Волоконно-оптический гироскоп


 


Владельцы патента RU 2522147:

Логозинский Валерий Николаевич (RU)

Изобретение относится к технике разработки гироскопов. Волоконно-оптический гироскоп (ВОГ) содержит многовитковый замкнутый контур из оптического волокна в виде одномодового двулучепреломляющего световода, излучатель и фотоприемник, два ответвителя, поляризатор, фазовый модулятор и фазовый детектор, а также усилитель, фильтр и генератор. Излучатель через первый ответвитель соединен с первым входом-выходом поляризатора, вторым входом-выходом через второй ответвитель подключенного к первому соответствующему входу-выходу волоконного контура, а также соединенного через фазовый модулятор с этим ответвителем вторым оптическим входом-выходом. При этом первый ответвитель подключен также к оптическому входу фотоприемника, электрическим выходом через усилитель и фильтр подключенного к первому входу фазового детектора, выход которого является также выходом ВОГ, а вторым входом соединенного с выходом генератора, одновременно подключенного к электрическому входу фазового модулятора. Излучатель и фотоприемник соединены с первым ответвителем отрезками одномодового двулучепреломляющего световода и с помощью отрезков такого волокна подключены к поляризатору также первый и второй ответвители, при этом волоконный контур, ответвители, поляризатор и фазовый модулятор выполнены на одном отрезке волокна без стыков. Длина отрезка, соединяющего поляризатор с первым ответвителем, в три раза или больше или меньше длины отрезка, соединяющего поляризатор со вторым ответвителем. При этом длина меньшего из этих отрезков превышает длину деполяризации волокна, но в девять раз меньше длины отрезка волокна, соединяющего излучающий модуль с первым ответвителем. Технический результат заключается в обеспечении возможности обеспечения максимальной степени фильтрации полезного сигнала. 1 ил.

Изобретение относится к технике разработки гироскопов, основанных на использовании эффекта Саньяка, и может быть применено при изготовлении волоконно-оптических гироскопов (ВОГ).

Сущность изобретения состоит в том, что в волоконно-оптическом гироскопе (ВОГ), содержащем многовитковый замкнутый контур из оптического волокна (далее волоконный контур) в виде одномодового двулучепреломляющего световода, излучатель и фотоприемник, два ответвителя, поляризатор, фазовый модулятор и фазовый детектор, а также усилитель, фильтр и генератор, причем излучатель оптическим выходом через первый ответвитель соединен с первым оптическим входом-выходом поляризатора, своим вторым оптическим входом-выходом через второй ответвитель подключенного к первому соответствующему входу-выходу волоконного контура, а также соединенного через фазовый модулятор с этим ответвителем своим вторым оптическим входом-выходом, при этом первый ответвитель подключен также к оптическому входу фотоприемника, электрическим выходом через последовательно соединенные усилитель и фильтр подключенного к первому входу фазового детектора, выход которого является также выходом ВОГ, а вторым входом соединенного с выходом генератора, одновременно подключенного к электрическому входу фазового модулятора, причем излучатель и фотоприемник соединены с первым ответвителем отрезками двулучепреломляющего оптического волокна (одномодового двулучепреломляющего световода) и с помощью отрезков такого волокна подключены к поляризатору также первый и второй ответвители, при этом волоконный контур, ответвители, поляризатор и фазовый модулятор выполнены на одном отрезке волокна без стыков, причем величины длин отрезков, соединяющих поляризатор с ответвителями, выполнены отличающимися в три раза, при этом длина меньшего из этих отрезков превышает длину деполяризации волокна, но в девять раз меньше длины отрезка волокна, соединяющего излучатель с первым ответвителем.

При этом длина отрезка, соединяющего поляризатор с первым ответвителем может быть или больше, или меньше длины отрезка, соединяющего поляризатор со вторым ответвителем.

Технический результат от использования изобретения заключается в обеспечении возможности обеспечения максимальной степени фильтрации полезного сигнала в практических условиях ограниченного функционирования отдельных оптических компонентов ВОГ и, соответственно, в увеличении процента выхода годных (по критерию начального сдвига и его стабильности) изделий за счет локализации основных дефектов и выбора длин волокна между оптическими компонентами цельноволоконного ВОГ, при которых возникающие на дефектах вторичные волны, приобретают временные задержки, превышающие время когерентности источника излучения. При этом эффективность интерференции вторичных волн с основными волнами (их взаимная когерентность) значительно уменьшается и, соответственно, уменьшается сдвиг нуля ВОГ, порожденный вторичными волнами.

 

Изобретение относится к технике разработки гироскопов, основанных на использовании эффекта Саньяка, и может быть применено при изготовлении волоконно-оптических гироскопов (ВОГ).

Известен ВОГ (см., например, Optics Letters, Vol.8(10), pp.540-542, 1983, "Fiber-optic gyroscope with polarization-holding fiber), содержащий последовательно расположенные и соединенные оптическим волокном: излучающий и фотоприемный модули, первый ответвитель, поляризатор, второй ответвитель, волоконный контур и фазовый модулятор, выполненный в виде пьезокерамического элемента с зафиксированным на его поверхности отрезком оптического волокна, при этом все оптические элементы гироскопа изготавливают на основе одномодового двулучепреломляющего оптического волокна.

