Способ бестокового получения урана (v) в расплавленных хлоридах щелочных металлов

Изобретение относится к области создания пирохимических технологий переработки облученного ядерного топлива, в частности оксидного.

Способ бестокового получения урана (V) в расплавленных хлоридах щелочных металлов (NaCl-2CsCl, NaCl-KCl, LiCl-KCl), содержащих ионы урана (VI), сущность которого заключается в выдержке в атмосфере над расплавом металлического циркония в качестве геттера при температуре 550-750°C в течение 180-250 минут. При этом происходит образование пятивалентной формы урана по реакции термического разложения хлорида уранила, ускоренной металлическим цирконием, о чем свидетельствуют записанные спектры поглощения расплава. Техническим результатом является возможность бестокового получения хлоридных расплавов с высоким содержанием пятивалентного урана без внесения посторонних компонентов в расплав.1 ил.

 

Изобретение относится к области создания пирохимических технологий переработки облученного ядерного топлива, в частности оксидного. Известно, что в качестве рабочих сред для организации технологических процессов лучше всего использовать расплавленные смеси хлоридов щелочных металлов. Растворение оксидного топлива в таких системах сопровождается образованием хлоридов уранила (UO2Cl2). Наряду с ураном (VI) в расплавах может присутствовать уран (V) (UO2Cl), который играет очень большую роль при проведении тех или иных технических операций, выступая в качестве окислителя или восстановителя по отношению к отдельным продуктам деления и существенно увеличивая выход по току при электролитическом выделении диоксида урана. Поэтому зачастую целесообразно обеспечивать присутствие урана (V) в технологических расплавах.

Анализ уровня техники в данной области свидетельствует о наличии разных способов получения урана (V) в хлоридных расплавах:

1. Т.Nagai, Т.Fujii, О.Shirai and H.Yamana "Study on redox equilibrium of UO22+/UO2+in molten NaCl-2CsCl by UV-Vis Spectrophotometry", Journal of nuclear science and technology, June 2004, Vol.41, No 6, p.690-695. Показана возможность получения расплава NaCl-2CsCl, содержащего пятивалентный уран, при электролитическом восстановлении предварительно растворенного в расплаве урана (VI). К недостаткам данного способа следует отнести необходимость использования довольно сложной аппаратуры для обеспечения необходимых режимов процессов электролиза.

2. В.А.Волкович, Б.Д.Васин, Д.Е.Александров, Т.К.Хабибуллин «Взаимодействие уранилсодержащих хлоридных расплавов с водородом» // Расплавы, 2009, вып.5, С.27-30. Показана возможность образования ионов урана (V) в расплавах хлоридов щелочных металлов (NaCl-2CsCl, NaCl-KCl, 3LiC1-2KC1) при барботировании газообразного водорода через расплав. Такой способ восстановления урана (VI) до урана (V) является достаточно простым. Его недостаток в использовании эффективного замедлителя нейтронов, что приводит к снижению ядерной безопасности систем, содержащих делящиеся материалы.

Наиболее близким к заявленному техническому решению является способ получения расплавов, содержащих ионы урана (V), на основе хлоридов щелочных металлов, образующиеся при взаимодействии уранилсодержащих хлоридных расплавов с металлическим молибденом. Д.Е.Александров, В.А, Волкович, Б.Д.Васин, Д.С.Мальцев «Образование и поведение соединений урана (V) в хлоридных расплавах» // Известия Вузов, Ядерная энергетика, 2010, №3, С.124-132. При выдержке металлического молибдена в контакте с расплавом в интервале температур 550-750°C, происходит восстановление уранил ионов до пятивалентного состояния и далее, с течением времени, до диоксида, при этом в расплав переходят ионы молибдена (III) с образованием MoCl3. Замена газообразного восстановителя металлическим обеспечивает большую безопасность высокотемпературного технологического процесса. Существенным недостатком данного способа является загрязнение расплава посторонними компонентами (Mo3+).

Предлагаемый способ позволяет получать уран (V) в хлоридных расплавах, содержащий UO2Cl2, при использовании металлического восстановителя, в частности циркония, исключая попадания продуктов его окисления в солевую фазу.

