Оптический интерференционный смеситель лазерного гироскопа


 


Владельцы патента RU 2617130:

Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации (RU)

Оптический интерференционный смеситель состоит из полупрозрачного плоского зеркала, в котором на первой поверхности с полупрозрачным светоотражающим покрытием или пленкой выполнена путем углубления полусферическая поверхность радиуса R1. На второй поверхности полупрозрачного плоского зеркала выполнена фокусирующая линза радиуса R2. При этом R2>R1. Причем продольная ось фокусирующей линзы совпадает с продольной осью полусферической поверхности и осью фотоприемного устройства гироскопа. Толщина полупрозрачного плоского зеркала намного больше величины углубления. Технический результат изобретения состоит в повышении надежности, точности и стабильности измерения величины угловой скорости лазерного гироскопа с треугольной оптической схемой моноблока и исключении технологических моментов фокусировки интерференционного смесителя, фокусирующей линзы и фотоприемного устройства. 4 ил.

 

Изобретение относится к области измерительной техники, а именно к устройствам для измерения угловой скорости в системах ориентации и навигации подвижных объектов, и может быть использовано при организации систем съема и обработки выходной информации с кольцевых лазерных гироскопов в виде интерференционной картины.

Регистрация фазового сдвига в кольцевом интерферометре основана на явлении интерференции, возникающем при суммировании встречных световых лучей. Впервые это явление в 1904 году использовал А. Майкельсон в опытах при изучении гипотезы «Эфира». Аналогичные опыты в 1913 году с целью проверки ньютоновского «светоносного эфира» были проделаны М. Саньяком [Байбородин Ю.В. Основы лазерной техники. - 2-е изд., перераб. и доп. - Киев: Выща шк. Головное изд-во, 1988. - 383 с. - С. 188].

Для выделения сигнала разностной частоты встречных излучений в лазерном гироскопе, выходящих через один из отражательных элементов кольцевого резонатора, последние совмещают в специальном оптическом устройстве - оптическом интерференционном смесителе. Следует отметить, что в лазерном гироскопе лишь небольшая доля энергии оптического сигнала (примерно 1…10%) интерферирует на рабочей грани оптического смесителя. Для осуществления интерференции встречных волн лазерного гироскопа применяют различные схемы оптических смесителей. Принято различать три типа схем оптических смесителей: зеркальные, призменные и голографические [Байбородин Ю.В. Основы лазерной техники. - 2-е изд., перераб. и доп. - Киев: Выща шк. Головное изд-во, 1988. - 383 с. - С. 288].

Для моноблочных конструкций лазерного гироскопа по точности совмещения наиболее предпочтительной является известная призменная схема [Богданов А.Д. Гироскопы на лазерах. - М.: Воениздат, 1973. - 72 с. - С. 36].

Конструктивное решение оптической схемы интерференционного смесителя на основе асимметричной призмы приведено на фиг. 1. Основными элементами данной схемы являются полупрозрачное плоское зеркало, которое одной стороной (зеркальной) обращено к оптическим каналам газового лазера, а другой стороной сопряжено с основанием асимметричной призмы. При прохождении через полупрозрачное плоское зеркало 1-го и 2-го оптических лучей с учетом прохождения 1-го оптического луча через асимметричную призму на ее рабочей грани происходит интерференция встречных волн. Это приводит к появлению в рабочей плоскости А-А интерференционной картины, которая может быть технически обработана, например, с помощью фотоприемного устройства. Для устойчивой работы фотоприемника в цепь обработки, как правило, дополнительно ставится фокусирующая оптическая линза.

Достоинством данной оптической схемы следует считать возможность ее применения практически для любой оптической схемы кольцевого лазера.

К недостаткам следует отнести:

1) наличие двух компонентов - полупрозрачного плоского зеркала и сопряженной с ним асимметричной призмы. Данное положение не позволяет создать интегрированную структуру и накладывает ограничения на технологию создания такой конструкции: сопряжение двух стеклянных поверхностей с заданными оптическими характеристиками;

2) для нормальной работы фотоприемного устройства требуется фокусирующая линза, которая является внешним добавочным элементом на выходе оптической схемы интерференционного смесителя. Это накладывает дополнительные требования технологического характера при юстировке фотоприемника, фокусирующей линзы и непосредственно интерференционного смесителя.