Такое устройство отличает сравнительно небольшой сдвиг и дрейф нулевого Сигнала за счет использования поляризационно-устойчивого волокна и применения пространственно-поляризационной фильтрации на входе-выходе волоконного контура. Кроме того, в данном устройстве использована модуляционная методика, позволяющая существенно снизить влияние шумов на точность измерений ВОГ. При этом модуляцию разности фаз встречных волн, распространяющихся во встречных направлениях по волоконному контуру, осуществляют за счет периодического растяжения небольшого участка волоконного контура, намотанного на пьезокерамический цилиндр, а выходной сигнал гироскопа формируют путем детектирования первой гармоники частоты фазовой модуляции в сигнале фотоприемного модуля.

Однако при возбуждении пьезокерамического модулятора периодическим сигналом на выходе фотоприемного устройства появляется компонента на частоте модуляции, сдвинутая по фазе на 90° по отношению к полезному сигналу (сигналу вращения).

Источником возникновения этой компоненты (квадратурного сигнала) является модуляция двулучепреломления волокна, намотанного на пьезокерамический цилиндр, при его растяжении, а также связь между поляризационными модами волокна на его неоднородностях. Модуляция двулучепреломления волокна приводит к модуляции интенсивности излучения после прохождения поляризатора. Глубина модуляции интенсивности зависит от ориентации поляризатора по отношению к осям двулучепреломления волокна. После синхронного детектирования квадратурный сигнал подавляется, но не полностью, что приводит к появлению сдвига нуля ВОГ.

Наиболее близким аналогом - прототипом является волоконно-оптический гироскоп (см., например, патент РФ №2139499 с приоритетом от 05.03.1998 г., МПК: G01C 19/72), включающий последовательно расположенные и соединенные двулучепреломляющим оптическим волокном: излучающий и фотоприемный модули, первый ответвитель, поляризатор, второй ответвитель, волоконный контур и фазовый модулятор, выполненный в виде пьезокерамического элемента с зафиксированным на его поверхности отрезком оптического волокна, при этом на поверхности пьезокерамического элемента также уложены и зафиксированы два параллельных волокна одинаковой длины, являющиеся входным и выходным отрезками петли волокна, не зафиксированной на поверхности пьезокерамического элемента, а, кроме того, в состав гироскопа введены два преобразователя (конвертера) одной поляризационной моды волокна в другую, выполненные в виде скрученных и зафиксированных утонченных участков волокна, причем один преобразователь расположен в волоконном контуре, а другой - в свободной петле фазового модулятора.

Данное устройство отличает уменьшение по сравнению с другими известными ВОГ величин сдвига и дрейфа нуля, связанное с тем, что при выполнении модулятора в виде двух синхронно растягиваемых отрезков волокна одинаковой длины (бифилярная намотка), между которыми установлен преобразователь одной поляризационной моды волокна в другую, устраняют модуляцию двулучепреломления волокна в модуляторе, что приводит к существенному уменьшению квадратурного сигнала Q и соответствующей компоненты сдвига нуля ВОГ. При этом второй преобразователь мод волокна, расположенный в волоконном контуре, позволяет восстановить уровень интерференционного (полезного) сигнала, существенно уменьшаемый при использовании преобразователя мод волокна в составе фазового модулятора.

Однако в производстве процент выхода таких ВОГ, годных по критерию начального сдвига и его стабильности, снижен из-за технологического разброса параметров гироскопа.

Задачей изобретения является разработка волоконно-оптического гироскопа с устойчивой оптической конфигурацией, обеспечивающей максимальную степень фильтрации полезного сигнала в практических условиях ограниченного функционирования отдельных оптических компонентов ВОГ, что при наличии естественного технологического разброса параметров фильтрации увеличивает процент выхода годных ВОГ по критерию начального сдвига и его стабильности.

Сущность изобретения состоит в том, что в волоконно-оптическом гироскопе (ВОГ), содержащем многовитковый замкнутый контур из оптического волокна (далее волоконный контур) в виде одномодового двулучепреломляющего световода, излучатель и фотоприемник, два ответвителя, поляризатор, фазовый модулятор и фазовый детектор, а также усилитель, фильтр и генератор, причем излучатель оптическим выходом через первый ответвитель соединен с первым оптическим входом-выходом поляризатора, своим вторым оптическим входом-выходом через второй ответвитель подключенного к первому соответствующему входу-выходу волоконного контура, а также соединенного через фазовый модулятор с этим ответвителем своим вторым оптическим входом-выходом, при этом первый ответвитель подключен также к оптическому входу фотоприемника, электрическим выходом через последовательно соединенные усилитель и фильтр подключенного к первому входу фазового детектора, выход которого является также выходом ВОГ, а вторым входом соединенного с выходом генератора, одновременно подключенного к электрическому входу фазового модулятора, причем излучатель и фотоприемник соединены с первым ответвителем отрезками двулучепреломляющего оптического волокна (одномодового двулучепреломляющего световода) и с помощью отрезков такого волокна подключены к поляризатору также первый и второй ответвители, при этом волоконный контур, ответвители, поляризатор и фазовый модулятор выполнены на одном отрезке волокна без стыков, причем величины длин отрезков, соединяющих поляризатор с ответвителями, выполнены отличающимися в три раза, при этом длина меньшего из этих отрезков превышает длину деполяризации волокна, но в девять раз меньше длины отрезка волокна, соединяющего излучатель с первым ответвителем.

При этом длина отрезка, соединяющего поляризатор с первым ответвителем может быть или больше, или меньше длины отрезка, соединяющего поляризатор со вторым ответвителем.