Для достижения этого технического результата металлический цирконий, выполняющий роль геттера, размещают в газовом пространстве на керамическом подвесе над хлоридным расплавом, содержащим уран (VI), и выдерживают при температурах 550-750°C в течении 180-250 минут.

Сущность предлагаемого способа заключается в том, что получение урана (V) в расплавленных смесях хлоридов щелочных металлов, содержащих уран (VI), осуществляется посредством взаимодействия содержащегося в них урана (VI) с металлом-восстановителем при температурах 550-750°C, отличающийся тем, что в качестве металла-восстановителя используют цирконий, который помещают в пространство над расплавом на керамическом подвесе и выдерживают в течение 180-250 минут.

Накопление пятивалентного урана в расплаве происходит при термическом разложении уранил-ионов по реакции (1). Металлический цирконий реагирует с хлором по реакции (2) и сдвигает равновесие реакции (1) вправо, тем самым значительно ускоряя процесс:

UO 2 Cl 4 2- + Cl -  UO 2 Cl 4 3- + 1 / 2 Cl 2                               ( 1 )

Zr + 2Cl 2 -ZrCl 4                                                               ( 2 )

Количество образующегося пятивалентного урана в расплаве зависит от времени выдержки циркониевого геттера в атмосфере над расплавом.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является получение расплава, содержащего ионы урана (V) и не загрязненного посторонними элементами, на основе хлоридов щелочных металлов.

Пример

Проведены эксперименты по получению урана (V) в эвтектической смеси хлоридов натрия и цезия с растворенным в ней предварительно приготовленного образца урана (VI). Для контроля за процессом восстановления U(VI) до U(V) использовали метод высокотемпературной электронной спектроскопии. Поэтому опыты проводили в специальных герметичных кварцевых пробирках с приваренными в нижней части кюветами из оптического кварца. Исследуемый расплав находился в кюветах, над расплавом размещали циркониевый геттер (в виде стружки), закрепленный на керамическом подвесе. В ходе эксперимента снимали электронные спектры поглощения в видимой области на высокотемпературной установке AvaSpec - 2048FT-2-SPU. Характерная для всех случаев спектральная картина представлена на фигуре 1

Как видно из спектров, в ходе реакции восстановления поглощение в видимой области спектра возрастало, и появлялись полосы, соответствующие поглощению комплексных хлоридных ионов UO2Cl43-, образующихся по реакции (1).

Таким образом, показана возможность получения урана (V) в расплавах на основе хлоридов щелочных металлов, содержащих ионы уранила.

1. Способ бестокового получения урана (V) в расплавленных смесях хлоридов щелочных металлов, содержащих уран (VI), посредством взаимодействия содержащегося в них урана (VI) с металлом-восстановителем при температурах 550-750°C, отличающийся тем, что в качестве металла-восстановителя используют цирконий, который помещают в пространство над расплавом и выдерживают в течение 180-250 минут.



 

Похожие патенты:

Настоящее изобретение относится к области переработки облученного ядерного топлива, в частности к пироэлектрохимической технологии переработки облученного ядерного топлива, к выделению электроположительных продуктов деления из технологических расплавов.

Изобретение относится к технологии рециклирования ядерных энергетических материалов и может быть использовано для возврата урана, выделенного из отработавшего ядерного топлива, в топливный цикл легководных реакторов.
Изобретение относится к способам растворения топлива, которое представляет собой смесь оксидов урана и плутония. .

Изобретение относится к способам и устройствам, обеспечивающим разделение многокомпонентного потока плазмы по массам, и может быть использовано для получения изотопов и выделения химических элементов.

Изобретение относится к способам и устройствам для электромагнитного плазменного разделения химических элементов, изотопов и может быть использовано при выделении элементов или групп элементов из многокомпонентной смеси, производстве стабильных и радиоактивных изотопов химических элементов.

Изобретение относится к ядерному топливному циклу, к технологии изотопного восстановления регенерированного урана и может быть использовано при производстве низкообогащенного урана (НОУ) для топлива атомных станций.

Изобретение относится к ядерному топливному циклу, а именно к способам переработки на каскаде газовых центрифуг загрязненного вредными изотопами 232U, 234 U, 236U уранового сырья.

