Установка для теплофизических испытаний образца из токопроводящего материала при импульсном нагреве

Изобретение относится к теплофизическим испытаниям и может быть использовано при испытаниях токопроводящих материалов (ТМ). Заявлена установка для теплофизических испытаний образца из токопроводящего материала при импульсном нагреве, содержащая дилатометрическую систему, рабочую камеру с вакуумной средой, термопары. Рабочая камера оснащена токоподводами, связанными с образцом, цанговыми зажимами для крепления образца. Дилатометрическая система установлена непосредственно на рабочей части образца. Дилатометрическая система и термопары связаны с контрольно-измерительной аппаратурой, которая, в свою очередь, связана с ПЭВМ. Дилатометрическая система состоит из датчика перемещений индуктивного коаксиального. Один токоподвод связан с образцом через гибкий проводник, а второй имеет с ним жесткую связь. Технический результат: возможность теплофизических испытаний ТМ с получением комплекса теплофизических свойств (теплового расширения, удельной теплоемкости, относительного электросопротивления) при импульсном нагреве (со скоростью ~100-1000 град/с) до температуры ~800°С в вакууме с одновременной защитой персонала и окружающей среды от воздействия испытуемых ТМ путем герметизации образцов из ТМ. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к теплофизическим испытаниям, а конкретно к испытаниям токопроводящих материалов (ТМ) с целью получения комплекса теплофизических свойств (теплового расширения, удельной теплоемкости, относительного электросопротивления) при импульсном нагреве (со скоростью ~100-10000 град/с) до температуры ~800°С в вакууме.

Известны дилатометры для исследования кинетики фазовых превращений в сталях и сплавах при быстром нагреве, например, емкостной дилатометр, где образец нагревается проходящим через него электрическим током [С.И. Новикова. Тепловое расширение твердых тел., М. Наука, 1974, с.79-80].

Недостатком этого устройства является невозможность определения комплекса теплофизических свойств различных токопроводящих материалов, имеется возможность только теплового расширения, а также отсутствие рабочей камеры для испытания образцов высокой токсичности, пирофорности, химической и радиационной активности.

Известен способ определения теплоемкости материала одновременно с определением его температурного расширения в вакуумной среде на образцах стержневой формы при квазистатическом нагреве с постоянной скоростью [п. RU 2439511 с приоритетом от 09.06.2010, опубликован 10.01.2012, G01К 17/00, G01N 25/20].

Недостатком известного способа является сложная организация стабильного теплового потока и его регистрация, а также малое количество определяемых характеристик (теплового расширения, удельной теплоемкости). Способ определения теплоемкости материала одновременно с определением его температурного расширения в вакуумной среде на образцах стержневой формы при квазистатическом нагреве с постоянной скоростью выбран в качестве прототипа.

Задачей, стоящей перед авторами предполагаемого изобретения, является разработка установки для теплофизических испытаний образцов из ТМ при импульсном нагреве с возможностью измерения теплового расширения на рабочей части образца, удельной теплоемкости, относительного электросопротивления в одном опыте при постоянном нарастании температуры с защитой персонала и окружающей среды от воздействия испытуемых ТМ.

Техническим результатом предлагаемого решения является возможность теплофизических испытаний ТМ с получением комплекса теплофизических свойств (теплового расширения, удельной теплоемкости, относительного электросопротивления) при импульсном нагреве (со скоростью ~100-1000 град/с) до температуры ~800°С в вакууме с одновременной защитой персонала и окружающей среды от воздействия испытуемых ТМ путем герметизации образцов из ТМ.

Технический результат достигается тем, что в установке для теплофизических испытаний образцов из ТМ при импульсном нагреве, содержащей дилатометрическую систему, рабочую камеру с вакуумной средой, термопары, согласно изобретению, рабочая камера оснащена токоподводами, связанными с образцом, цанговыми зажимами для крепления образца, дилатометрическая система установлена непосредственно на рабочей части образца, дилатометрическая система и термопары связаны с контрольно-измерительной аппаратурой, которая, в свою очередь, связана с ПЭВМ.

Дилатометрическая система состоит из датчика перемещений индуктивного коаксиального.

Один токоподвод связан с образцом через гибкий проводник, а второй имеет с ним жесткую связь.

Возможность проведения испытаний образцов ТМ при повышенных температурах достигается применением герметичной вакуумной рабочей камеры, в которой образцы ТМ закрепляются в цанговых зажимах, и пропусканием через них электрического тока посредством токоподводов. Требуемая точность определения теплового расширения достигается за счет установки дилатометрической системы непосредственно на рабочей части образца, регистрацией сигналов в цифровом виде с дилатометрической системы и термопар через контрольно-измерительную аппаратуру на ПЭВМ. Для обеспечения свободного теплового расширения образца в процессе импульсного нагрева один конец образца жестко связан с одним из токоподводов, а другой подсоединен к токоподводу через гибкий проводник. Обработка сигналов, поступающих с дилатометрической системы и термопар на ПЭВМ через контрольно-измерительную аппаратуру повышает достоверность определения характеристик испытуемых образцов.