Технический результат от использования изобретения заключается в обеспечении возможности обеспечения максимальной степени фильтрации полезного сигнала в практических условиях ограниченного функционирования отдельных оптических компонентов ВОГ и, соответственно, в увеличении процента выхода годных (по критерию начального сдвига и его стабильности) изделий за счет локализации основных дефектов и выбора длин волокна между оптическими компонентами цельноволоконного ВОГ, при которых возникающие на дефектах вторичные волны приобретают временные задержки, превышающие время когерентности источника излучения. При этом эффективность интерференции вторичных волн с основными волнами (их взаимная когерентность) значительно уменьшается и, соответственно, уменьшается сдвиг нуля ВОГ, порожденный вторичными волнами.

Предельную точность ВОГ определяют фильтрующие характеристиками основных компонентов - поляризатора (степень подавления нерабочей поляризации) и волокна (степень сохранения поляризации на заданной длине). Эта зависимость является сложной и нелинейной комбинацией оптических параметров элементов и мест их соединений (или переходов). Неполностью отфильтрованные (подавленные) вторичные волны могут интерферировать с произвольной фазой, искажая интерференцию основных встречных волн. При детектировании это искажение соответствует сдвигу нуля ВОГ и приводит к дрейфу сигнала.

На фиг.1 приведена схема волоконно-оптического гироскопа.

Здесь обозначено: 1 - излучатель; 2-1-й ответвитель; 3 - поляризатор; 4-2-й ответвитель; 5 - волоконный контур; 6 - фазовый модулятор; 7 - фотоприемник; 8 - заглушки (концы волокна с малым обратным отражением); 9 - усилитель; 10 - фильтр; 11 - фазовый детектор; 12 - генератор.

Кроме того, на фиг.1 обозначениями a1, …, а7 показаны места разворотов осей двулучепреломления волокна, представляющие собой места локализации «дефектов» цельноволоконного ВОГ, а буквами X,Y,Z обозначены величины длины соответствующих отрезков волокна.

Излучатель 1 выполнен на основе полупроводникового суперлюминесцентного диода СЛД-830, а фотоприемник 7 - на основе кремниевого фотодиода SSO-PDQ-0.25-5SMD.

Оптические элементы ВОГ изготавливались из одномодового двулучепреломляющего кварцевого волокна с длиной поляризационных биений ~3мм. Длина волоконного контура 5 ВОГ составила 100 м, диаметр катушки (не пронумерована) волоконного контура 5 равен 70 мм.

Фазовый модулятор 6 выполнен (см., например, патент РФ №2139499 с приоритетом от 05.03.1998 г., МПК: G01C 19/72) с пьезокерамическим цилиндром (не пронумерован) диаметром 15 мм из материала ЦТС-19.

Поляризатор 3 изготовлен на основе двулучепреломляющего монокристалла, выращенного вокруг утонченного отрезка (перетяжки) волокна.

Ответвители (2 и 4) получены путем вытяжки соприкасающихся волокон при их локальном тепловом размягчении в дуговом разряде.

Для формирования выходного сигнала гироскопа, пропорционального скорости вращения волоконного контура путем детектирования первой гармоники частоты модуляции, в выходном сигнале фотоприемника использовались стандартные устройства, а именно широкополосный усилитель 9, узкополосный фильтр 10, фазовый детектор 11 и генератор 12. Генератор 12 вырабатывает синусоидальное напряжение для питания фазового модулятора 6, которое использовано в качестве опорного напряжения в фазовом детекторе 11 для детектирования амплитуды первой гармоники частоты модуляции в выходном сигнале фотоприемника 7 и формирования выходного сигнала ВОГ.

При этом соответственно использованы стандартные детектор SR830 и генератор Г3-118.

При синусоидальной модуляции сдвига фаз встречных волн волоконного контура в сигнале фотоприемника 7 возникает большая компонента на второй гармонике частоты модуляции, которая существенно затрудняет детектирование сигнала вращения - амплитуду первой гармоники частоты модуляции и для подавления которой установлен узкополосный фильтр 10.

Сигнал фотоприемника 7 перед подачей на вход детектора 11 усиливали с помощью широкополосного усилителя 9, изготовленного по стандартной схеме (см., например, В. Достал. Операционные усилители, 1985) на основе микросхемы 544УД2.

Рассмотрим цельноволоконный ВОГ, компоненты которого (волоконный контур 5, фазовый модулятор 6, два ответвителя (соответственно 2 и 4) и поляризатор 3) изготовлены на одном отрезке двулучепреломляющего волокна (не пронумеровано). Введем следующие определения:

- рабочая (главная) поляризация - линейная поляризация волны, проходящей поляризатор без ослабления;

- нерабочая поляризация - ортогональная основной

поляризации волны, которая испытывает значительные потери (подавление) при прохождении поляризатора 3;

- собственные поляризации двулучепреломляющего волокна - ортогональные линейные поляризации волн, распространяющихся в волокне с сохранением линейного состояния, а различие скоростей (c/n1-с/п2) определяется величиной двулучепреломления (n1-n2), где n1,2-показатели преломления волокна для волн с собственными поляризациями;

- основные волны - встречные волны, вошедшие в волоконный контур 5 в рабочей поляризации и вышедшие после его обхода в рабочей поляризации;

- вторичные волны - встречные волны, вошедшие в волоконный конур 5 в рабочей поляризации и вышедшие после его обхода в нерабочей поляризации, а также волны, вошедшие в волоконный контур 5 в нерабочей поляризации и вышедшие после его обхода в рабочей поляризации.

