Способ ограничения водопритока в горизонтальной скважине с обводненными карбонатными коллекторами


 


Владельцы патента RU 2519138:

Открытое акционерное общество "Татнефть" имени В.Д. Шашина (RU)

Изобретение относится к нефтедобывающей промышленности и может быть использовано для проведения водоизоляционных работ в горизонтальной скважине с обводненными карбонатными коллекторами. Способ ограничения водопритока в горизонтальной скважине с обводненными карбонатными коллекторами включает закачку эмульсии в изолируемый интервал нефтедобывающей скважины. Предварительно определяют приемистость изолируемого интервала, далее в скважину последовательно закачивают эмульсию, в качестве которой используют смесь высоковязкой нефти и товарной угленосной нефти. При открытой затрубной задвижке закачивают горячую пресную воду с температурой 70-80°C в объеме, равном объему колонны насосно-компрессорных труб. Полученный водоизоляционный экран закрепляют высоковязкой нефтью с температурой 40-70°C. Техническим результатом является повышение эффективности водоизоляционных работ в горизонтальной скважине с обводненными карбонатными коллекторами за счет использования высоковязкой нефти для создания водоизоляционного экрана и его закрепления. 3 табл., 1 пр.

 

Изобретение относится к нефтедобывающей промышленности и может быть использовано для проведения водоизоляционных работ в горизонтальных скважинах с обводненными карбонатными коллекторами.

Известен способ ограничения водопритока (патент RU №2281385, МПК Е21В 43/00, опубл. 10.08.2006 г. в бюл. №22), который включает приготовление гидрофобной эмульсии, применяющейся также в операциях глушения, промывок скважин, обработки призабойной зоны пластов. Гидрофобная эмульсия содержит, мас.%: нефть 44,5-82,75, водорастворимый окислитель - пероксодисульфат калия 0,25-0,5, минерализованную воду, содержащую ионы железа двухвалентного (Fe2+) в количестве от 35 мг/л и более до насыщения 17,00-55,00.

Недостатком способа является сложность приготовления эмульсии, которая выражается в необходимости использования специальной емкости и устройства с высокой скоростью перемешивания, а также минерализованной воды с содержанием ионов железа двухвалентного (Fe2+) в количестве от 35 мг/л и более.

Наиболее близким по технической сущности к заявляемому является способ ограничения водопритока в скважине (патент RU №2418153, МПК Е21В 33/138, опубл. 10.05.2011 г. в бюл. №13). Способ включает последовательную закачку в изолируемый интервал обратной эмульсии на основе водной дисперсной фазы и углеводородной дисперсионной среды с кремнийорганическим тампонажным составом и закрепляющего состава на основе кремнийорганического тампонажного состава в большей концентрации. До обратной эмульсии в изолируемый интервал закачивают водную суспензию глины для увеличения вязкости и стабильности эмульсии. В качестве кремнийорганического тампонажного состава применяют «Силор НЧ», причем для обратной эмульсии в количестве 1-10% от объема углеводородной дисперсионной среды, а для закрепляющего состава - с добавлением 10%-ного водного раствора гидроксида натрия при следующих соотношениях компонентов, об.%:

кремнийорганический тампонажный состав «Силор НЧ» 80-90
10%-ный водный раствор гидроксида натрия 10-20.

Недостатком данного способа является сложность его реализации, так как для проведения ремонтно-изоляционных работ необходимо приготовить и последовательно закачать в скважину водную суспензию глины и два разных тампонажных состава - высоковязкую эмульсию, содержащую кремнийорганическую жидкость «Силор», и армирующий состав, представляющий собой смесь кремнийорганической жидкости «Силор» с раствором гидроксида натрия. Кроме того, по истечении одного года используемая при реализации способа эмульсия расслаивается и теряет свои тампонирующие свойства.

Технической задачей изобретения является повышение эффективности водоизоляционных работ в горизонтальной скважине с обводненными карбонатными коллекторами за счет создания протяженного водоизоляционного экрана и нетекучего в пористой среде барьера.

