Способ получения сварного шва при сварке или наплавке изделий из трудно свариваемых металлов и сплавов



Способ получения сварного шва при сварке или наплавке изделий из трудно свариваемых металлов и сплавов
Способ получения сварного шва при сварке или наплавке изделий из трудно свариваемых металлов и сплавов
Способ получения сварного шва при сварке или наплавке изделий из трудно свариваемых металлов и сплавов
Способ получения сварного шва при сварке или наплавке изделий из трудно свариваемых металлов и сплавов
Способ получения сварного шва при сварке или наплавке изделий из трудно свариваемых металлов и сплавов

 


Владельцы патента RU 2521922:

Открытое акционерное общество "Научно-исследовательский институт стали" (ОАО "НИИ стали") (RU)

Изобретение может быть использовано при сварке изделий из трудно свариваемых сплавов, в частности, в труднодоступных местах изделий и при сварке на монтаже. Последовательно получают участки сварного шва возвратным каскадным перемещением электрода или сварочной головки. Получают первый участок сварного шва длиной от 40 до 60% каскадного шага сварки. Электрод или сварочную головку возвращают в точку начала сварки первого участка сварного шва и сваривают второй участок длиной, равной каскадному шагу. При этом первую его часть получают повторным проходом по предыдущему участку сварного шва, а вторую часть получают на поверхности изделия с образованием переходной части. Далее электрод или сварочную головку возвращают на расстояние, равное длине второй части предыдущего участка сварного шва, и получают последующий участок сварного шва длиной, равной каскадному шагу сварки, путем повторного прохода по второй части предыдущего участка сварного шва и по поверхности изделия. Процесс сварки или наплавки повторяют необходимое число раз до получения сварного шва заданной длины. Последний участок сварного шва с остаточной длиной получают повторным проходом по второй части предыдущего участка. Способ позволяет уменьшить зону термического влияния и увеличить производительность сварки за счет отсутствия необходимости охлаждения шва в процессе сварки. 5 ил., 5 пр.

 

Изобретение относится к области сварочного производства, а именно к способам сварки или наплавки с возвратно-поступательным движением электрода или сварочной головки. Возвратно-поступательный способ преимущественно может применяться для сварки различных сложных по форме и толщине изделий из трудносвариваемых сплавов черных и цветных металлов.

Известен аналог заявляемого способа - изобретение «Способ наплавки деталей» (см. а.с. SU 239463 А, с приоритетом 30.06.1967 г., МПК B23K 9/04). В известном способе наплавку ведут плавящимся электродом обратно-ступенчатым методом без подслоя и послойной зачистки шлака, отдельными участками, стыкующимися между собой под углом 45 градусов к вертикали, при этом наплавку каждого участка осуществляют с предварительным и сопутствующим подогревом и с принудительным замедленным охлаждением наплавленной поверхности. Недостатком этого способа является то, что этот способ требует предварительный подогрев, последующее его охлаждение и не может использоваться для сварки.

Известен ближайший аналог (прототип) - способ сварки каскадом, раскрытый в Словаре-справочнике под ред. К.К. ХРЕНОВА, издательство Наукова думка, Киев, 1974, с.133. Сварка каскадом - многослойная ручная сварка металлическим электродом, характеризуемая последовательным наложением частично перекрывающих друг друга слоев небольшой протяженности, причем так, чтобы каждый последующий слой накладывался на еще не успевший остыть предыдущий, а направление сварки отдельных слоев было противоположно направлению шва в целом. Сварка каскадом рассчитана на уменьшение сварочных деформаций по сравнению с их величиной при обычном способе непрерывного наложения слоев. Недостатком данного способа является большая зона термического влияния. В этой зоне происходит отпуск металла, подкалка, перекристаллизация структуры по всей длине сварного шва. Увеличение зоны снижает служебные свойства изделия, то есть металл в этой области обладает большей хрупкостью, меньшей прочностью и, следовательно, с большей вероятностью происходит разрушение при воздействии нагрузки. Дополнительным недостатком является более сложная укладка сварных швов.