В каждом сечении волокна встречные волны распространяются в обеих собственных поляризациях и являются суперпозицией основных и вторичных волн.

Сдвиг нуля ВОГ возникает при интерференции основных и вторичных волн, в то время как сигнал вращения формируется при интерференции основных волн. Для анализа интерференции вторичных и основных волн необходимо учесть все комбинации оптических путей для основных и вторичных волн (каждый отрезок двулучепреломляющего волокна длиной L содержит два оптических пути L*n1 и L*n2 различных для волн с собственными поляризациями). Волна может сменить оптический путь на дефекте или любом компоненте, который связывает собственные поляризации волокна.

В цельноволоконном ВОГ нет крупных дефектов вдоль длины волокна в контуре и между компонентами, поскольку сварные соединения компонентов с волокном и между собой отсутствуют. Поэтому местами связи являются компоненты, где имеет место разворот осей двулучепреломления волокна.

Для рассматриваемой (фиг.1) конфигурации ВОГ - это:

- излучатель 1 (главная поляризация СЛД не совпадает с осью двулучепреломления);

- ответвитель (соответственно 2 и 4) (скрутка волокна и непараллельность осей двулучепреломления волокон, анизотропия коэффициента деления);

- поляризатор 3 (несовпадение рабочей поляризации поляризатора и собственной поляризации волокна);

- места (a1, …, а7) разворотов осей двулучепреломления волокна.

Одной из характеристик когерентного излучения, распространяющегося в двулучепреломляющем волокне, является т.н. «длина деполяризации». Это длина, на которой временное запаздывание волн с собственными поляризациями, превышает время когерентности источника излучения. После прохождения в волокне расстояния, превышающего длину деполяризации, изначально когерентные ортогонально поляризованные волны, становятся некогерентными. Некогерентные волны не интерферируют друг с другом ввиду хаотично меняющейся относительной фазы. Для расчета длины деполяризации (LD) используют (см., например, Волоконно-оптические датчики. Вводный курс для инженеров и научных работников. Под ред. Э.Удда. - М.: Техносфера, 2008. - 520 с. Дополнение А, стр.476 (500)) соотношение: LD=0,5LBλ/Δλ, где LB - длина поляризационных биений (параметр, характеризующий величину двулучепреломления), λ - длина волны источника излучения, Δλ - ширина спектра излучения. (Если, например, длина волны источника излучения - 800 нм, ширина спектра излучения - 15 нм, а длина биений волокна - 3 мм (средние практические параметры), то длина деполяризации равна 8 см.)

Принципиальной причиной сдвига и нестабильности нуля ВОГ является конечное подавление поляризатором неосновной (нерабочей) поляризации (амплитудный коэффициент пропускания волны с нерабочей поляризацией - ε, -201og(ε)= коэффициент экстинкции поляризатора в дБ, то есть поляризатору с практически достижимой экстинкцией 40 дБ соответствует ε=0.01). Волны, прошедшие поляризатор в рабочей поляризации в обоих направлениях, не создают сдвига (принцип взаимности Лоренца). Волны, прошедшие поляризатор в нерабочей поляризации (вторичные), могут интерферировать с основными волнами, создавая сдвиг. В общем случае этот сдвиг пропорционален отношению амплитуд вторичной волны к амплитуде основной волны и коэффициенту £, что для цельноволоконного ВОГ, где оси волокна и поляризатора не совпадают, может служить источником значительной ошибки, т.к. амплитуды основной и вторичной волны сопоставимы. В условиях невозможности полного подавления вторичных волн уменьшение взаимной когерентности вторичных и основных волн является одной из возможностей уменьшения сдвига и дрейфа нуля ВОГ. Заметим, что эффективная интерференция возможна, если разность оптических путей между основными и вторичными волнами на фотодетекторе меньше длины деполяризации.

Рассмотрим возможные задержки между основными и вторичными волнами на фотодетекторе для случая цельноволоконного ВОГ (фиг.1) с учетом следующих практических соотношений:

- длина контура составляет 100 м и более,

- длина волокна между компонентами цельноволоконного ВОГ от 10 см до нескольких десятков сантиметров (определяется технологическими возможностями и конструктивными требованиями),

- длина деполяризации - 8 см (см. выше).

При этом все возможные суммы задержек (на отрезках волокна X, Y, Z), накопленных волнами при распространении между компонентами в обоих направлениях, оказываются намного (в масштабе длины деполяризации) меньше задержки между собственными поляризациями в контуре. Поэтому взаимно когерентными потенциально могут быть только волны (основные и вторичные), которые прошли контур в одной и той же поляризации. Это, в свою очередь, означает, что для целей настоящего рассмотрения можно считать, что волоконный контур не вносит дополнительной задержки между основными и вторичными волнами.

Для каждой из встречных волн последовательность прохождения отрезков следующая Z, Y, X, X, Y (см. фиг.1).

В зависимости от характеристик и ориентации оптических компонентов на каждом из этих отрезков волны могут приобретать разные задержки.

Для анализа важны возможные разности задержек встречных волн: если разность задержек превышает длину когерентности - то вторичные волны, прошедшие поляризатор при развороте осей двулучепреломления волокна на входе и выходе оптических компонентов ВОГ, не интерферируют с основными волнами и не порождают ложный сигнал вращения. Если разность задержек меньше длины когерентности, то возникает ложный сигнал, пропорциональный амплитуде вторичных интерферирующих волн (первый порядок по ε).

