12, емкость которого функционально связана с эквивалентной емкостью нагрузки 7.

Рассмотрим работу устройства фиг.2.

При коэффициенте передачи по напряжению (Ку) неинвертирующего повторителя напряжения 8 Ку=0 и коэффициенте передачи по току (Ki) неинвертирующего повторителя тока 10 Ki1=0 изменение входного напряжения U ˙ в х передается в цепь нагрузки на выход 2:

U ˙ в ы х . К 0 1 + j ω τ н U ˙ в х , ( 1 )

где τн=R3.6C7,

R3.6=R3R6/(R3+R6).

К 0 = U в ы х U в ч = R 6 R 6 + R 3 - коэффициент передачи AT в диапазоне низких частот.

В схеме фиг.2 при Ky≠0, K1≠0 выходное напряжение устройства U ˙ в ы х поступает на выход неинвертирующего повторителя напряжения 8 с низким выходным сопротивлением, что создает входной (İ11), а затем выходной (İ9) токи неинвертирующего повторителя тока 10, который в идеальном случае имеет нулевое входное сопротивление:

I ˙ 11 = U ˙ в ы х K ˙ у 1 / j ω C 12 , ( 14 )

I ˙ 9 = j K ˙ i K ˙ у ω C 12 , ( 14 )

где K ˙ i - комплекс коэффициента передачи по току неинвертирующего повторителя тока 10;

K ˙ y - комплекс коэффициента передачи по напряжению неинвертирующего повторителя напряжения 8.

В линейном режиме для комплексов входного ( U ˙ в х ) и выходного ( U ˙ в ы х ) напряжений схемы фиг.2 можно записать следующее уравнение

U ˙ в ы х = U ˙ в х К 0 1 + j ω τ 3.6 ( 1 K ˙ у K ˙ i C 12 C 7 ) , ( 1 )

Если обеспечить K ˙ y = 1 , K ˙ i = 1 , то, как следует из (2), условием существенного уменьшения влияния эквивалентной емкости нагрузки C7 на амплитудно-частотную характеристику аттенюатора фиг.2 будет равенство

C 12 C 7 K у K i = 1 ( 3 )

В этом идеальном случае сомножитель при τ3.6 в (2) равен нулю и, как следствие, коэффициент передачи аттенюатора становится не зависящим от частоты. Данные выводы подтверждаются моделированием.

Следовательно, в первом приближении при Ку=Ki=1 емкости конденсаторов C12 и C7 должны иметь следующую взаимосвязь: C12≤C7.

Таким образом, в схеме фиг.2 создаются условия для существенного расширения малосигнального диапазона рабочих частот, который на практике будет определяться (или ограничиваться) инерционностью неинвертирующего повторителя тока 10 и неинвертирующего повторителя напряжения 8.

В том случае, если эквивалентная емкость нагрузки 7 не является идеальным конденсатором и содержит, например, последовательно соединенный с емкостью паразитный резистор, то двухполюсник цепи коррекции 11 должен содержать аналогичные элементы.

Из графиков фиг.5, в частности, следует, что диапазон рабочих частот предлагаемого аттенюатора (при C7=2 пФ, С12к=1,9 пФ и идеальных повторителе тока 10 и повторителе напряжения 8) расширяется до 2 ГГц, в то время как верхняя граничная частота классического аттенюатора (по уровню -3дБ) имеет значение 100 МГц.

Графики фиг.6 показывают, что при изменении сопротивления резистора 3 (R3) в 10 раз верхняя граничная частота коэффициента передачи заявляемого аттенюатора практически не изменяется.

Выполненный выше анализ, а также результаты компьютерного моделирования показывают, что в схеме фиг.2 решена одна из проблем современной аналоговой микросхемотехники - расширение частотного диапазона и повышение быстродействия аттенюаторов сигналов, являющихся базовым узлом аналоговых и аналого-цифровых преобразователей.

Библиографический список.

1. Патент US 5.867.018.

2. Патент US 5.363.070, fig. 2а.

3. Патент US 4.912.394.

4. Патент US 8.076.995.

5. Патент US 4.050.055, fig. 5.

6. Патент US 4.198.988, fig. 1.

7. Патентная заявка US 2007/0176664, fig. 2.

8. Патент US 4.839.611, fig. 2.

9. Патент US 4.670.723, fig. 2.

10. Патент US 4.272.739, fig. 1.

11. Патент JP 10-211-0068595.

12. Патент JP 2010-252241.

13. Патент ЕР 2337219, fig. 2.

14.Патент ЕР 0753937, fig. 1.

15.Патент ЕР 0612982.