Задача решается способом ограничения водопритока в горизонтальной скважине с обводненными карбонатными коллекторами, включающим закачку эмульсии в изолируемый интервал нефтедобывающей скважины.

Новым является то, что предварительно определяют приемистость изолируемого интервала скважины, далее в скважину последовательно закачивают эмульсию, в качестве которой используют смесь высоковязкой нефти и товарной угленосной нефти, и при открытой затрубной задвижке закачивают горячую пресную воду с температурой 70-80°C в объеме, равном объему колонны насосно-компрессорных труб, а полученный водоизоляционный экран закрепляют высоковязкой нефтью с температурой 40-70°C.

В изобретении используют высоковязкую нефть Ашальчинского или Мордово-Кармальского месторождения и товарную угленосную нефть.

Сущность способа заключается в следующем. Предварительно определяют приемистость изолируемого интервала скважины, после чего в скважину последовательно закачивают эмульсию, в качестве которой используют смесь высоковязкой нефти и товарной угленосной нефти. Закачка высоковязкой нефти представляет определенные трудности, так как вязкость высоковязкой нефти при температуре 20°C составляет более 2600 мПа·с при скорости сдвига 200 с-1, что соответствует скорости сдвига при ее течении в двухдюймовых насосно-компрессорных трубах (НКТ), поэтому для снижения вязкости ее смешивают с низковязкой товарной угленосной нефтью. После закачки в обводненный карбонатный коллектор добывающей скважины смеси высоковязкой нефти и товарной угленосной нефти образуется протяженный водоизоляционный экран, ограничивающий поступление воды. Экран закрепляют закачкой высоковязкой нефти с температурой 40-70°C, образующей высоковязкий нетекучий в пористой среде барьер, который препятствует вытеснению из пласта смеси высоковязкой и низковязкой товарной угленосной нефти, сформировавшей протяженный водоизоляционный экран. Высоковязкую нефть для изоляционных работ получают в цехе комплексной подготовки нефти (ЦКПН), температура на выходе из ЦКПН составляет 70°C, и вязкость такой нефти в интервале от 40 до 70°C позволяет прокачать ее по трубам НКТ. Для обеспечения текучести высоковязкой нефти в скважину предварительно закачивают пресную воду с температурой 70-80°C, которая прогревает колонну НКТ, что позволяет беспрепятственно прокачать в изолируемый интервал высоковязкую нефть, где при остывании она становится нетекучей и препятствует вытеснению из изолируемого интервала водоизоляционного экрана, образованного смесью высоковязкой и низковязкой товарной угленосной нефти. Закачивание других закрепляющих материалов, например цемента, нетехнологично, поскольку в случае отверждения последнего в горизонтальном стволе он займет нижнюю половину ствола, а разбуривание цемента не полностью заполненного ствола приведет к уходу долота от основного ствола, что нарушит конструкцию скважины.

Смесь высоковязкой нефти и товарной угленосной нефти готовят заблаговременно. Объем, а также вязкость данной смеси выбирают в зависимости от приемистости изолируемого интервала, что представлено в таблице 1. Условную вязкость замеряют на воронке ВБР-1 при 20°C.

Таблица 1
Объем смеси высоковязкой нефти и товарной угленосной нефти и ее условная вязкость в зависимости от приемистости изолируемого интервала
Удельная приемистость, м3/(ч·МПа), в пределах Условная вязкость, с Объем смеси, м3
1,5-5,0 300 15-20
5,0-12,0 500 20-30
12,0 и более 700 30-40