Две конфигурации, эквивалентные с точки зрения подавления интерференции вторичных встречных волн (сдвига нуля), можно представить следующим образом:

1) Y=3X, Z=9X, где X> длины деполяризации;

2) X=3Y, Z=9Y, где Y> длины деполяризации.

При указанном соотношении отрезков все возможные разности путей кратны минимальному отрезку из набора. Таким образом, если длина минимального из отрезков X (или Y) превышает длину деполяризации волокна (для практических целей рекомендуется двукратное превышение, т.к. взаимная когерентность уменьшается почти в 10 раз (е2)), то обеспечивается подавление интерференции вторичных волн с основными волнами и, соответственно, отсутствие ложного сигнала (сдвига нуля).

Анализируя последовательность прохождения межкомпонентных отрезков встречными волнами {Z, Y, X, X, Y}, можно видеть что фазовый набег на отрезке Z может быть скомпенсирован набегами на последовательности отрезков {Y, X, X, Y}, а фазовый набег на отрезке Y может быть скомпенсирован набегами на последовательности отрезков {X, X}. Таким образом, максимальный набег на последовательности отрезков {X, X} может составить 2Х и можно исключить возможность промежуточной компенсации на участке {X, X, Y}, выбирая длину отрезка Y, равной 3Х. Аналогичным образом, учитывая, что Y=3X и максимальный набег на последовательности отрезков {Y, X, X, Y} может составить 8Х(3Х+Х+Х+3Х), можно исключить возможность итоговой компенсации на участке {Z, Y, X, X, Y}, выбирая длину отрезка Z равной 9Х. Отметим, что отрезки X и Y -взаимозаменяемы в этих рассуждениях.

Приведенные выше соображения и выводы подтверждают модельные численные расчеты амплитудных и фазовых параметров встречных волн, основанные на использовании матриц Джонса (см., например, Шерклифф У. Поляризованный свет, пер. с англ., М, 1965), описывающих трансформацию встречных волн в местах межполяризационной связи a1, …, а7 (см. фиг.1) и на отрезках двулучепреломляющего волокна X, Y, Z с учетом усреднения по спектру излучения.

Предлагаемая конфигурация ВОГ обеспечивает отсутствие у вторичных встречных волн, прошедших по разным путям (т.е. невзаимных), задержек по отношению к основным волнам меньше длины когерентности излучателя.

Устройство (ВОГ) работает следующим образом: Световой сигнал от излучателя 1 входит в одномодовое двулучепреломляющее волокно, проходит первый ответвитель 2 и поляризатор 3, а вторым ответвителем 4 делится на две волны, распространяющиеся во встречных направлениях по волоконному контуру 5 и фазовому модулятору 6. После обхода волоконного контура 5 встречные волны смешиваются вторым ответвителем 4, интерферируют и вновь проходят поляризатор 3 и первый ответвитель 2, который направляет часть излучения (сигнал интерференции) на фотоприемник 7. "Заглушки" 8, которыми заканчиваются свободные концы волокна ответвителей (2 и 4), предотвращают обратное отражение волны от торцов волокна.

Генератор 12 задает синусоидальное напряжение для питания фазового модулятора 6 и одновременно служащее опорным напряжением в фазовом детекторе 11 для детектирования амплитуды первой гармоники частоты модуляции в выходном сигнале фотоприемника 7 и формировании выходного сигнала ВОГ, пропорционального скорости его вращения.

Для подавления сигнала на второй гармонике частоты модуляции, возникающей при синусоидальной модуляции сдвига фаз встречных волн волоконного контура 5 в сигнале фотоприемника 7 и существенно затрудняющей детектирование сигнала вращения - амплитуду первой гармоники частоты модуляции, используют узкополосный фильтр 10.

Поляризатор 3 обеспечивает поляризационную фильтрацию на входе и выходе волоконного контура 5 для улучшения взаимности оптических путей встречных волн с целью уменьшения сдвигов фаз между ними, не связанных с вращением.

Пьезокерамический фазовый модулятор 6 используют для повышения чувствительности ВОГ. При его питании переменным напряжением от генератора 12 создается дополнительный сдвиг фаз за счет периодического растяжения участка волоконного контура.

Для апробации предлагаемого изобретения были собраны два варианта ВОГ (ВОГ1 и ВОГ2). Длины отрезков волокна между компонентами у ВОГ1 удовлетворяли условию: Y=3X, Z=9X, где Х=170 мм (~2LD), а у ВОГ2 все длины отрезков между компонентами были примерно одинаковы и равны 200 мм.

При изготовлении ВОГ1 учитывалось, что разброс длин участков X, Y, Z может привести к разбросу разностей фазовых набегов вторичных волн, а следовательно, возможно появление разностных набегов, меньших длины деполяризации излучения в волокне, что в свою очередь приведет к возникновению ложного сигнала (сдвига нуля) ВОП. Для того, чтобы этого гарантированно не произошло, сумма допусков для отрезков X, Y, Z не должна превышать длины деполяризации излучения в волокне. Для длины деполяризации ~10 см получаем оценку для точности определения длин участков волокна X, Y, Z - ~1-2 см. Такая точность определения участков волокна X, Y, Z и была реализована при изготовлении ВОГ1. Длина меньшего отрезка волокна между оптическими компонентами составляла ~ 20 см.