Наиболее близким к заявляемому устройству является оптическая схема, реализующая функции юстировки оптической кольцевой треугольной схемы лазерного гироскопа и выполненная на базе плоского зеркала полного отражения с полусферической поверхностью в его геометрическом центре [Горенштейн И.А., Шульман И.А. Инерциальные навигационные системы. / Под ред. канд. техн. наук И.А. Горенштейна – М.: Машиностроение, 1970. - 230 с. - С. 161-164].

Сущность технического решения прототипа приведена на фиг. 2.

В плоском зеркале (1) толщиной В технологически сформирована полусферическая область (3) радиусом R. Полусферическая поверхность углублена в первую поверхность (2) плоского зеркала на величину h. На первую поверхность (2) плоского зеркала (1) нанесена оптически непрозрачная для лазерной электромагнитной волны пленка из соответствующих материалов/слоев требуемой толщины. Вторая поверхность (4) плоского зеркала (1), в отличие от первой (2), является оптически прозрачной. В конструктивном плане, как правило, реализуются следующие основные геометрические размеры данного устройства: h=1,0…1,5 мм; В=3,0…5,0 мм.

Достоинством данной схемы является ее высокая степень интеграции - все рабочие поверхности выполнены в пределах одного элемента - плоского зеркала (1).

Недостатком данной схемы является отсутствие реальной возможности обеспечивать режим интерференции встречных волн при реализации полного отражения в плоском зеркале. Однако, если изменить свойства пленки на поверхности (2), т.е. реализовать полупрозрачный режим, то в структуре возможно интерференционное преобразование, но технически обработать его практически нельзя.

Общими признаками известных оптических интерференционных смесителей лазерного гироскопа являются:

1) полупрозрачное плоское зеркало, сопряженное с асимметричной призмой, и фокусирующая линза;

2) продольная ось фокусирующей линзы совпадает с перпендикулярной осью рабочей грани асимметричной призмы, полупрозрачного зеркала и осью фотоприемника.

Технический результат изобретения состоит в повышении надежности, точности и стабильности измерения величины угловой скорости лазерного гироскопа с треугольной оптической схемой моноблока и исключении технологических моментов фокусировки интерференционного смесителя, фокусирующей линзы и фотоприемного устройства за счет создания высокоинтегрированного оптического интерференционного смесителя.

Заявляемое устройство содержит:

1) полупрозрачное плоское зеркало, первая поверхность которого покрыта полупрозрачным светоотражающим покрытием/пленкой, а его толщина достаточна для реализации процесса интерференции встречных волн в моноблоке кольцевого лазерного гироскопа на границе раздела его второй поверхности и области расположения фокусирующей линзы и фотоприемного устройства, что обеспечивает достижение технической обработки получаемой интерференционной картины с помощью фотоприемного устройства на заданном удалении зоны экрана интерференции;

2) полусферическую поверхность заданного радиуса, интегрированную с плоским зеркалом и сформированную на его первой поверхности на заданную глубину, причем полусферическая поверхность обращена к оптическим каналам моноблока кольцевого лазерного гироскопа;

3) фокусирующую линзу заданного радиуса, интегрированную с плоским зеркалом и сформированную на второй его поверхности, причем радиус фокусирующей линзы больше радиуса полусферической поверхности, а продольная ось фокусирующей линзы совпадает с продольной осью полусферической поверхности и осью фотоприемного устройства.

Общими для заявляемого устройства и прототипа являются следующие признаки:

1) полупрозрачное плоское зеркало заданной толщины, первая поверхность которого покрыта полупрозрачным светоотражающим покрытием/пленкой;

2) полусферическая поверхность заданного радиуса, интегрированная с плоским зеркалом и сформированная на его первой поверхности, причем полусферическая поверхность обращена к оптическим каналам моноблока кольцевого лазерного гироскопа.

Отличными от прототипа являются следующие признаки:

1) толщина полупрозрачного плоского зеркала достаточна для реализации процесса интерференции встречных волн в моноблоке кольцевого лазерного гироскопа на границе раздела его второй поверхности и области расположения фокусирующей линзы и фотоприемного устройства, что позволяет выполнять техническую обработку получаемой интерференционной картины с помощью фотоприемного устройства на заданном удалении зоны экрана интерференции;

2) фокусирующая линза заданного радиуса, интегрированная с плоским зеркалом и сформированная на второй его поверхности, причем радиус фокусирующей линзы больше радиуса полусферической поверхности, а продольная ось фокусирующей линзы совпадает с продольной осью полусферической поверхности и осью фотоприемного устройства.