Смешивают высоковязкую нефть и товарную угленосную нефть в выбранных объемных соотношениях и затаривают в автоцистерны. На скважине цементировочным агрегатом ЦА-320М в изолируемый интервал последовательно закачивают смесь высоковязкой нефти и товарной угленосной нефти, после чего закачивают пресную воду с температурой 70-80°C в объеме, равном объему колонны НКТ, далее для закрепления закачивают высоковязкую нефть с температурой 40-70°C. Для подогрева высоковязкой нефти в случае ее остывания ниже 40°C и подогрева воды до температуры 70-80°C на скважине используют паропередвижные установки (ППУ). Для предотвращения преждевременного остывания пресной воды и соответственно высоковязкой нефти можно также использовать термоизолированные трубы. Скважину оставляют на 24 часа - время, необходимое для остывания высоковязкой нефти. Эффект ограничения притока воды от применения предлагаемого способа достигается за счет образования водоизоляционного экрана, созданного смесью высоковязкой нефти и товарной угленосной нефти, и последующего его закрепления высоковязкой нефтью, которая после остывания до температуры пласта приобретает высокую вязкость и предотвращает вытеснение водоизоляционного экрана из пласта.

В лабораторных условиях определяли оптимальные соотношения высоковязкой и товарной угленосной нефти с целью получения прокачиваемой смеси с необходимой вязкостью. Условная вязкость высоковязкой нефти с понижением температуры увеличивается с 310 с при 70°C до 2250 с при 20°C. Для снижения вязкости высоковязкой нефти в нее добавляли товарную угленосную нефть, имеющую малую вязкость. Вязкость смеси высоковязкой нефти и товарной угленосной нефти измеряли на воронке ВБР-1. В таблице 2 приведены результаты исследований вязкости образцов смеси высоковязкой нефти, содержащей от 5 до 80 об.% товарной угленосной нефти.

Таблица 2
Условная вязкость высоковязкой нефти и смеси высоковязкой и товарной угленосной нефти при 20°C
№ опыта Объем высоковязкой нефти, % Объем товарной угленосной нефти, % Условная вязкость смеси высоковязкой и товарной угленосной нефти, с
1 100 - 2250
2 - 100 40
3 95 5 1800
4 80 20 700
5 60 40 500
6 50 50 400
7 40 60 300
8 20 80 85

На основе данных таблицы 2 можно сделать вывод, что смешение высоковязкой нефти и товарной угленосной нефти в соотношении от 80:20 до 40:60 снижает ее условную вязкость в несколько раз: от 700 до 300 с, что делает возможным закачку такой смеси по НКТ.

Испытание предлагаемого способа и наиболее близкого его аналога проводили на моделях пласта длиной 30 см, внутренним диаметром 2,7 см, заполненных измельченным мрамором и имитирующих карбонатный пласт. Результаты модельных испытаний предлагаемого способа и наиболее близкого его аналога представлены в табице 3.

Таблица 3
Результаты модельных испытаний предлагаемого способа и наиболее близкого его аналога
Содержание компонентов по заявляемому способу Коэффициент изоляции через 2 сут, % Коэффициент изоляции через 6 мес., % Коэффициент изоляции через 1 год, %
№ опыта Эмульсия Пресная вода, темпера
тура °C
Высоковяз
кая нефть, об.%
Температура высоковязкой нефти, °C**
Высоковяз
кая нефть, об.%
Товарная угленосная нефть, об.%
1 95* 5 60 100 30 - -
2 80 20 70 100 40 100 98 95
3 60 40 75 100 70 100 96 93
4 50 50 80 100 50 100 96 89
5 40 60 72 100 65 100 96 90
6 30 70 65 100 35 65 30 -
Содержание компонентов по наиболее близкому аналогу предлагаемого способа, об.% Коэффициент изоляции через 2 сут, % Коэффициент изоляции через 6 мес., % Коэффициент изоляции через 1 год, %
№ опыта «Силор НЧ» Нефть Вода «Силор НЧ» 10%-ный р-p NaOH
1 2 45 53 85 15 100 96 84
2 3 30 67 80 20 100 98 88
*При таком количестве высоковязкой нефти смесь является непрокачиваемой.
**При температуре ниже 40°C высоковязкая нефть является непрокачиваемой.