При измерении дрейфа нуля (изменения выходного сигнала в отсутствии вращения) для ВОГ1 и ВОГ2 в диапазоне температур +20°С…+50°С были получены следующие максимальные значения изменения (дрейфа) нуля: 3°/час - для ВОП, и 25 7 час - для ВОГ2. Таким образом, по сравнению с прототипом дрейф нуля снижен почти в десять раз за счет использования конфигурации ВОГ с предложенным фиксированным соотношением длин отрезков волокна между оптическими компонентами.

Волоконно-оптический гироскоп (ВОГ), содержащий многовитковый замкнутый контур из оптического волокна (далее волоконный контур) в виде одномодового двулучепреломляющего световода, излучатель и фотоприемник, два ответвителя, поляризатор, фазовый модулятор и фазовый детектор, а также усилитель, фильтр и генератор, причем излучатель оптическим выходом через первый ответвитель соединен с первым оптическим входом-выходом поляризатора, своим вторым оптическим входом-выходом через второй ответвитель подключенного к первому соответствующему входу-выходу волоконного контура, а также соединенного через фазовый модулятор с этим ответвителем своим вторым оптическим входом-выходом, при этом первый ответвитель подключен также к оптическому входу фотоприемника, электрическим выходом через последовательно соединенные усилитель и фильтр подключенного к первому входу фазового детектора, выход которого является также выходом ВОГ, а вторым входом соединенного с выходом генератора, одновременно подключенного к электрическому входу фазового модулятора, причем излучатель и фотоприемник соединены с первым ответвителем отрезками двулучепреломляющего оптического волокна (одномодового двулучепреломляющего световода) и с помощью отрезков такого волокна подключены к поляризатору также первый и второй ответвители, при этом волоконный контур, ответвители, поляризатор и фазовый модулятор выполнены на одном отрезке волокна без стыков, причем длина отрезка, соединяющего поляризатор с первым ответвителем, в три раза или больше или меньше длины отрезка, соединяющего поляризатор со вторым ответвителем, при этом длина меньшего из этих отрезков превышает длину деполяризации волокна, но в девять раз меньше длины отрезка волокна, соединяющего излучающий модуль с первым ответвителем.



 

Похожие патенты:

Изобретение относится к области лазерных информационно-измерительных систем и может быть использовано при создании твердотельных лазерных гироскопов. .

Изобретение относится к области твердотельных кольцевых лазеров или лазерных гироскопов. .
Изобретение относится к лазерной технике, а именно к лазерной гироскопии. .
Изобретение относится к лазерной технике, а именно к лазерной гироскопии. .

Изобретение относится к измерительной технике и предназначено для использования в системах ориентации и навигации подвижных объектов. .

Изобретение относится к приборам для решения задач ориентации, навигации и управления подвижных объектов - самолетов, кораблей, внутритрубных диагностических снарядов, скважинных приборов буровых скважин и т.д.

Изобретение относится к области волоконной оптики и может быть использовано при конструировании волоконно-оптических гироскопов и других волоконных датчиков физических величин на основе кольцевого оптоволоконного интерферометра.

Изобретение относится к приборам ориентации, навигации и систем управления подвижных объектов - самолетов, кораблей, внутритрубных диагностических снарядов, скважинных приборов буровых скважин и т.д.

Изобретение относится к приборам навигации, контроля и управления подвижных объектов - самолетов, кораблей, автомобилей, а также таких элементов, как валы, колеса и площадки, устанавливаемых на указанных подвижных объектах.

Изобретение относится к области волоконной оптики и может быть использовано при конструировании волоконно-оптических гироскопов. Способ предназначен для расширения диапазона измерения угловых скоростей волоконно-оптического гироскопа с открытым контуром, содержащего волоконный кольцевой интерферометр и электронный блок обработки информации, который содержит синхронный детектор для выделения амплитуды сигнала вращения и электронное устройство деления накопленной информации на выходе синхронного детектора на постоянную составляющую сигнала на входе синхронного детектора, а также контур обратной связи по обнулению сигнала рассогласования и содержащего генератор напряжения вспомогательной фазовой модуляции. При этом для измерения угловых скоростей при изменении разности фаз Саньяка в диапазонах ±[(0÷π/4)] радиан; ±[(3π/4+2πn)÷(5π/4+2πn)] радиан; ±[(7π/4+2πn)÷(9π/4+2πn)] радиан, где n=0, 1, 2…, используют модуляцию разности фаз лучей кольцевого интерферометра в виде периодической последовательности прямоугольных импульсов с амплитудами ±π/2 радиан и ±3π/2 радиан, а для измерения угловых скоростей при изменении разности фаз Саньяка в диапазонах ±[(π/4+2πn)÷(3π/4+2πn)] радиан; ±[(5π/4+2πn)+(7π/4+2πn)] радиан; используют модуляцию разности фаз лучей кольцевого интерферометра в виде периодической последовательности прямоугольных импульсов с амплитудами 0 радиан и ±π радиан. Технический результат заключается в расширении диапазона измерения угловых скоростей. 10 ил.