Изобретение относится к технологии рециклирования ядерных энергетических материалов. .
Изобретение относится к области ядерных технологий, в частности к топливу АЭС на тепловых нейтронах. Топливная композиция для водоохлаждаемых реакторов АЭС на тепловых нейтронах включает смесь регенерированного плутония и обогащенного урана в виде оксидов, при этом в качестве обогащенного урана используется обогащенный регенерированный уран, при соотношении компонентов, определяемом энергетическим потенциалом, равным потенциалу свежеприготовленного топлива АЭС из обогащенного природного урана, обеспечивающим 100% загрузку активной зоны реактора. Изобретение позволяет полностью и одновременно утилизировать регенерированные уран и плутоний, выделенные из отработанного ядерного топлива. 5 з.п. ф-лы, 4 пр.

Заявленное изобретение относится к способу регенерации материала ядерного топлива. В заявленном способе осуществляют выделение материала ядерного топлива, содержащего металлический торий, и переработку оксида материала ядерного топлива в реакторе (1), содержащего оксид тория в отработавшем топливе, помещенный в корзину (3а). Заявленный способ включает первую стадию электролитического восстановления оксида тория, включающую подачу электродного потенциала на анод (2) и катод (3), в первом расплаве солей галогенида щелочноземельного металла, первую стадию промывки продукта восстановления и основную стадию электролитического выделения продукта восстановления. Первый расплав солей дополнительно включает галогенид щелочного металла и включает по меньшей мере одно из веществ: хлорид кальция, хлорид магния, фторид кальция и фторид магния. Заявленный способ может дополнительно иметь вторую стадию электролитического восстановления оксида урана, оксида плутония и оксидов легких актинидов во втором расплаве солей галогенида щелочного металла. Техническим результатом является возможность селективного выделения металлического тория из материала отработавшего ядерного топлива, содержащего оксид тория. 2 н. и 14 з.п. ф-лы, 9 ил.

Заявленное изобретение относится к процессам извлечения и концентрирования радионуклидов и может быть использовано в радиохимических технологиях при переработке облученного топлива АЭС. В заявленном способе отделение плутония от урана предусмотрено на стадии реэкстракции с использованием водорастворимых комплексонов - моноамидов дигликолевой кислоты. Техническим результатом является возможность осаждения плутония или смеси уран-плутоний непосредственно из полученного рекэкстракта. 2 з.п. ф-лы, 4 ил.

Изобретение относится к пассивной системе фильтрации для зоны загрузки топлива, имеющей бассейн отработанного топлива в ядерном реакторе. Пассивная система фильтрации уменьшает выпуск в атмосферу частиц, таких как радиоактивные частицы, образуемые в случае кипения бассейна отработанного топлива. Пассивная система фильтрации содержит канал выпуска, механизм вентиляции, расположенный между зоной загрузки топлива и каналом выпуска. Механизм вентиляции выполнен с возможностью высвобождения смеси водяного пара и воздуха из зоны загрузки топлива в канал выпуска. Смесь водяного пара и воздуха содержит частицы. Пассивная система фильтрации дополнительно содержит блок фильтрации воздуха, расположенный в канале выпуска, и этот блок имеет, по меньшей мере, один пассивный фильтр. Смесь водяного пара и воздуха прокачивается, по меньшей мере, через один пассивный фильтр благодаря разности давления, создаваемой в зоне загрузки топлива. Технический результат - повышение радиационной безопасности в зоне загрузки топлива АЭС. 2 н. и 7 з.п. ф-лы, 2 ил.