Сущность технического решения заявляемого устройства раскрывает чертеж устройства на фиг. 3. Заявляемое устройство содержит: 1 - полупрозрачное плоское зеркало; 2 - первая поверхность плоского зеркала, на которую нанесено полупрозрачное светоотражающее покрытие/пленка; 3 - полусферическая поверхность; 4 - вторая поверхность плоского зеркала, которая является оптически прозрачной для интерферирующих встречных волн; 5 - фокусирующая линза.

Устройство оптического интерференционного смесителя лазерного гироскопа работает следующим образом. Принцип работы иллюстрирует фиг. 4. Предположим для удобства анализа, что заявляемое устройство оптического интерференционного смесителя используется с моноблочным гироскопом с открытыми оптическими каналами [Патент РФ на изобретение. Лазерный гироскоп, №2488773, G01C 19/66, заявка №2011144273/28, 01.11.2011, опубл. 27.07.2013, бюл. №21].

В рабочую зону полусферической поверхности 3, которая сформирована на рабочей поверхности плоского зеркала 2 и имеет рабочий радиус R1, поступают одновременно два луча из каналов оптического кольцевого контура моноблока. Перемещением плоского зеркала 2 в некоторой области, перпендикулярной плоскости оптического кольцевого контура моноблока, осуществляется юстировка оптических лучей лазерного источника. В итоге, система зеркал реализует замкнутый оптический кольцевой контур моноблока. Максимальное углубление полусферической поверхности 3 в плоское зеркало 1 составляет заданную величину h, которая в практических случаях не превышает значение 1,0…1,5 мм.

В случае треугольной оптической схемы моноблока оба оптических луча приходят в рабочую точку полусферической поверхности 3 под одинаковыми углами, равными 30°. На границе раздела двух сред «воздух-стекло» угол преломления будет составлять приблизительно 27°, что не создает полного оптического отражения на следующей границе раздела «стекло-воздух» (вторая поверхность 4 плоского зеркала 1) и определяет конкретную эффективность интерференционного процесса.

Для случая четырехугольной оптической схемы моноблока оба оптических луча приходят в рабочую точку полусферической поверхности 3 под одинаковыми углами, но уже равными 45°. Это приводит к тому, что известный угол преломления будет приблизительно равен 42°, что создает эффект полного оптического отражения на следующей границе раздела «стекло-воздух» (вторая поверхность 4 плоского зеркала 1). Это означает, что оба луча не могут выйти за пределы поверхности 4 полупрозрачного плоского зеркала 1. Данное положение указывает на то, что предложенное устройство может функционировать только с треугольной оптической схемой моноблока.

Учитывая, что коэффициент пропускания плоского зеркала 1 составляет не более 10%, то 90% энергии встречных лучей возвращается в оптический кольцевой контур моноблока. Это обеспечивает устойчивый режим работы гироскопа.

Часть энергии встречных оптических лучей (приблизительно 10%), пройдя границу раздела рабочей поверхности 2, проникают внутрь объема плоского зеркала 1 с углами приблизительно 27°. При достижении второй поверхности 4 оба луча могут выходить на поверхность 4 плоского зеркала 1, образуя интерференционную картину встречных волн в зоне экрана интерференции на удалении L от поверхности 4. Однако расстояние между интерференционными полосами зависит от удаления экрана L и расстояния между точками выхода встречных волн d на поверхности 4. Для обеспечения технической обработки интерференционной картины целесообразно зону экрана максимально приближать к поверхности 4. Как видно из фиг. 4, параметры L и d есть величины взаимообратные. Отсюда следует, что необходимо увеличивать параметр d, который пропорционально зависит от толщины Н плоского зеркала 1. Данное положение определяет следующее ограничение на соотношение параметров толщин плоского зеркала 1: Н>>h. Практические значения толщины плоского зеркала 1 могут составлять Н=10…20 мм при h=1,0…1,5 мм.

Дальнейшее повышение качества технической обработки интерференционной картины требует фокусировки встречных оптических сигналов в плоскости зоны экрана. Для этого на поверхности 4 плоского зеркала 1 интегрально сформирована фокусирующая линза 5, выполненная радиусом R2. Для уверенного захвата преломленных встречных оптических лучей на выходе смесителя должны выполняться следующие ограничения:

1) радиусы сферических поверхностей должны удовлетворять условию R2>R1;

2) продольная ось фокусирующей линзы 5 должна совпадать с продольной осью полусферической поверхности 3 и осью фотоприемного устройства.