Задачей, на решение которой направлено предлагаемое изобретение, является уменьшение зоны термического влияния, увеличение производительности за счет отсутствия необходимости охлаждения шва в процессе сварки, простота укладки сварного шва.

Указанная задача достигается тем, что в предлагаемом способе получения сварного шва при сварке или наплавке трудносвариваемых металлов и сплавов, включающем последовательное получение участков сварного шва с возвратно-каскадным перемещением электрода или сварочной головки, согласно изобретению при перемещении электрода или сварочной головки вначале получают первый участок сварного шва длиной от 40 до 60% каскадного шага сварки, затем электрод или сварочную головку возвращают в точку начала сварки первого участка сварного шва и сваривают второй участок сварного шва длиной, равной каскадному шагу, при этом первую его часть получают повторным проходом по предыдущему участку сварного шва, а вторую его часть получают на поверхности изделия с образованием переходной части между первой и второй частями упомянутого участка сварного шва, далее электрод или сварочную головку возвращают на расстояние, равное длине второй части предыдущего участка сварного шва, и получают последующий участок сварного шва длиной, равной каскадному шагу сварки, путем повторного прохода по второй части предыдущего участка сварного шва и по поверхности изделия, после чего процесс сварки или наплавки повторяют необходимое число раз до получения сварного шва заданной длины, при этом последний участок сварного шва с остаточной длиной получают повторным проходом по второй части предыдущего участка.

Каскадный шаг устанавливается экспериментальным способом. Размер каскадного шага различных видов сварки (ручная, механизированная, неплавящимся электродом, газовая и др.) зависит от технических характеристик этих видов сварки и технологических требований, предъявляемых к изделию, например:

- температурного режима (при увеличении размера детали из-за увеличения тепла, поглощаемого изделием, необходимо уменьшить длину шага);

- состава металла изделия (удельные теплопроводность и теплоемкость, химический состав, определяющий склонность к холодным трещинам): при увеличении теплопроводности основного металла, величину шага уменьшают;

- местоположения шва (в разделке или на поверхности);

- конфигурации шва и пространственной формы изделия, например, в зависимости от толщины стенок и вида их соединения в пространстве;

- присадочного материала, который выбирается в соответствии с техническими условиями для свариваемого материала, при этом присадочный и основной материалы могут быть как одинаковыми по химическому составу, так и разными (см. ниже приведенные примеры, реализующие предложенный способ).

Для равномерного наложения шва каждая часть участка выбирается длиной от 40 до 60% каскадного шага сварки.

Переходная часть участка меняется технологически в зависимости от различных параметров, относящихся к процессу сварки (геометрических, физических и др.), например:

- разделки (формы, зазора);

- вида сварки (ручная, механизированная, неплавящимся электродом, газовая и др.) и установленных режимов;

- пространственного положения;

- свариваемого и присадочного материала;

- размера свариваемой детали;

- установившегося режима и др.

Для реализации предложенного способа используется предпочтительно электродуговая сварка, но могут быть применены и другие виды сварки, такие как газовая, с использованием плазмотронов и так далее.

Перечисленные выше признаки являются новыми и существенными, так как они достаточны для того, чтобы отличить предлагаемый способ от аналогов и позволяют достичь положительный эффект, а именно:

1) уменьшить зону термического влияния за счет более равномерного распределения тепла по длине шва;

2) увеличить производительность за счет отсутствия необходимости охлаждения шва в процессе сварки;

3) упростить наложение шва за счет более простой укладки.

Пример реализации предлагаемого способа иллюстрируется следующими фигурами:

Фиг.1 - корневой шов;

Фиг.2 - сечение корневого шва;

Фиг.3 - многопроходный шов, состоящий из пяти швов;

Фиг.4 - сечение многопроходного шва;

Фиг.5 - поперечное сечение наплавки, состоящей из пяти швов.