С моделями карбонатного пласта производили следующие операции (пример 3 из таблицы 3. Остальные примеры, представленные в таблице 3, проводили аналогично):

- закачивали товарную угленосную нефть, после этого ее вытесняли водой с минерализацией от 1 до 270 г/л и плотностью 1000-1200 кг/м3 до 90-98%-ного обводнения;

- по схеме «скважина - пласт» закачивали смесь высоковязкой нефти и товарной угленосной нефти в соотношении 60:40 при температуре 20°C. Далее закачивали пресную воду с температурой 75°C и высоковязкую нефть с температурой 70°C, после чего модель оставляли на 24 ч для полного образования тампонирующего материала в модели пласта;

- после этого проводили прокачку воды, определяли проницаемость по формуле Дарси и через 2 суток, 6 месяцев и 1 год вычисляли коэффициент изоляции, который характеризует степень закупоривания пор, снижение проницаемости модели и является мерой результативности изоляционных работ. Коэффициент изоляции модели через 1 год составил 93%, что превосходит результаты наиболее близкого аналога предлагаемого способа.

Из результатов модельных испытаний предлагаемого способа следует, что использование в смеси высоковязкой и товарной угленосной нефти в соотношении 95:5 и 30:70 (опыты №№1 и 6) не дает положительного эффекта, поэтому был выбран оптимальный диапазон концентраций реагентов, в который вошли опыты от №2 до №5 - с высокими коэффициентами изоляции. В результате опытов установлено, что оптимальными являются смеси высоковязкой и товарной угленосной нефти в соотношении от 80:20 до 40:60 при температуре 20°C, а оптимальная температура высоковязкой нефти, при которой она имеет хорошую текучесть и прокачиваемость, составляет 40-70°C. Температурный интервал 70-80°C для пресной воды выбран на основе практических данных, так как при закачивании воды с температурой ниже этого интервала трубы НКТ прогреваются недостаточно для поддержания температуры, предохраняющей от преждевременного остывания высоковязкой нефти с температурой 40-70°C при ее закачивании.

Замеряли электрическую стабильность смеси высоковязкой и товарной угленосной нефти на приборе ИГЭР-1 по ТУ 39-156-76 (таблица 3, опыты №№2, 3, 4 и 5), которая составила 600, 520, 450 и 390 В соответственно, что превосходит электрическую стабильность эмульсий наиболее близкого аналога предлагаемого способа - 140 В.

Результаты лабораторных испытаний позволяют сделать вывод, что предлагаемый способ эффективнее своего близкого аналога по электрической стабильности и продолжительности водоизолирующего эффекта.

Пример практического применения. Приемистость скважины составляет 576 м3/сут при давлении 80 атм (удельная приемистость 3 м3/(ч·МПа), интервал перфорации 828-1044 м. Работы по ограничению водопритока проводили в следующей последовательности. Определили герметичность эксплуатационной колонны. Привезли на скважину 20 м3 смеси, состоящей из 8 м3 высоковязкой нефти Ашальчинского месторождения и 12 м3 товарной угленосной нефти с условной вязкостью 300 с (в соотношении 40:60). В скважину при открытой затрубной задвижке последовательно закачали 2 м3 смеси высоковязкой нефти Ашальчинского месторождения и товарной угленосной нефти, закрыли затрубную задвижку и закачали 18 м3 оставшейся смеси. Далее в скважину закачали 4 м3 пресной воды с температурой 72°C и 8 м3 высоковязкой нефти Ашальчинского месторождения с температурой 65°C и условной вязкостью 350 с. Продавили технологической жидкостью объемом 4 м с плотностью 1175 м3/кг и оставили скважину на реагирование на 24 ч, после освоения скважины обводненность снизилась на 18%, а прирост добычи нефти увеличился на 3,5 т/сут.