16.Патент US 7.477.085, fig. 1.

1. Широкополосный аттенюатор для быстродействующих аналоговых и аналого-цифровых интерфейсов, содержащий вход (1) и выход (2) устройства, между которыми включен первый резистор (3), источник входного напряжения (4), включенный по переменному току между общей шиной (5) и входом устройства (1), второй резистор (6), включенный по переменному току между выходом устройства (2) и общей шиной (5), эквивалентная емкость нагрузки (7), включенная по переменному току между выходом устройства (2) и общей шиной (5), отличающийся тем, что выход устройства (2) связан по переменному току со входом неинвертирующего повторителя напряжения (8) и токовым выходом (9) неинвертирующего повторителя тока (10), причем между выходом неинвертирующего повторителя напряжения (8) и входом неинвертирующего повторителя тока (10) включен двухполюсник цепи коррекции (11).

2. Широкополосный аттенюатор для быстродействующих аналоговых и аналого-цифровых интерфейсов по п.1, отличающийся тем, что двухполюсник цепи коррекции выполнен в виде конденсатора (12), емкость которого функционально связана с эквивалентной емкостью нагрузки (7).



 

Похожие патенты:

Изобретение относится к СВЧ-технике и может быть использовано в волноводных трактах высокой мощности в дециметровом, сантиметровом и миллиметровом диапазонах длин волн.

Изобретение относится к радиотехнике, а именно к управляемым ступенчатым аттенюаторам. Технический результат - управление аттенюатором одним сигналом управления, приходящим одновременно на все диоды, при сохранении низких потерь пропускания и одинаковой ФЧХ в «прямом» и «обходном» пути.

Изобретение относится к области радиотехники и может быть использовано в резонансных СВЧ компрессорах в качестве устройства вывода энергии для формирования мощных СВЧ импульсов наносекундной длительности.

Управляемый фазовращатель относится к технике высоких и сверхвысоких частот и может использоваться для управления фазой сигналов в антенных решетках и системах передачи информации.

Изобретение относится к технике сверхвысоких частот. Технический результат - увеличение протяженности полосы заграждения фильтра и уровня затухания в ней.

Настоящее изобретение относится к электронной технике. Технический результат изобретения заключается в увеличении ширины рабочей полосы частот, уменьшении величины коэффициента стоячей волны напряжения и уменьшении величины изменения фазы сигнала СВЧ при изменении постоянного управляющего напряжения при сохранении малой величины прямых потерь СВЧ.

Изобретение относится к устройству создания круговой поляризации в антенне. Технический результат - снижение омических потерь и упрощение конструкции устройства.

Изобретение относится к электронной технике, а именно к фазовращателям СВЧ на полупроводниковых приборах. Технический результат - повышение надежности устройства.

Изобретение относится к технике сверхвысоких частот (СВЧ), в частности к устройствам сложения (деления) СВЧ сигналов, и может быть использовано для сложения (деления) СВЧ сигналов в фидерных трактах техники связи, радиолокационных устройств, в телевидении, в измерительной технике.

Изобретение относится к области нанотехнологии и может быть использовано в интегральной СВЧ-электронике для радиотехнической аппаратуры наземного, воздушного, космического базирования.

Изобретение относится к электронной технике, а именно к защитным устройствам СВЧ на полупроводниковых приборах. Технический результат - увеличение допустимой входной мощности, расширение рабочей полосы частот и снижение прямых потерь СВЧ. Для этого защитное устройство СВЧ содержит центральный проводник, первый и второй отрезки линии передачи, первый и второй полупроводниковые приборы, первый, второй и третий резисторы, две индуктивности, при этом оба отрезка линии передачи выполнены в виде отрезков одиночной линии передачи, каждый длиной, равной одной восьмой длины волны в отрезке линии передачи на центральной частоте рабочей полосы частот, и волновым сопротивлением, равным волновому сопротивлению центрального проводника, в качестве полупроводниковых приборов используют полевые транзисторы с барьером Шотки, одинаковые второй и третий резисторы выполнены с сопротивлением, на порядок большим волнового сопротивления центрального проводника. 4 ил.

Изобретение относится к системе гибкой стенки для СВЧ-фильтров с объемным резонатором, снабженным механическим устройством температурной компенсации, и может использоваться в области телекоммуникации. Достигаемый технический результат - снижение температурного градиента гибкого колпачка, снижение механических напряжений, поддержание эквивалентного теплового сопротивления. Система гибкой стенки для компонента фильтра или мультиплексора вывода с технологией термокомпенсации содержит по меньшей мере две расположенные друг над другом отдельные гибкие мембраны и каждая гибкая мембрана имеет центральную область(С), промежуточную область (I) и периферийную область (Р) торец к торцу, при этом гибкие мембраны термически и механически соединены в центральной области (С) и периферийной области (Р) и не соединены в промежуточной области (I). 3 н. и 14 з. п. ф-лы , 6 ил.