Примером реализации предлагаемого способа получения сварного шва будет осуществление действий в следующей последовательности: вначале варят первый участок 1, состоящий из одной части 1a, составляющей по длине от 40 до 60% заданного размера каскадного шага t, затем электрод в отдельном держателе или автоматическую сварочную головку, в которой установлен электрод, или сварочную головку с непрерывной подачей сварочной присадочной проволоки возвращают в исходное положение (точку М), то есть точку начала сварки первого участка, из которой начинается сварка последующего участка 2, начиная с части 2a, длина которой от 40 до 60% каскадного шага t, и производят сварку участка 2 повторным каскадным проходом по самому первому участку 1 до конца части 1a. Далее начинается переходная часть 2b участка 2, которая является переходом с первого участка 1 на поверхность, по которой накладывается сварной шов (поверхность изделия). Затем начинается часть 2 с участка 2, сваренная по поверхности изделия. Вся длина участка 2 сварного шва будет иметь длину, равную каскадному шагу t, возвратно-каскадного движения электрода или сварочной головки. Таким образом, часть 2 с указанного участка 2 сварного шва для очередного следующего возвратно-каскадного участка 3 шва станет предыдущей, а часть 3a участка 3 сварного шва будет последующей, часть 3b является переходной частью с части 3a на часть 3c участка 3. Затем электрод возвращают в точку L, которая является конечной точкой сварки участка 3a и находится на стыке участков 3a и 3b, по длине участка 3c наваривают последующий возвратно-каскадный участок 4, начиная с части 4a, сваренной повторным каскадным проходом по предыдущей части 3c возвратно-каскадного участка 3, и остальное варят по переходной части 4b и по части 4c, которая варится по поверхности изделия в направлении шва; после чего процесс сварки повторяют необходимое число раз до полной сварки необходимого шва. При этом на следующем этапе сварки участок 4c соответствующей частью 4c становится предыдущим, а участок 5 шва с соответствующими частями 5a, 5b и 5c последующим. Процесс сварки шва заканчивается следующим образом: участок 6 будет иметь части 6a, 6b и 6c, а конечный участок 7 будет состоять только из одной части, полученной повторным каскадным проходом с созданием части 7а, сваренной по поверхности предыдущей части 6c участка 6, с соответствующей оставшейся длиной части каскадного шага t. Сварной шов оканчивается в точке N.

Аналогично способу получения сварного шва при сварке изделий производится способ получения сварного шва при наплавке изделий. Различие этих способов в том, что при сварке происходит соединение деталей, а при наплавке происходит наплавление металла на поверхность шва или изделия. Например, наплавка на зоны (зубцы или режущие кромки) ковша экскаватора, подвергающиеся износу, наплавка на бандажи железнодорожных пар (колес) вагонов, на вагонные сцепки, восстановление различных деталей машин и механизмов (валы, шестерни, корпуса редукторов, матрицы и пуансоны кузнечного оборудования и другое).

В качестве вариантов реализации предложенного способа могут быть рассмотрены следующие примеры.

Пример 1. Указанный способ сварки используют при полуавтоматической сварке стальной жесткой пробы. Испытуемый материал: сталь с содержанием углерода 0,4% толщиной 20 мм, электрод в виде проволоки 0,8Х20Н9Г7Т диаметром 1,4 мм. После выдержки результат положительный (трещин нет). При сварке одним швом проба после выдержки в несколько дней давала холодные трещины, результат отрицательный (холодные трещины разного размера). Аналогичные положительные результаты могут быть получены при использовании двухдуговой сварки. При этом оборудование, использованное для сварки, будет значительно более сложным по конструкции, а работа с этим оборудованием имеет ограниченные области применения, намного более сложная и трудоемкая, требующая высококвалифицированного персонала, что можно сказать и о последующих примерах.