Остальные примеры выполнили аналогично, результаты представлены в таблице 3. Таким образом, предлагаемый способ позволяет повысить эффективность водоизоляционных работ за счет использования смеси высоковязкой нефти и товарной угленосной нефти для создания водоизоляционного экрана и высоковязкой нефти для его закрепления.

Способ ограничения водопритока в горизонтальной скважине с обводненными карбонатными коллекторами, включающий закачку эмульсии в изолируемый интервал нефтедобывающей скважины, отличающийся тем, что предварительно определяют приемистость изолируемого интервала скважины, далее в скважину последовательно закачивают эмульсию, в качестве которой используют смесь высоковязкой нефти и товарной угленосной нефти, и при открытой затрубной задвижке закачивают горячую пресную воду с температурой 70-80°C в объеме, равном объему колонны насосно-компрессорных труб, а полученный водоизоляционный экран закрепляют высоковязкой нефтью с температурой 40-70°C.



 

Похожие патенты:
Предложение относится к нефтегазодобывающей промышленности и предназначено для ремонтно-изоляционных работ в нефтяных и газовых скважинах при восстановлении герметичности эксплуатационной колонны и ликвидации заколонных перетоков.

Изобретение относится к нефтедобывающей промышленности, в частности к осадко- и гелеобразующим реагентам на основе водорастворимых акриловых полимеров, предназначенным для снижения водопроницаемости неоднородных нефтяных пластов и ограничения притока вод в продуктивные скважины при разработке нефтяных месторождений заводнением.

Группа изобретений относится к способам и композициям для уменьшения количества воды, выводимой из подземных пластов, и, более конкретно, к способам и композициям для обработки подземного пласта.
Изобретение относится к нефтедобывающей промышленности и может найти применение при блокировании и ограничении водопритока из пласта в добывающую скважину как в терригенных, так и в карбонатных коллекторах.

Изобретение относится к строительству нефтяных, газовых и водяных скважин, в частности к тампонажным смесям, предназначенным для крепления обсадных колонн, разобщения водоносных, нефтегазоносных пластов и изоляции зон интенсивного (полного) поглощения.

Изобретение относится к способу цементирования подземной формации и к составу цементной композиции, используемой в указанном способе. В способе цементирования подземной формации, вводят цементную композицию в подземную формацию, причем цементная композиция содержит: портландцемент, измельченный с пережженным сланцем, цементную пыль, природный пуццолан и воду; и позволяют цементной композиции застывать.

Изобретение относится к горному делу и может быть использовано для дегазации газоносных горных пород при подземной добыче полезных ископаемых, преимущественно угля.
Изобретение относится к нефтедобывающей промышленности, в частности к способам изоляции зон водопритока в скважине с применением кремнийорганических соединений, а также может использоваться для изоляции водопритока в добывающих скважинах.

Изобретение относится к рабочим жидкостям для подземного ремонта буровой скважины. Способ ремонта буровой скважины включает размещение обслуживающего скважинного флюида, содержащего пакет поверхностно-активных веществ (ПАВ), включающий катионное ПАВ и анионное ПАВ в скважине.

Предложение относится к ремонтно-изоляционным работам на скважинах нефтяных месторождений, в частности изоляции поглощающих пластов, способам восстановления крепи скважин.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для ремонтно-изоляционных работ, увеличения нефтеотдачи пластов. Способ изоляции пластов цементно-силикатными растворами включает нагнетание в прискважинную зону пласта цементного раствора с ускорителем схватывания. Тампонирование осуществляют циклической последовательно-чередующейся закачкой в скважину растворов силиката натрия (массовая доля от 20 до 45%, силикатный модуль более 2,5) с наполнителем - древесной мукой (массовая доля не более 3%) и цемента, затворенного на водном растворе силиката натрия (массовая доля не более 5%) в соотношении к цементу равным 0,5. Причем растворы силиката натрия и цемента при закачке разделяют буфером - пресной водой в объеме от 10 до 15% от объема технологических труб, спущенных в скважину. Объемное соотношение цементного раствора к раствору силиката натрия составляет от 0,3 до 0,7. Техническим результатом является повышение качества изоляции пластов независимо от степени проницаемости пласта и размеров проводящих каналов, сокращение сроков бурения и ремонта осложненных скважин, увеличение добычи углеводородного сырья. 1 ил., 1 табл.