Таким образом, заявляемое техническое решение обеспечивает возможность проведения теплофизических испытаний образов из ТМ при импульсном нагреве со скоростями ~100-1000 град/с.

На фиг.1 показан пример конкретного исполнения рабочей камеры установки для теплофизических испытаний образцов из ТМ при импульсном нагреве, где:

1 - колпак;

2 - основание;

3 - образец;

4 - цанговый зажим;

5 - термопары;

6 - датчик перемещений индуктивный коаксиальный;

7 - герметичный разъем;

8 - токоподвод;

9 - токоподвод с гибким проводником.

Рабочая камера состоит из основания 2 с токоподводом 8, токоподводом с гибким проводником 9 и колпака 1. Образец 3 верхним концом зажат в цанговом зажиме 4, жестко соединенным с токоподводом 8. На нижнем конце образца 3 закреплен цанговый зажим 4, который присоединен к токоподводу с гибким проводником 9. К поверхности образца привариваются термопары 5, в средней его части закрепляется датчик перемещений индуктивный коаксиальный 6. Для вывода сигналов в основании 2 установлен электрически изолированный герметичный разъем 7. Источником тока для разогрева образца является батарея аккумуляторов с номинальным напряжением 24 В (на фиг.1 не показана). Подача электрического импульса происходит автоматически с помощью коммутирующего устройства (на фиг.1 не показано). Скорость нагрева образца задается включенным последовательно с образцом 3 гасящим сопротивлением (на фиг.1 не показан) и может изменяться от 200 до 15000 град/с.

Эксперимент по определению комплекса теплофизических свойств состоит из предварительного и нескольких основных нагревов образца 3 с последующими охлаждениями. Предварительный нагрев используется для определения теплофизических свойств исследуемого материала при нормальной температуре. Приращение температуры при этом не превышает 25°С во избежание заметного изменения определяемых свойств. Последующие основные нагревы образца 3 производятся до требуемой температуры испытаний, при этом теплофизические свойства определяются как функции температуры и скорости нагрева. Экспериментальная информация, необходимая для определения теплофизических свойств, регистрируется как при нагреве, так и при охлаждении образца 3. При нагреве производится запись в виде функций от времени следующих параметров: сигналов датчика перемещений индуктивного коаксиального 6, измеряющего тепловое расширение; разности потенциалов на рабочей части образца 3; тока, протекающего через образец 3; термо-эдс термопар 5. При охлаждении определяется распределение температуры вдоль оси образца 3.

Тепловое расширение измеряется датчиком перемещений индуктивным коаксиальным 6. Для определения разности потенциалов на базовой длине образца 3 используются крепежные иглы датчика перемещений индуктивного коаксиального 6. Протекающий через образец 3 ток определяется через измерение падения напряжения на резисторе последовательно с образцом 3, включенным в силовую электрическую цепь (на фиг.1 не показан). Распределение температуры по длине образца 3 при его охлаждении измеряется четырьмя термопарами 5 с диаметром электродов 50 мкм. Одна из этих термопар 5 служит для измерения температуры образца 3 при его нагреве. Термопары 5 привариваются к поверхности образца 3 точечной электрической сваркой раздельным способом на определенном расстоянии друг от друга. Разметка образца 3 по шаблону и приварка термопар 5 производятся под увеличением с использованием микроскопа.

Методика расчета теплофизических характеристик

а) Удельная теплоемкость и энтальпия

Удельная теплоемкость при нормальной температуре определяется по формуле

c p 0 = Q m Δ t ( 1 )

где Q - количество тепла, полученное рабочей частью образца 3, Δt - приращение температуры, m - масса рабочей части образца 3. Для расчета Ср0 используются экспериментальные результаты предварительного нагрева образца 3, в котором как функции времени регистрируются термо-эдс термопар 5, ток I0(τ), протекающий через образец 3, и падение напряжения U0(τ) на базе L0 датчика перемещений индуктивного коаксиального 6. Тогда

Q = 0 τ n U 0 ( τ ) I 0 ( τ ) d τ ( 2 )

где τn - время предварительного нагрева. Приращение температуры Δt определяется по термо-эдс термопар 5 в момент времени τn. С учетом (1) и (2) получим выражение для расчета удельной теплоемкости, которую, с учетом малой величины Δt, в предварительного нагреве можно считать постоянной

c p 0 = 0 τ n U 0 ( τ ) I 0 ( τ ) d τ m t . ( 3 )

Масса рабочей части m определяется расчетным путем, исходя из известной массы всего образца 3, его диаметра и предположения о равномерном распределении массы по длине образца 3.