Пример 2. Такие же пробы были заварены ручной сваркой штучными электродами типа Э-10Х20Н9Г6С диаметром 4 мм. Полученные данные аналогичны результатам в примере 1. Предлагаемый способ получения сварного шва дает положительные результаты, при сварке одним швом - отрицательные.

Пример 3. Произведена сварка трудносвариваемого алюминиевого сплава ПАС-1 толщиной 25 мм ручной аргонно-дуговой сваркой неплавящимся электродом с присадочной проволокой АМг5 диаметром 4 мм на жесткой пробе типа «Труба». После выдержки результат положительный (трещин нет). При сварке одним швом получены отрицательные результаты, т.е. холодные трещины и расслоения торцевых деталей пробы.

Пример 4. Произведена сварка трудносвариваемого алюминиевого сплава АБТ-102 толщиной 22 мм полуавтоматической сваркой в среде аргона, электрод в виде проволоки из сплава АМг5 диаметром 1,2 мм. Результат положительный (трещин нет).

Пример 5. Наплавка держателя пластин рабочего органа строительной машины для разрушения бетонных конструкций зданий из стали марки 45 проволокой Св-04Х22Н8М3ТЮ диаметром 1,4 мм. Результат положительный (трещин нет). При сварке одним швом получены отрицательные результаты, то есть появлялись холодные трещины.

Все сравнения результатов предлагаемого и традиционного методов проводились в одинаковых условиях, то есть на одних и тех же режимах сварки и однотипных деталях. Предлагаемый способ получения сварного шва дает положительные результаты, при сварке одним швом - отрицательные результаты.

Предлагаемый способ получения сварного шва расширяет функциональные возможности использования возвратно-поступательного метода сварки или наплавки. Он окажется полезным при ремонте сварных соединений из трудносвариваемых металлов и сплавов. Его использование возможно при сварке в труднодоступных местах изделий и при сварке на монтаже, где невозможно использовать громоздкое и сложное сварочное оборудование. Этот способ дает хороший результат там, где невозможно сделать после сварки термическую обработку. Предложенный способ оптимален при больших длинах сварного шва трудносвариваемых металлов и сплавов, так как заполнение шва осуществляется постепенно, зона термического влияния минимальная, не требуется охлаждение и происходит меньший отпуск металла по всей длине сварного шва, в связи с этим возникает меньшая деформации изделия и увеличивается производительность за счет простоты наложения шва.

Способ получения сварного шва при сварке или наплавке изделий из трудно свариваемых металлов и сплавов, включающий последовательное получение участков сварного шва с возвратным каскадным перемещением электрода или сварочной головки, отличающийся тем, что при перемещении электрода или сварочной головки вначале получают первый участок сварного шва длиной от 40 до 60% каскадного шага сварки, затем электрод или сварочную головку возвращают в точку начала сварки первого участка сварного шва и сваривают второй участок сварного шва длиной, равной каскадному шагу, при этом первую его часть получают повторным проходом по предыдущему участку сварного шва, а вторую его часть получают на поверхности изделия с образованием переходной части между первой и второй частями упомянутого участка сварного шва, далее электрод или сварочную головку возвращают на расстояние, равное длине второй части предыдущего участка сварного шва, и получают последующий участок сварного шва длиной, равной каскадному шагу сварки, путем повторного прохода по второй части предыдущего участка сварного шва и по поверхности изделия, после чего процесс сварки или наплавки повторяют необходимое число раз до получения сварного шва заданной длины, при этом последний участок сварного шва с остаточной длиной получают повторным проходом по второй части предыдущего участка.



 

Похожие патенты:

Изобретение относится к способу сварки трубопроводов без предварительного подогрева стыков. Способ включает в себя соединение 2-х и более цилиндрических металлических труб, трубных секций, трубных плетей сварным кольцевым стыком с применением дуговой сварки по всему периметру трубы.