Изобретение относится к технике сверхвысоких частот и может быть использовано в частотно-селективных цепях приемопередающих устройств СВЧ. Техническим результатом предлагаемого технического решения является обеспечение возможности независимой плавной подстройки избирательности частотной характеристики выше и ниже полосы пропускания без искажения характеристик в рабочей полосе, что позволяет эффективно подавлять сигналы помех, расположенных как симметрично, так и несимметрично, по обе стороны полосы пропускания фильтра. Результат достигается тем, что узкополосный фильтр СВЧ содержит диэлектрическую подложку, на одной стороне которой размещен заземляющий экран, на другой стороне - микрополосковая структура, реализующая элементы фильтра с цепями связи. При этом микрополосковая структура включает шесть резонаторов, два конденсатора для подключения источника сигнала и нагрузки, пять конденсаторов для обеспечения электрической связи между соседними резонаторами, а также трансформатор на связанных линиях передачи, включенный двумя плечами между несоседними первым и третьим резонаторами, а два других его плеча замкнуты на заземляющий экран, а также подстроечный конденсатор, включенный между несоседними четвертым и шестым резонаторами. При этом связь между соседними первым, вторым, третьим, четвертым, пятым и шестым резонаторами - емкостного типа, связь между несоседними первым и третьим резонаторами - индуктивного типа и связь между несоседними четвертым и шестым резонаторами - емкостного типа. 4 з.п. ф-лы, 6 ил.

Изобретение относится к области радиосвязи. Технический результат заключается в автоматизации управления антенным переключателем, обеспечении дуплексного режима при работе на одну антенну в режиме псевдослучайной перестройки рабочих частот (ППРЧ), повышении маневренности при обмене информацией, синхронизации радиостанций и их помехоустойчивости при совместной работе нескольких корреспондентов, увеличении пропускной способности радиостанций. В радиостанцию дополнительно введены антенный переключатель, преобразователь каналов передачи, преобразователь каналов приема, усилитель, блок из десяти аналого-цифровых преобразователей, блок из десяти цифроаналоговых преобразователей, блок из десяти фильтров, преобразователь каналов передачи данных, выключатель, блок аппаратуры передачи данных и десять выносных постов радиста-оператора. 9 з.п. ф-лы, 16 ил.

Изобретение относится к технике сверхвысокой частоты (СВЧ) и предназначено для работы в качестве частотного делителя сигнала общего источника на два сигнала с различными диапазонами частот или частотного сумматора двух каналов мощного источника (или двух мощных источников), работающих в различных диапазонах частот. Технически результат - расширение функциональных возможностей, улучшение взаимной развязки источников, минимизация потерь полезного сигнала и повышение стабильности параметров при климатическом воздействии. Для этого частотно-развязывающее устройство для соединения нескольких источников или нагрузок, работающих на различных частотах, с общей нагрузкой или источником выполнено по микрополосковой технологии на печатной плате в виде микрополосковой структуры, включающей два разомкнутых кольца, каждое из которых имеет два плеча настройки и два согласованных входа, один из которых является общим для двух разомкнутых колец. Каждое плечо настройки заканчивается элементами настройки. При этом частотно-развязывающее устройство выполнено с возможностью одновременного использования в качестве частотного сумматора двух источников сигналов, работающих в различных частотных диапазонах, и общего источника, а также частотного делителя сигнала общего источника сигналов на два сигнала с различными диапазонами частот. 3 ил.

Изобретение относится к полупроводниковой СВЧ-электронике и может быть использовано в детекторных головках с высокими требованиями прочности и устойчивости к внешним воздействиям. Технический результат заключается в упрощении ее конструкции, снижении трудоемкости изготовления и повышении пригодности к серийному производству. Для этого детекторная головка состоит из корпуса, выполненного в виде двух половинок: основания 1 и крышки 2, между которыми устанавливается полосковая плата 3. С основанием 1 электрически соединен корпус коаксиального разъема 4. В основании 1 выполнен сквозной волноводный канал 5, а в крышке 2 - короткозамыкатель 6. На полосковой плате 3 выполнены фильтр 7, представляющий собой фильтр низкой частоты (ФНЧ), и контактная площадка 8. Резистор 9 электрически соединен с корпусом с помощью проводников полосковой платы 3. Детекторный диод 10 приклеивается к проводникам полосковой платы 3 с помощью токопроводящего клея. По контуру земляных проводников на полосковой плате 3 расположены металлизированные переходные отверстия 11. По периметру основания 1 выполнен бортик 12. Сборка детекторной головки осуществляется при помощи винтов 13. Волноводно-полосковый переход образован участком платы 14 в зоне сквозного волноводного канала 5 и короткозамыкателя 6. Детекторный диод 10 соединен с корпусом детекторной головки посредством шлейфа 15. 5 з.п. ф-лы, 3 ил.