Изобретение относится к нефтегазодобывающей промышленности, может быть использовано при изоляции водопритоков в скважину. Способ изоляции водопритоков в скважину включает определение приемистости скважины при максимальном давлении, закачку в пласт гелеобразующего состава с последующим докреплением нефильтрующимся в пласт составом. Продавливают указанные составы с одновременным контролем давления на устье скважины. Осуществляют технологическую выдержку скважины под давлением. Вымывают излишки нефильтрующегося в пласт состава из колонного пространства обратной промывкой с противодавлением. В качестве гелеобразующего используют состав при следующем соотношении ингредиентов, мас.%: биополимер ксантанового ряда 0,4-0,6, триэтаноламинтитанат-1 0,5-0,8, вода - остальное, в объеме Vго, рассчитываемом по приведенному математическому выражению. Закачку ведут с постоянным расходом при давлении закачки не менее 0,7 давления приемистости пласта. В качестве нефильтрующегося в пласт состава используют гелеобразующий состав, в который дополнительно вводят наполнитель - мел химически осажденный, при следующем соотношении ингредиентов, мас.%: биополимер ксантанового ряда 0,4-0,6, триэтаноламинтитанат-1 0,5-0,8, мел химически осажденный 5-10, вода - остальное. Техническим результатом является повышение технологичности и эффективности изоляции водопритоков в скважину за счет создания более прочного водоизоляционного экрана. 1 пр., 3 табл.

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам герметизации эксплуатационной колонны скважины. Способ герметизации эксплуатационной колонны скважины включает спуск в эксплуатационную колонну насосно-компрессорных труб (НКТ) и установку открытого конца НКТ на глубине ниже интервала нарушения. Заполняют скважину технологической жидкостью с выходом технологической жидкости из кольцевого пространства на поверхность. Определяют приемистость интервала нарушения. После определения приемистости выбирают двухкомпонентный тампонажный состав, определяют его плотность и соотношение компонентов тампонажного состава. Создают циркуляцию технологической жидкости с температурой 5-10°С и плотностью меньше или больше плотности закачиваемого двухкомпонентного тампонажного состава на 5% до выравнивания температуры и плотности в НКТ и кольцевом пространстве за НКТ. Готовят двухкомпонентный тампонажный состав в непрерывном потоке с подачей его в емкость и одновременно с подачей в непрерывном режиме закачивают его в НКТ и продавливают технологической жидкостью с температурой 5-10°С и плотностью меньше или больше плотности закачиваемого двухкомпонентного тампонажного состава на 5% до равновесия столбов жидкости в НКТ и кольцевом пространстве за НКТ. Поднимают НКТ до верхней границы двухкомпонентного тампонажного состава с последующей контрольной срезкой излишков двухкомпонентного тампонажного состава. Производят закачку двухкомпонентного тампонажного состава в интервал нарушения с расходом не более 2 л/с. При достижении давления на 10% ниже предельно допустимого давления на эксплуатационную колонну закачку останавливают и по мере снижения давления производят периодическое подкачивание двухкомпонентного тампонажного состава в интервал нарушения до получения нулевой приемистости. Далее подкачивание прекращают и плавно снижают давление в стволе скважины до 40-60% от достигнутого в процессе подкачки. Техническим результатом является повышение эффективности ремонтно-изоляционных работ при герметизации эксплуатационных колонн, повышение точности контроля закачки запланированного объема тампонажного состава. 1 ил.