Изобретение относится к стыковым сварным соединениям, в частности к соединениям арматурных стержней, и может быть использовано при строительно-монтажных работах, а также при изготовлении строительных железобетонных конструкций различного назначения, преимущественно сборных и монолитных.

Изобретение относится к способу сварки труб большого диаметра, в частности к сварке сформованных цилиндрических заготовок для улучшения эксплуатационных характеристик труб и повышения производительности сварки.

Способ предназначен для изготовления тонкостенных конических обечаек с ребрами жесткости методом сварки. Производят формирование сегментов обечайки.

Изобретение относится к области сварки, в частности к электронно-лучевой сварке в вакууме разнотолщинных деталей. Стыковое замковое соединение осуществляется между деталью с большей толщиной, на торце свариваемой кромки которой выполняют основание замка, и деталью с меньшей толщиной, которая пристыковывается к ней.

Изобретение относится к машиностроению и может быть использовано в станках для снятия скосов при обработке поверхности под сварной шов, выполненных с возможностью регулирования глубины резки скосов посредством операции в одно касание.

Изобретение может быть использовано для изготовления сваркой труб большого диаметра, например стальных труб, преимущественно спиральных сварных труб. Выполняют однослойную дуговую сварку под флюсом со стороны внутренней поверхности и со стороны наружной поверхности листа.
Изобретение относится к изготовлению электросваркой, преимущественно, тонколистовых изделий из разнотолщинных и разнородных по химическому составу труб. Трубы соосно устанавливают.

Изобретение относится к соединениям арматурных стержней и может быть использовано при строительно-монтажных работах и изготовлении из железобетона строительных конструкций, преимущественно сборных и монолитных.

Изобретение относится к способу стыкового соединения различных материалов, обеспечивающему однородное распределение напряжений в составной конструкции при растяжении-сжатии. Сущность: для каждой пары скрепляемых материалов определяют угол наклона скрепляемых материалов относительно горизонтальной оси, при этом линия наклона соединяемых деталей зависит от механических свойств материалов. Технический результат: в результате скрепления материалов в соответствии с описанной процедурой напряженное состояние в сборной конструкции оказывается однородным. 2 з.п. ф-лы, 5 ил., 2 пр.

Изобретение относится к области сварки, в частности к способу подготовки кромок деталей под дуговую сварку стыкового соединения. Выполняют двухсторонние скосы и притупления кромок свариваемых деталей для выполнения двухстороннего шва. Скосы выполняют несимметричными по толщине деталей с соотношением высот меньшего скоса к большему 0,2…0,6 при суммарной высоте скосов, не превышающей 50% от толщины свариваемых деталей. Меньший скос располагают со стороны выполнения сварки в потолочном положении. Технический результат заключается в экономии материалов, затрачиваемых для заполнения кромок при сварке и времени на подготовку сварочных кромок. 8 ил.

Изобретение относится к области сварки, в частности, к области придания особого профиля отдельных участков кромок при изготовлении стыковых сварных соединений, и может найти применение при автоматической аргонодуговой сварке встык труб и пластин из стали, снабженных плакирующим слоем. Способ включает механическую обработку кромок с получением скоса кромок по трубе или листу с радиусным переходом 2-3 мм в плакирующий слой и притуплением из плакирующего слоя в виде прямоугольного выступа. Скос кромок по трубе или листу к притуплению выполняют ломаным с углами 1-2° и 4-8°. Притупление из плакирующего слоя выполняют высотой 2,5-3,5 мм и длиной 3,4-4,7 мм. Способ по второму варианту включает механическую обработку кромок с получением скоса кромок, притуплением по трубе или листу и расточкой со скосом со стороны плакирующего слоя на глубину большую, чем толщина плакирующего слоя. Скос кромок по трубе или листу к притуплению выполняют с углом 1-2°. Притупление выполняют в виде прямоугольного выступа высотой 1,8-2,3 мм и длиной 3,2-5,2 мм, а расточка - с углом скоса 52-57°. Техническим результатом изобретения является уменьшение объема сварочного материала при сварке стыка, упрощение конструкции сварочного автомата, улучшение обзора зоны сварки при обеспечении требований к качеству металла шва и сварного соединения в целом. 2 н. и 1 з. п. ф-лы, 2 ил.