Изобретение относится к области радиотехники, а именно к волноводной и антенной технике, и может быть использовано в волноводных линиях связи. Технический результат - уменьшение потерь за счет снижения относительного уровня мощности других типов волн, отличных от волны TE01, и конструктивное упрощение. Для этого возбудитель волны TE01 состоит из выходного круглого волновода со стенкой, закорачивающей выходной круглый волновод, образованный участком трубы с контактным фланцем и пристыкованной через плиту 2 плитой 3, в которой выполнено глухое отверстие 4. Вспомогательные волноводы, пристыкованные к боковой поверхности выходного круглого волновода, образованы плоскостью плиты 2 и пазами 5 прямоугольной формы, выполненными в плите 3. Модовый фильтр, установленный в выходном круглом волноводе, представляет собой плоскопараллельную структуру с отверстиями 6 связи, выполненными в плите 2 и расположенными концентрично к оси выходного круглого волновода. В выходной круглый волновод может быть установлен внутренный проводник 7, при этом внешняя поверхность внутреннего проводника 7 должна иметь электрический контакт с плитой 2 и плитой 3. 5 з.п. ф-лы, 3 ил.

Изобретение относится к технике сверхвысоких частот (СВЧ) и может быть использовано для коммутации СВЧ-сигналов в фидерных трактах различного назначения, в частности при создании переключателя фидерных трактов. Технические результаты заключаются в увеличениях надежности и рабочей мощности при улучшении технологичности, уменьшении стоимости, а также в увеличении развязки. Для этого в механическом СВЧ переключателе, содержащем входной и выходные разъемы, центральный полосок, заземляющие пластины и диэлектрические пластины, установленные между центральным полоском и заземляющими пластинами, центральный полосок жестко связан с центральными проводниками входного и выходных разъемов, заземляющие пластины жестко связаны с внешними проводниками входного и выходных разъемов, а диэлектрические пластины выполнены подвижными и составлены, по крайней мере, из двух частей, имеющих разные эффективные диэлектрические постоянные. Кроме того, диэлектрические пластины, установленные между центральным полоском и заземляющими пластинами, могут быть выполнены, по крайней мере, из трех составных частей, имеющих разные эффективные диэлектрические постоянные. 1 з.п., 3 ил.

Изобретение относится к области антенной техники и может быть использовано в составе облучателей широкополосных антенных систем, работающих на волнах круговой поляризации. Технический результат - уменьшение уровня кроссполяризации за счет уменьшения отклонения абсолютной величины дифференциального фазового сдвига ортогональных волн линейной поляризации поляризатора от 90о градусов в широком диапазоне частот. Поляризатор содержит первый отрезок волновода, имеющий один элемент, предназначенный для преобразования волн линейной поляризации в волны круговой поляризации или волн круговой поляризации в волны линейной поляризации, продольная плоскость симметрии которого параллельна продольной плоскости симметрии первого отрезка волновода, и второй отрезок волновода, связанный с первым отрезком волновода и имеющий с ним общую ось симметрии. Во втором отрезке волновода имеется одно глухое цилиндрическое отверстие. В отверстии коаксиально установлен цилиндрический длинномерный элемент, проходящий внутрь волновода, выполненный из проводящего материала. Ось отверстия находится в продольной плоскости симметрии одного элемента, предназначенного для преобразования волн линейной поляризации в волны круговой поляризации или волн круговой поляризации в волны линейной поляризации. 17 з.п. ф-лы, 6 ил.

Плазменный коммутатор относится к электронной технике и может быть, в частности, использован при создании импульсных генераторов, источников питания импульсных устройств, импульсных лазеров. Плазменный коммутатор содержит герметизируемую камеру, заполненную рабочим газом, с катодом и сетчатым анодом. Сетчатый анод выполнен с поверхностью, эквидистантной внутренней поверхности катода, а катод - в составе пластин катода, расположенных напротив друг друга с зазором. Технический результат - повышение скорости коммутации, увеличение скорости нарастания плотности тока и общего тока. 6 з.п. ф-лы, 5 ил.
Наверх