Изобретение относится к газовой промышленности и может быть использовано для крепления призабойной зоны пескопроявляющих газовых скважин, в том числе используемых для подземного хранения газа. Способ крепления призабойной зоны пласта с неустойчивыми породами включает создание фильтра путем приготовления и закачки отверждающегося полимерного состава в призабойную зону. При этом перед и после указанным составом закачивается растворитель, объем которого составляет 10-30% об. от полимерного состава. После чего скважину продувают потоком газа и производят выдержку на реагирование и отверждение состава. Причем качестве отверждающегося полимерного состава используется смесь кремнийорганической смолы и растворителя Химеко-П - 95,0-98 мас.%: отвердитель АГМ-9 - 5,0-2,0 мас.%, представляющий собой аминопропилтриэтоксисилан. В качестве растворителя используется ксилол или смесь кубовых остатков ректификации КОРЭ 0,0-100 мас.% и 100,0-0,0 мас.% ароматического растворителя Нефрас А. Техническим результатом является повышение эффективности способа. 1 ил., 1 табл.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для изоляции зон поглощения или ограничения водопритока при ремонте скважин, для создания водонепроницаемого экрана при разобщении водонасыщенных и нефтенасыщенных пластов, а также для выравнивания профилей приемистости нагнетательных скважин. Полимерный состав для внутрипластовой водоизоляции включает гидролизованный в щелочи акрилсодержащий полимер гивпан и хлористый натрий. При этом состав содержит в качестве добавки неионогенное поверхностно-активное вещество (ПАВ) с гидрофобными свойствами - гидрофобизатор НГ-1, представляющий собой смесь продукта реакции ненасыщенных жирных кислот с аминами и их производными с растворителями и функциональными добавками. Состав имеет следующее соотношение компонентов: 3-10 мас.% гивпана, 1-5 мас.% гидрофобизатора НГ-1, 0-10 мас.% хлористого натрия и водно-щелочной раствор. Техническим результатом является повышение проникающей и водоизолирующей способности полимерного состава в условиях неоднородных по проницаемости водо- и нефтегазонасыщенных пород-коллекторов. 4 пр., 1 табл.

Изобретение относится к строительству нефтяных и газовых скважин, в частности к тампонажным смесям, предназначенным для крепления обсадных колонн, разобщения водоносных, нефтегазоносных пластов и изоляции зон интенсивного (полного) поглощения в скважинах с высоким содержанием сероводорода. Тампонажный облегченный серосодержащий раствор включает: 9,60-36,30 мас.% портландцемента, 12,09-28,88 мас.% высоководопотребного тонкомолотого вяжущего с удельной поверхностью 20000-25000 см2/г «Микродур», 9,60-12,09 мас.% дисперсной серы фракцией до 20 мк, 39,40-51,80 мас.% воды, 0,01-0,05 мас.% нитрилотриметиленфосфоновой кислоты (НТФ), 0,07-0,11 мас.% суперпластификатора С-3. Техническим результатом является повышение эффективности разобщения водоносных и нефтеносных пластов, изоляции высокопроницаемых пластов с интенсивными (катастрофическими) поглощениями бурового раствора. 1 табл.