Изобретение относится к способам переработки нитридного отработавшего ядерного топлива (ОЯТ). Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах включает катодное восстановление ионов урана, подготовку электролита в аппарате для переработки нитридного отработавшего ядерного топлива. Подготовку электролита проводят в атмосфере инертного газа непрерывным анодным растворением нитридного отработавшего ядерного топлива с их последующим электрохимическим восстановлением на жидком металлическом катоде в расплавленном хлоридном электролите при температуре не выше 500°С. Изобретение позволяет повысить ток электролиза, сократить время начала выделения компонентов ОЯТ на жидком металлическом катоде. 5 ил., 4 пр.
Изобретение относится к области переработки отработавшего ядерного топлива (ОЯТ). Способ извлечения металлов платиновой группы из продукта кислотного растворения волоксидированного ОЯТ заключается в том, что полученное после волоксидации ОЯТ растворяют в азотной кислоте в диапазоне температур 83-86°C в течение 4-5 часов с получением остаточного содержания в продукте азотной кислоты в диапазоне 1,42-2,3 моль/л, урана в диапазоне 480-600 г/л, термостатируют полученный продукт в диапазоне температур 69-80°C в течение 2-48 часов, вносят флокулянт и диспергируют реакционную смесь, проводят накопление осадка в донной части аппарата за счет седиментационного осаждения в диапазоне температур 35-57°C в течение 6-24 часов. Отделяют декантацией осветленную часть продукта, усредняют седиментированный осадок в оставшемся осветленном объеме раствора в аппарате. Изобретение позволяет выделить в осадок более 78,7% платиноидов и отделить 98,1% образующихся при растворении ОЯТ взвесей. 14 з.п. ф-лы, 2 пр.

Изобретение относится к способам очистки загрязненного вредными изотопами сырья для использования его в дальнейшем для получении восстановленного урана для ядерного топлива. Способ очистки загрязненного сырья для разделительного производства от вредных изотопов заключается в снижении концентрации изотопов 232U, 234U, 236U путем переработки гексафторида урана загрязненного сырья в двойном каскаде газовых центрифуг. Гексафторид урана загрязненного сырья перерабатывают в двойном каскаде газовых центрифуг, предназначенных для получения низкообогащенного гексафторида 235U из чистого гексафторида урана, подаваемого на основное питание первого каскада, загрязненное сырье подают на дополнительное питание первого каскада. Очищенное сырье отбирают из первого или второго каскада. Изобретение позволяет получить качественное сырье с допустимым содержанием лимитирующих вредных изотопов. 5 з.п. ф-лы, 5 ил., 8 табл., 4 пр.
Изобретение относится к области радиохимической технологии и может быть использовано для отделения трития на головных операциях процесса переработки облученного ядерного топлива. Сущность изобретения заключается в одновременном воздействии на топливную композицию окислительно-активных компонентов CO2-содержащей газофазной системы при ограничении концентрации в ней диоксида азота, кислорода, азотной кислоты. Изобретение позволяет снизить отделение цезия с отходящим газовым потоком до уровня менее 0,1% при удалении более 99,8% трития в процессе волоксидации фрагментированного ОЯТ (в оболочке). 6 з.п. ф-лы.
Изобретение относится к радиохимической технологии и может быть использовано при переработке облученного ядерного топлива (ОЯТ). Способ растворения волоксидированного ОЯТ включает обработку ОЯТ в гетерогенной системе с участием диоксида азота. Порошкообразный материал (ОЯТ) приводят в контакт с раствором азотной кислоты с концентрацией 0,8-2,5 моль/л, при температуре суспензии 30-60°С и нормальном давлении пропускают через реакционный объем газовый поток, получаемый путем смешения в непрерывном режиме потока кислорода, и потока кислотообразующих оксидов азота, и углекислого газа, генерируемых в результате каталитически активируемого окисления индуктора под воздействием азотной кислоты. Изобретение позволяет снизить содержание циркония и молибдена в продукте растворения ОЯТ. 12 з.п. ф-лы, 2 пр.
Изобретение относится к радиохимической технологии и может быть использовано при переработке отработавшего ядерного топлива и производстве смешанного уран-плутониевого топлива. Способ получения смешанных оксидов урана и плутония включает смешение растворов урана и плутония, находящихся в нестабилизированном валентном состоянии, перевод в полученном растворе мастер-смеси урана в четырехвалентную форму плутония в трехвалентную форму путем восстановления на твердофазном катализаторе, стабилизацию полученного валентного состояния урана и плутония избытком восстановителя и осаждение в слабокислой среде оксалатов четырехвалентного урана и трехвалентного плутония путем одновременного смешения растворов мастер-смеси и гидразин-гидрата с раствором щавелевой кислоты. Изобретение обеспечивает получение смешанных оксидов урана и плутония непосредственно из продуктов экстракционной переработки отработанного ядерного топлива, высокую степень гомогенизации полученных смешанных оксидов и возможность варьирования размеров получаемых зерен. 24 з.п. ф-лы, 2 пр..
Наверх