Изобретение относится к области корпусного судостроения и может быть применено при соединении сваркой деталей большой толщины. Способ формирования стыка соединяемых деталей большой толщины из титановых сплавов при электронно-лучевой сварке включает образование подкладки из припуска одной из деталей. Подкладку удаляют при механической обработке после сварки стыка при вертикальном положении луча. Толщину и ширину подкладки выполняют равной соответственно 0,25-0,35 и 0,10-0,15 от толщины стыка. С обратной стороны подкладки напротив стыка выполняют риску глубиной 0,004-0,006 от толщины стыка, по которой визуально оценивают отсутствие непровара по выходу проплава. Предлагаемая технология обеспечивает получение высококачественного сварного соединения.2 ил.

Изобретение относится к машиностроению и судостроению, поскольку в этой области чаще всего встречаются стыковые соединения с двухсторонним доступом. Технический результат изобретения - снижение затрат на дополнительный металл при сварке и повышение ее производительности. Способ сварки заключается в двустороннем одновременном проплавлении противоположных сторон стыка. Свариваемые детали устанавливают в горизонтальной плоскости. Выполняют разделку кромок со скосом и с притуплением 8…12 мм. С каждой стороны стыка устанавливают по одному сварочному электроду, которые смещают относительно друг друга в продольном направлении. Дистанцию между электродами выбирают равной 1,0…1,5 длины сварочной ванны передней дуги. Мощность сварочных дуг регулируют раздельно на каждом из электродов. Скорость перемещения сварочных электродов и дуг одинакова. Сварку в потолочном положении осуществляют со стороны притупления кромок неплавящимся электродом, который располагают впереди по отношению к направлению скорости сварки. Скорость и мощность сварки сварочной дуги выбирают из условия обеспечения 25-35% провара от притупления скошенных свариваемых кромок. Сварку в нижнем положении осуществляют со стороны скоса кромок плавящимся электродом. Мощность сварочной дуги при сварке в нижнем положении выбирают из условия обеспечения 85-75% провара притупления. Диаметр плавящегося электрода выбирают из условия обеспечения максимального заполнения сечения разделки. 7 ил.

Изобретение относится в общем к медицинским стентам, в частности к устройству для изготовления стентов, используемому в способе изготовления стентов. Устройство для изготовления стентов содержит сердечник и рукав. Сердечник имеет жесткую и, по существу, цилиндрическую внешнюю поверхность. Рукав окружает сердечник и имеет изменяемый внутренний диаметр. Рукав имеет внутренний диаметр в покое. Сердечник имеет внешний диаметр. Внутренний диаметр в покое меньше внешнего диаметра. В результате чего обеспечено расширение рукава при облегании сердечника и, по существу, его возврат к внутреннему диаметру в покое после удаления сердечника. Во втором варианте выполнения устройства для изготовления стентов рукав имеет изменяемый диаметр в покое и рабочий диаметр. Рабочий диаметр меньше, чем диаметр в покое. Рукав окружает сердечник и контактирует с ним, когда рукав принимает диаметр в покое. Вспомогательное устройство для изготовления стентов содержит рукав, имеющий внутренний диаметр и выполненный с возможностью расширения от диаметра в покое до рабочего диаметра после приложения к нему усилия расширения. Рабочий диаметр больше диаметра в покое, который рукав имеет в состоянии в покое. Рукав выполнен с возможностью возврата к диаметру в покое после удаления от него усилия расширения. Способ изготовления стента посредством устройства для изготовления стентов по первому варианту, согласно которому обеспечивают контакт рукава с сердечником для закрепления рукава на сердечнике. После чего обеспечивают контакт рукава с металлическим рельефным листом. Затем оборачивают указанный лист вокруг устройства и сваривают края листа для формирования стента. Изобретение обеспечивает защиту внутренней поверхности стента в ходе процесса его изготовления. 4 н. и 26 з.п. ф-лы, 9 ил.
Изобретение относится к способу сварки нахлесточных соединений из разнородных металлов и может быть использовано в энергетике, автомобилестроении, судостроении и вагоностроении. Изобретение позволяет получить прочное сварное соединение из разнородных металлов. Подключают источник питания. Подают плазмообразующий защитный газ. Возбуждают дугу на верхнем элементе и проплавляют оба элемента. При этом сверху располагают элемент из металла с плотностью большей, чем плотность металла нижнего элемент. Толщину верхнего и толщину нижнего элементов выбирают из соотношения их толщин 1:3. При этом элементы собирают внахлест с величиной нахлеста, равной не менее десяти толщин нижнего элемента, а время сварки задают равным (2…4)δ секунд, где δ - суммарная толщина соединяемых элементов, мм.