Изобретение относится к лазерной технике, а именно к лазерной гироскопии. Предложен способ измерения угловых перемещений лазерным гироскопом, включающий настройку и работу лазерного гироскопа в двухчастотном режиме на одной из ортогонально поляризованных мод кольцевого лазера лазерного гироскопа, создание частотной подставки с помощью магнитного поля, выделение информации об угловых перемещениях из информации, поступающей от кольцевого лазера, периодическую поочередную работу кольцевого лазера в двухчастотном режиме на модах с ортогональными поляризациями кольцевого лазера, переключение кольцевого лазера на моду с ортогональной поляризацией после каждого очередного момента завершения работы кольцевого лазера на любой из этих мод. При этом предварительно измеряют и/или вычисляют для мод с ортогональными поляризациями зависимость частоты подставки от величины изменения напряжения на пьезоголовке, обусловленной расстройкой периметра резонатора кольцевого лазера, относительно напряжения соответствующего настройке системы регулировки периметра на центр соответствующей моды, при каждом очередном переключении во время измерений угловых перемещений в выбранных промежутках времени этого переключения измеряют зависимость величины изменения напряжения на пьезоголовке от времени относительно значения напряжения для соответствующей моды до начала данного переключения и для моды с ортогональной поляризацией относительно значения напряжения после этого переключения, для каждого выбранного промежутка времени рассчитывают и учитывают ошибки, обусловленные изменением величины частоты подставки из-за расстройки периметра резонатора кольцевого лазера при переключении поляризации, используя предварительно измеренную и/или вычисленную зависимость частоты подставки от величины изменения напряжения на пьезоголовке, обусловленной расстройкой периметра резонатора кольцевого лазера, относительно напряжения соответствующего настройке системы регулировки периметра на центр соответствующей моды и измеренную для этой же моды при данном переключении зависимость величины изменения напряжения на пьезоголовке от времени в этом же выбранном промежутке времени данного переключения относительно соответствующего значения напряжения для этой же моды до или после данного переключения. Такой способ измерения угловых перемещений двухчастотным лазерным гироскопом с переключением ортогональных поляризаций позволяет существенно уменьшить ошибки измерений угловых перемещений за счет уменьшения времени недостоверного съема информации во время переключений поляризаций.
Изобретение относится к лазерной технике, а именно к лазерной гироскопии. Предложен способ измерения угловых перемещений лазерным гироскопом, включающий настройку и работу лазерного гироскопа в двухчастотном режиме на одной из ортогонально поляризованных мод кольцевого лазера лазерного гироскопа, создание частотной подставки с помощью наложения магнитного поля на активный элемент кольцевого лазера с эллиптической или круговой поляризацией излучения в активном элементе кольцевого лазера, выделение информации об угловых перемещениях из информации, поступающей от кольцевого лазера, периодическую поочередную работу кольцевого лазера в двухчастотном режиме на модах с ортогональными поляризациями кольцевого лазера, переключение кольцевого лазера на моду с ортогональной поляризацией после каждого очередного момента завершения работы кольцевого лазера на любой из этих мод, в котором предварительно измеряют изменение напряжения на пьезоголовке кольцевого лазера, соответствующее переходу от моды одного знака поляризации к ближайшей моде с ортогональной поляризацией, при измерении угловых перемещений непосредственно перед началом каждого переключения отключают систему регулировки периметра от пьезоголовки датчика, после этого, пока на пьезоголовке не изменилось напряжение от работы на прежней моде, подают на пьезоголовку дополнительное измеренное ранее напряжение, соответствующее переходу от моды одного знака поляризации к ближайшей моде с ортогональной поляризацией, при этом знак подаваемого дополнительного напряжения определяют так, чтобы суммарное напряжение находилось в области регулирования системы регулировки периметра, переключают фазу системы регулировки периметра на настройку и работу на моде с ортогональной поляризацией, подключают систему регулировки периметра к пьезоголовке датчика в выбранное предварительно или во время данного переключения время, после чего система регулировки периметра в автоматическом режиме завершает подстройку частоты кольцевого лазера лазерного гироскопа на моду с ортогональной поляризацией. Предложенный способ позволяет существенно уменьшить ошибки измерений угловых перемещений во время переключений поляризаций за счет уменьшения длительности переключений.

Предложенное изобретение относится к лазерной технике, а именно к лазерной гироскопии. Предложен способ измерения угловых перемещений лазерным гироскопом, включающий настройку и работу лазерного гироскопа в двухчастотном режиме на одной из ортогонально поляризованных мод кольцевого лазера лазерного гироскопа, создание знакопеременной частотной подставки с помощью наложения магнитного поля на активный элемент кольцевого лазера с эллиптической или круговой поляризацией излучения в активном элементе кольцевого лазера, выделение информации об угловых перемещениях из информации, поступающей от кольцевого лазера, периодическую поочередную работу кольцевого лазера в двухчастотном режиме на модах с ортогональными поляризациями кольцевого лазера, переключение кольцевого лазера на моду с ортогональной поляризацией после каждого очередного момента завершения работы кольцевого лазера на любой из этих мод, в котором предварительно измеряют и/или вычисляют для мод с ортогональными поляризациями зависимость частоты подставки от величины расстройки периметра резонатора кольцевого лазера. Предварительно или во время измерений угловых перемещений при переключениях поляризаций в каждой соответствующей ортогональной моде этого переключения измеряют зависимость амплитуды знакопеременной частотной подставки от времени, по которой определяют промежутки времени во время переключений поляризаций, в которых будут использованы результаты измерений угловых перемещений с учетом ошибок, обусловленных изменением частоты подставки из-за расстройки периметра кольцевого лазера, вызванной переключением поляризации, при каждом очередном переключении во время измерений угловых перемещений в каждой соответствующей ортогональной моде этого переключения для каждого выбранного промежутка времени измеряют зависимость амплитуды знакопеременной частотной подставки от времени, для каждого выбранного промежутка времени при каждом данном переключении при измерении угловых перемещений рассчитывают и учитывают ошибки, обусловленные изменением величины частоты подставки из-за расстройки периметра резонатора кольцевого лазера при переключении поляризации, используя предварительно измеренную и/или вычисленную зависимость частотной подставки от величины расстройки периметра резонатора кольцевого лазера для соответствующей ортогональной моды и измеренную для этой же ортогональной моды при данном переключении зависимость амплитуды знакопеременной частотной подставки от времени. Предложенный способ позволяет существенно уменьшить ошибки измерений угловых перемещений за счет уменьшения времени недостоверного съема информации во время переключений поляризаций.