Испытаниям подвергался опытный образец, созданный на базе оптического стекла типа КОИ-8 толщиной 12 мм с зеркальной поверхностью на основе пленки алюминия, созданной путем вакуумного напыления и обеспечивающей 10% пропускание мощности оптического сигнала встречных волн на рабочей длине волны 1550,0 нм. При реализации сферических поверхностей R2=50 мм и R1=20 мм удалось получить интерференционную картину в зоне экрана на удалении 5 см и обеспечить техническую обработку интерференционной картины с помощью дифференциального фотоприемника типа ВРХ 48 фирмы Siemens.

Использование заявляемого устройства позволяет существенно снизить технологические затраты как на процесс создания интерференционных смесителей, так и на процесс юстировки кольцевых моноблочных лазерных гироскопов с треугольной оптической схемой, достигая при этом повышение надежности, точности и стабильности измерения величины угловой скорости лазерного гироскопа.

Оптический интерференционный смеситель лазерного гироскопа, включающий полупрозрачное плоское зеркало толщиной Н, первая поверхность которого покрыта полупрозрачным светоотражающим покрытием/пленкой, полусферическую поверхность радиуса R1, которая интегрирована с плоским зеркалом и сформирована на его рабочей поверхности путем углубления на величину h, причем полусферическая поверхность обращена к оптическим каналам моноблока кольцевого лазерного гироскопа, отличающийся тем, что создана фокусирующая линза радиуса R2, которая интегрирована со второй поверхностью полупрозрачного плоского зеркала и ограничена соотношением радиусов сферических поверхностей R2>R1, причем продольная ось фокусирующей линзы совпадает с продольной осью полусферической поверхности и осью фотоприемного устройства гироскопа, а толщина полупрозрачного плоского зеркала существенно увеличена и ограничена соотношением H>>h, что достаточно для реализации процесса интерференции встречных волн в моноблоке кольцевого лазерного гироскопа на границе раздела его второй поверхности и области расположения фокусирующей линзы и обеспечивает достижение технической обработки получаемой интерференционной картины с помощью фотоприемного устройства на заданном удалении зоны экрана интерференции.



 

Похожие патенты:

Изобретение относится к области фазовой микроскопии и касается дифракционного фазового микроскопа. Микроскоп включает в себя два источника света с разными длинами волн, микрообъектив, тубусную линзу, дифракционную решетку на пропускание, первую и вторую линзы дифракционного фазового модуля, пространственный фильтр с окнами для прохождения 1-го и 0-го порядка дифракции, делительный куб, спектральные фильтры и матрицу фотодетекторов.

Устройство для совмещения нескольких лучей включает в себя: секцию сдвига фаз, секцию наложения, секцию регистрации и секцию регулирования фазы. Секция сдвига фаз формирует группу лазерных лучей со сдвигом фаз за счет выполнения сдвига фаз для каждого луча из группы лазерных лучей.

Изображающий микроэллипсометр состоит из источника когерентного освещения 1, пространственного фильтра 2, управляемой полуволновой пластинки 3, коллиматора 4, неполяризующего светоделителя 5, по крайней мере, одной ловушки-поглотителя 6, микрообъектива 7 с фронтальной линзой 8, расположенного под микрообъективом предметного столика 9 с размещенным на нем объектом 10, интерференционного блока 11 формирования изображения.

Изобретение относится к оптическим методам контроля проводящей поверхности в инфракрасном (ИК) излучении и может быть использовано в физико-химических исследованиях динамики роста переходного слоя поверхности, в технологических процессах для контроля толщины и однородности тонкослойных покрытий металлизированных изделий и полупроводниковых подложек, а также в сенсорных устройствах.

Изобретение относится к области оптических способов измерения физических величин с использованием волоконных интерферометров. .

Изобретение относится к измерительной технике в области спектрометрии и представляет собой быстродействующий измеритель длины волны лазерного излучения, распространяющегося по волоконному световоду, построенный на основе двухканального интерферометра Майкельсона.

Изобретение относится к измерительным устройствам и может быть использовано, в частности, для интерферометрических измерений в устройствах, отличающихся оптическими средствами измерения, например для исследования внутренней структуры объекта исследования и получения его изображения с помощью оптического низкокогерентного излучения при медицинской диагностике состояния отдельных органов и систем человека, в том числе in vivo, а также в технической диагностике, например для контроля технологических процессов.