Изобретение может быть использовано при изготовлении крупногабаритных конструкций из молибдена или его сплавов, например, при сварко-пайке обечаек экранов муфелей высокотемпературных газостатических установок. Осуществляют формовку и отбортовку кромок листов конструкции. Между отбортованными кромками укладывают Т-образную медную вставку с образованием зазора между кромками, соответствующего толщине ее ножки. Осуществляют соединение отбортованных кромок путем сварки электронным лучом с их неполным проплавлением по высоте. Производят пайку повторным нагревом непроваренной части отбортованных кромок с заполнением зазора между ними за счет использования упомянутой медной вставки. Способ обеспечивает снижение образования закалочных структур и уменьшение хрупкости конструкции. 3 ил., 2 табл.

Изобретение относится к способу изготовления из разнородных материалов высокопрочной тонкостенной сварной конструкции, работающей под давлением, состоящей из обечайки со сферическим дном и горловины. Предварительно из кружка высокопрочной стали типа СП-28 или ВП-30 листового проката формируют обечайку с наружным концевым утолщением цилиндрической части и сферическим дном переменного сечения. Из углеродистой стали 35 формируют усиленную горловину. Толщину сварочной кромки горловины выбирают в соотношении 2:1 к толщине сварочной кромки обечайки. Осуществляют сборку конструкции в сварочно-сборочном приспособлении со съемной подкладкой с обеспечением соосности и кольцевого технологического зазора в стыке, равного 0,10…0,16 толщины сварочной кромки обечайки. Сварку выполняют в среде защитных газов. Изобретение обеспечивает качество сварного соединения из разнородных сталей и равнопрочность сварного соединения. 6 з.п. ф-лы, 10 ил.

Изобретение относится к области сварочного производства, в частности к способу получения сварного сталеалюминиевого соединения, и может быть использовано в судостроении, при строительстве железнодорожного транспорта и автомобилестроении. Сталеалюминиевое соединение получают сваркой плавлением переходного двухслойного элемента сталь-алюминий с элементами из одноименных материалов угловыми швами. Сварку ведут с неполным проплавлением каждого из слоев переходного элемента. Катеты швов, прилегающих к переходному двухслойному элементу, составляют со стороны алюминиевого слоя не менее 1,5 и не более 2,0 его толщины, со стороны стального слоя не менее 1,0 и не более 1,5 его толщины, а катет шва, прилегающий к привариваемому алюминиевому элементу, находится в пределах от 1,0 до 1,5 от величины катета шва, прилегающего к алюминиевому слою переходного элемента. Способ позволяет исключить образование расслоений на границе раздела слоев элемента алюминий-сталь и обеспечивает достижение усталостной прочности и эксплуатационной надежности сварных соединений.2 ил., 1 пр., 2 табл.
Наверх