Изобретение относится к лазерной технике, а именно к лазерной гироскопии. Предложен способ измерения угловых перемещений лазерным гироскопом, включающий настройку и работу лазерного гироскопа в двухчастотном режиме на одной из ортогонально поляризованных мод кольцевого лазера лазерного гироскопа, создание частотной подставки с помощью наложения магнитного поля на активный элемент кольцевого лазера с эллиптической или круговой поляризацией излучения в активном элементе кольцевого лазера, выделение информации об угловых перемещениях из информации, поступающей от кольцевого лазера, периодическую поочередную работу кольцевого лазера в двухчастотном режиме на модах с ортогональными поляризациями кольцевого лазера, переключение кольцевого лазера на моду с ортогональной поляризацией после каждого очередного момента завершения работы кольцевого лазера на любой из этих мод, в котором предварительно или при измерении угловых перемещений по амплитуде сигнала вращения, или по величине частотной подставки, или по величине сигнала расстройки периметра, или по напряжению на пьезоголовке определяют промежутки времени во время переключений поляризации для мод с ортогональными поляризациями, в которых будут использованы результаты измерений угловых перемещений с учетом ошибок, обусловленных изменением частоты подставки из-за расстройки периметра кольцевого лазера, вызванной переключением поляризации, предварительно измеряют и/или вычисляют для мод с ортогональными поляризациями зависимость частоты подставки от величины сигнала расстройки периметра резонатора кольцевого лазера, при каждом очередном переключении во время измерений угловых перемещений в выбранных промежутках времени этого переключения в каждой соответствующей моде с ортогональной поляризацией измеряют зависимость сигнала расстройки периметра кольцевого лазера от времени, для каждого выбранного промежутка времени при каждом данном переключении при измерении угловых перемещений рассчитывают и учитывают ошибки, обусловленные изменением величины частоты подставки из-за расстройки периметра резонатора кольцевого лазера при переключении поляризации, используя предварительно измеренную и/или вычисленную зависимость частоты подставки от величины сигнала расстройки периметра резонатора кольцевого лазера для соответствующей моды и измеренную для этой же моды при данном переключении зависимость сигнала расстройки периметра от времени в этом же выбранном промежутке времени данного переключения. Предложенный способ позволяет существенно уменьшить ошибки измерений угловых перемещений за счет уменьшения времени недостоверного съема информации во время переключений поляризаций.

Изобретение относится к области измерительной техники и касается способа измерения угловой скорости. Для определения угловой скорости формируют два пучка когерентного оптического излучения. Каждый из двух пучков дополнительно делят на два части. С помощью кольцевого интерферометра изменяют интенсивность и фазу только одной из частей каждого пучка. Ввод измерительных пучков в резонатор интерферометра осуществляют во взаимно противоположных направлениях. Прошедшую через интерферометр часть первого пучка и оставшуюся исходную часть того же пучка направляют на первый фотоприемник. Прошедшую через интерферометр часть второго пучка и оставшуюся исходную часть того же пучка направляют на второй фотоприемник. Угловую скорость определяют по величине разности собственных частот резонатора интерферометра для волн, обходящих его по взаимно противоположным направлениям. Технический результат заключается в обеспечении возможности определения угловой скорости при отсутствии потерь в резонаторе кольцевого интерферометра или при их компенсации. 3 ил.

Предложенное изобретение относится к устройствам для цифровой обработки информации, поступающей от гиролазера (лазерного гироскопа). Предложенный гиролазер с оптическим резонатором содержит множество зеркал, по меньшей мере один фотодатчик (101), выдающий два оптических сигнала (102, 103) со сдвигом фазы на 90°, при этом упомянутые сигналы (102, 103) являются оцифрованными (401, 402), средства (128) управления положением одного из упомянутых зеркал путем преобразования электрического сигнала в механическое усилие, средства (135) активации упомянутого гиролазера в колебательном движении путем преобразования электрического сигнала колебания (306) в механическое усилие и средства (118) измерения угловой скорости (120) упомянутого гиролазера, отличающийся тем, что дополнительно содержит: средства (405) извлечения фазы α и модуля ρ или квадрата модуля ρ упомянутых оптических сигналов (102, 103), средства (409) автоматического регулирования длины оптического резонатора, средства (411) дифференцирования упомянутой фазы α на заданный период времени, чтобы выдать сигнал (408), содержащий общую информацию движения упомянутого гиролазера, средства (410) автоматического регулирования активации упомянутого гиролазера по упомянутому колебательному движению, принимающие упомянутый сигнал (408), из которого извлекают оценку (300) колебательного движения, сообщаемого упомянутому гиролазеру упомянутыми средствами (135) активации, и производящие упомянутый сигнал колебания (306), амплитуду которого регулируют по заданному значению амплитуды (129). Данное изобретение обеспечивает стабильность амплитуды активации и позволяет повысить характеристики систематических ошибок гиролазера. 14 з.п. ф-лы, 4 ил.
Наверх