Изобретение относится к технической физике, в частности к исследованиям внутренней структуры объектов оптическими средствами, и может быть использовано для получения изображения объекта методом рефлектометрии и оптической когерентной томографии в медицинской диагностике состояния отдельных органов и систем in vivo или in vitro, а также в технической диагностике, например, для контроля технологических процессов.

Предложенное изобретение относится к устройствам для цифровой обработки информации, поступающей от гиролазера (лазерного гироскопа). Предложенный гиролазер с оптическим резонатором содержит множество зеркал, по меньшей мере один фотодатчик (101), выдающий два оптических сигнала (102, 103) со сдвигом фазы на 90°, при этом упомянутые сигналы (102, 103) являются оцифрованными (401, 402), средства (128) управления положением одного из упомянутых зеркал путем преобразования электрического сигнала в механическое усилие, средства (135) активации упомянутого гиролазера в колебательном движении путем преобразования электрического сигнала колебания (306) в механическое усилие и средства (118) измерения угловой скорости (120) упомянутого гиролазера, отличающийся тем, что дополнительно содержит: средства (405) извлечения фазы α и модуля ρ или квадрата модуля ρ упомянутых оптических сигналов (102, 103), средства (409) автоматического регулирования длины оптического резонатора, средства (411) дифференцирования упомянутой фазы α на заданный период времени, чтобы выдать сигнал (408), содержащий общую информацию движения упомянутого гиролазера, средства (410) автоматического регулирования активации упомянутого гиролазера по упомянутому колебательному движению, принимающие упомянутый сигнал (408), из которого извлекают оценку (300) колебательного движения, сообщаемого упомянутому гиролазеру упомянутыми средствами (135) активации, и производящие упомянутый сигнал колебания (306), амплитуду которого регулируют по заданному значению амплитуды (129).

Изобретение относится к области измерительной техники и касается способа измерения угловой скорости. Для определения угловой скорости формируют два пучка когерентного оптического излучения.

Изобретение относится к лазерной технике, а именно к лазерной гироскопии. Предложен способ измерения угловых перемещений лазерным гироскопом, включающий настройку и работу лазерного гироскопа в двухчастотном режиме на одной из ортогонально поляризованных мод кольцевого лазера лазерного гироскопа, создание частотной подставки с помощью наложения магнитного поля на активный элемент кольцевого лазера с эллиптической или круговой поляризацией излучения в активном элементе кольцевого лазера, выделение информации об угловых перемещениях из информации, поступающей от кольцевого лазера, периодическую поочередную работу кольцевого лазера в двухчастотном режиме на модах с ортогональными поляризациями кольцевого лазера, переключение кольцевого лазера на моду с ортогональной поляризацией после каждого очередного момента завершения работы кольцевого лазера на любой из этих мод, в котором предварительно или при измерении угловых перемещений по амплитуде сигнала вращения, или по величине частотной подставки, или по величине сигнала расстройки периметра, или по напряжению на пьезоголовке определяют промежутки времени во время переключений поляризации для мод с ортогональными поляризациями, в которых будут использованы результаты измерений угловых перемещений с учетом ошибок, обусловленных изменением частоты подставки из-за расстройки периметра кольцевого лазера, вызванной переключением поляризации, предварительно измеряют и/или вычисляют для мод с ортогональными поляризациями зависимость частоты подставки от величины сигнала расстройки периметра резонатора кольцевого лазера, при каждом очередном переключении во время измерений угловых перемещений в выбранных промежутках времени этого переключения в каждой соответствующей моде с ортогональной поляризацией измеряют зависимость сигнала расстройки периметра кольцевого лазера от времени, для каждого выбранного промежутка времени при каждом данном переключении при измерении угловых перемещений рассчитывают и учитывают ошибки, обусловленные изменением величины частоты подставки из-за расстройки периметра резонатора кольцевого лазера при переключении поляризации, используя предварительно измеренную и/или вычисленную зависимость частоты подставки от величины сигнала расстройки периметра резонатора кольцевого лазера для соответствующей моды и измеренную для этой же моды при данном переключении зависимость сигнала расстройки периметра от времени в этом же выбранном промежутке времени данного переключения.