Изобретение относится к нефтегазовой промышленности, в частности к области ремонта и ликвидации скважин в условиях соленосных отложений с присутствием сероводорода, а именно при креплении обсадных колонн, установки отсекающих мостов и создании флюидоупорных изоляционных покрышек. Гипсомагнезиальный тампонажный раствор содержит 4,01-5,13 масс.% хлорида кальция СаСl2, 7,56-9,68 масс.% хлорида бария ВаСl2, 8,12-11,17 масс.% хлорида магния MgCl2·6Н2O (плотностью 1,32 г/см3), 23,96-29,89 масс.% сульфата алюминия Al2(SO4)3·18H2O (сернокислого глинозема), 1,82-2,33 масс.% окиси магния MgO (каустического магнезита), 24,81-31,77 масс.% воды, 9,34-29,18 масс.% микродура, 0,36-0,46 масс.% суперпластификатора С-3, 0,18-0,23 масс.% НТФ. Техническим результатом является расширение технологических возможностей тампонажного раствора и области его применения, а также повышение эффективности и надежности проводимых изоляционных и ремонтных работ. 1 табл.
Изобретение относится к нефтедобывающей промышленности, в частности к способам ограничения водопритока в скважину с использованием жидкого стекла (силиката натрия), и может быть использовано при проведении водоизоляционных работ в скважине. Способ ограничения водопритока в скважину включает смешение жидкого стекла с регулятором гелеобразования и закачку в скважину. Предварительно готовят 0,03-0,05%-ный раствор полиакриламида DP9-8177, добавляют его в жидкое стекло и перемешивают до получения однородной смеси. Затем последовательно закачивают полученную смесь и регулятор гелеобразования, разделяя их буфером из пресной воды, при следующем соотношении реагентов, 20-50% об. жидкого стекла, 10-15% об. раствора полиакриламида DP9-8177, 40-65% об. регулятора гелеобразования. В качестве регулятора гелеобразования используют 10-20%-ный раствор кальция хлористого технического или 10-20%-ный раствор POLYPACS-30LF (полиалюминия хлорид). Техническим результатом является повышение эффективности водоизоляционных работ за счет ограничения водопритока в скважину полимерной массой с более высокой изолирующей способностью и продолжительности эффекта. 2 табл.
Изобретение относится к нефтегазодобывающей промышленности, в частности к составам для изоляции водопритока в скважине. Состав для изоляции водопритока в скважине включает 17-59 мас.% реагента «Витам», 20-40 мас.% силиката натрия, 1-3 мас.% древесной муки и 20-40 мас.% 10%-ного раствора полиалюминия хлорида. Техническим результатом является повышение изолирующей способности состава за счет повышения устойчивости образующегося геля. 2 табл.

Изобретение относится к горной и нефтегазодобывающей промышленности и может быть использовано для проведения изоляционных работ при строительстве скважины. Способ изоляции водопроявляющих пластов при строительстве скважины включает вскрытие бурением водопроявляющих пластов. Затем пробуривают зумпф глубиной, обеспечивающей размещение в нем компоновки в процессе расширения интервала водопроявляющих пластов. Извлекают из скважины бурильную колонну труб с долотом. Затем на устье скважины нижний конец колонны технологических труб оборудуют компоновкой, включающей расположенные друг за другом снизу вверх расширитель, обеспечивающий расширение ствола скважины в интервале водопроявляющего пласта не менее чем в 1,6 раза, и гидромониторную насадку. Спускают колонну технологических труб с компоновкой в скважину, пока резцы расширителя не окажутся напротив верхней границы интервала расширения. Производят расширение всего интервала водопроявляющих пластов. Затем сбрасывают в колонну труб шар диаметром, не превышающим внутреннего диаметра колонны технологических труб. Создают избыточное давление в колонне технологических труб. После чего шар отсекает расширитель и открывается отверстие гидромониторной насадки. Затем доспускают колонну труб так, чтобы отверстия гидромониторной насадки находились напротив верхней границы интервала водопроявляющих пластов и производят гидромониторную обработку интервала расширения водопроявляющих пластов до нижней границы интервала расширения. Извлекают колонну технологических труб и спускают в скважину до нижней границы интервала расширения водопроявляющих пластов колонну заливочных труб. Промывают скважину, после чего через колонну заливочных труб закачивают тампонажный раствор в ствол скважины до кровли водопроявляющих пластов. Поднимают колонну заливочных труб на 5 м выше кровли водопроявляющих пластов, промывают ее, создают противодавление на водопроявляющие пласты и оставляют скважину на ожидание затвердевания тампонажного раствора. При этом тампонажный раствор готовят смешением 74,1-87 мас. ч. ацетонформальдегидной смолы, 4,3-11,1 мас. ч. эпоксидной смолы и 8,7-14,8 мас. ч. полиэтиленполиамина. Техническим результатом является повышение эффективности изоляции водопроявляющих пластов. 1 табл., 4 ил.
Наверх