Предложенное изобретение относится к лазерной технике, а именно к лазерной гироскопии. Предложен способ измерения угловых перемещений лазерным гироскопом, включающий настройку и работу лазерного гироскопа в двухчастотном режиме на одной из ортогонально поляризованных мод кольцевого лазера лазерного гироскопа, создание знакопеременной частотной подставки с помощью наложения магнитного поля на активный элемент кольцевого лазера с эллиптической или круговой поляризацией излучения в активном элементе кольцевого лазера, выделение информации об угловых перемещениях из информации, поступающей от кольцевого лазера, периодическую поочередную работу кольцевого лазера в двухчастотном режиме на модах с ортогональными поляризациями кольцевого лазера, переключение кольцевого лазера на моду с ортогональной поляризацией после каждого очередного момента завершения работы кольцевого лазера на любой из этих мод, в котором предварительно измеряют и/или вычисляют для мод с ортогональными поляризациями зависимость частоты подставки от величины расстройки периметра резонатора кольцевого лазера.
Изобретение относится к лазерной технике, а именно к лазерной гироскопии. Предложен способ измерения угловых перемещений лазерным гироскопом, включающий настройку и работу лазерного гироскопа в двухчастотном режиме на одной из ортогонально поляризованных мод кольцевого лазера лазерного гироскопа, создание частотной подставки с помощью наложения магнитного поля на активный элемент кольцевого лазера с эллиптической или круговой поляризацией излучения в активном элементе кольцевого лазера, выделение информации об угловых перемещениях из информации, поступающей от кольцевого лазера, периодическую поочередную работу кольцевого лазера в двухчастотном режиме на модах с ортогональными поляризациями кольцевого лазера, переключение кольцевого лазера на моду с ортогональной поляризацией после каждого очередного момента завершения работы кольцевого лазера на любой из этих мод, в котором предварительно измеряют изменение напряжения на пьезоголовке кольцевого лазера, соответствующее переходу от моды одного знака поляризации к ближайшей моде с ортогональной поляризацией, при измерении угловых перемещений непосредственно перед началом каждого переключения отключают систему регулировки периметра от пьезоголовки датчика, после этого, пока на пьезоголовке не изменилось напряжение от работы на прежней моде, подают на пьезоголовку дополнительное измеренное ранее напряжение, соответствующее переходу от моды одного знака поляризации к ближайшей моде с ортогональной поляризацией, при этом знак подаваемого дополнительного напряжения определяют так, чтобы суммарное напряжение находилось в области регулирования системы регулировки периметра, переключают фазу системы регулировки периметра на настройку и работу на моде с ортогональной поляризацией, подключают систему регулировки периметра к пьезоголовке датчика в выбранное предварительно или во время данного переключения время, после чего система регулировки периметра в автоматическом режиме завершает подстройку частоты кольцевого лазера лазерного гироскопа на моду с ортогональной поляризацией.

Изобретение относится к лазерной технике, а именно к лазерной гироскопии. Предложен способ измерения угловых перемещений лазерным гироскопом, включающий настройку и работу лазерного гироскопа в двухчастотном режиме на одной из ортогонально поляризованных мод кольцевого лазера лазерного гироскопа, создание частотной подставки с помощью магнитного поля, выделение информации об угловых перемещениях из информации, поступающей от кольцевого лазера, периодическую поочередную работу кольцевого лазера в двухчастотном режиме на модах с ортогональными поляризациями кольцевого лазера, переключение кольцевого лазера на моду с ортогональной поляризацией после каждого очередного момента завершения работы кольцевого лазера на любой из этих мод.

Изобретение относится к области волоконной оптики и может быть использовано при конструировании волоконно-оптических гироскопов. Способ предназначен для расширения диапазона измерения угловых скоростей волоконно-оптического гироскопа с открытым контуром, содержащего волоконный кольцевой интерферометр и электронный блок обработки информации, который содержит синхронный детектор для выделения амплитуды сигнала вращения и электронное устройство деления накопленной информации на выходе синхронного детектора на постоянную составляющую сигнала на входе синхронного детектора, а также контур обратной связи по обнулению сигнала рассогласования и содержащего генератор напряжения вспомогательной фазовой модуляции.

Изобретение относится к технике разработки гироскопов. Волоконно-оптический гироскоп (ВОГ) содержит многовитковый замкнутый контур из оптического волокна в виде одномодового двулучепреломляющего световода, излучатель и фотоприемник, два ответвителя, поляризатор, фазовый модулятор и фазовый детектор, а также усилитель, фильтр и генератор.

Изобретение относится к области лазерных информационно-измерительных систем и может быть использовано при создании твердотельных лазерных гироскопов. .

Изобретение относится к области твердотельных кольцевых лазеров или лазерных гироскопов. .
Наверх