При последующих основных нагревах образца 3 удельная теплоемкость при произвольной температуре испытаний t определяется зависимостью

c p ( t ) = U ( t ) I ( t ) d τ m d τ ( 4 )

или

c p ( t ) = U ( t ) I ( t ) m ( d τ / d τ ) , ( 5 )

где I(t), U(t), t - мгновенные значения тока, напряжения, температуры, регистрируемые при последующих основных нагревах образца 3. Основную погрешность при определении cp(t) вносит абсолютное значение скорости нарастания температуры. В наибольшей степени эта погрешность проявляется при температурах, близких к нормальной. Исключение из расчетов абсолютного значения скорости V=dt/dτ существенно повышает точность определения cp(t). Это достигается при расчете температурной зависимости относительного изменения cp(t)/cpo

c p ( t ) c p 0 = U ( t ) I ( t ) U ( t 0 ) I ( t 0 ) V ( t 0 ) V ( t ) ( 6 )

Произведение отношения cp(t)/cpo, рассчитанного по результатам последующих основных нагревах, на значение сро, полученное для этого же образца в предварительном нагреве, дает удельную теплоемкость cp(t), как функцию температуры.

Изложенную методику определения температурного изменения удельной теплоемкости целесообразно применять в случае, если имеются нарушения монотонности зависимостей температуры от времени и энтальпии от температуры, т.е. если в исследуемом температурном интервале в материале образца 3 происходят процессы, характеризующиеся некоторым тепловым эффектом (например, фазовые превращения и др.) При монотонном характере указанных зависимостей на основании экспериментальных данных находится энтальпия, которая как функция температуры определяется из выражения

H ( t ) = 1 m 0 τ n U ( τ ) I ( τ ) d τ . ( 7 )

После этого удельная теплоемкость определяется как производная от энтальпии по температуре cp(t)=dH(t)/dt.

б) Тепловое расширение

Для определения характеристик теплового расширения используются зависимости температуры и расширения от времени, полученные в последующих основных нагревах. Абсолютное тепловое расширение рабочей части образца 3 определяется как удлинение, регистрируемое датчиком перемещений индуктивным коаксиальным 6. Для одних и тех же моментов времени определяется температура образца 3 и удлинение его рабочей части, по которым строится дилатометрическая кривая.

в) Относительное электросопротивление

При определении относительного электросопротивления используются осциллограммы последующих основных нагревов: падение напряжения U(τ), ток I(τ), температура t(τ). Относительное электросопротивление определяется без учета изменения геометрических размеров при нагреве образца 3, что дает дополнительную погрешность ~1%. При таком допущении относительное электросопротивление представляет собой отношение сопротивления R(t) рабочей части образца 3 при температуре t к его значению при начальной температуре испытаний R(t0), т.е.

r ( t ) r ( t 0 ) = R ( t ) R ( t 0 ) и л и r ( t ) r ( t 0 ) = U ( t ) I ( t ) I ( t 0 ) U ( t 0 ) . ( 8 )

Таким образом, определяя из осциллограмм последующих основных нагревов для одного и того же момента времени напряжение и ток, по соотношению (8) рассчитывается относительное электросопротивление (температурное изменение электросопротивления) при конкретной температуре, а в конечном счете - зависимость относительного электросопротивления от температуры в исследованном диапазоне.

Колпак 1 и основание 2 образуют герметичную полость для создания вакуума, предотвращающего конвективный теплообмен с окружающей средой, а также коррозию образцов ТМ при испытании их с повышенной температурой.

Благодаря заявляемой совокупности признаков решения появляется возможность теплофизических испытаний ТМ с получением комплекса теплофизических свойств (теплового расширения, удельной теплоемкости, относительного электросопротивления, энтальпии) при импульсном нагреве (со скоростью ~100-1000 град/с) до температуры ~800°С в вакууме с одновременной защитой персонала и окружающей среды от воздействия испытуемых ТМ.

Изготовлен опытный образец установки, испытан, результаты подтвердили работоспособность установки и получение нового технического результата.

1. Установка для теплофизических испытаний образца из токопроводящего материала при импульсном нагреве, содержащая дилатометрическую систему, рабочую камеру с вакуумной средой, термопары, отличающаяся тем, что рабочая камера оснащена токоподводами, связанными с образцом, цанговыми зажимами для крепления образца, дилатометрическая система установлена непосредственно на рабочей части образца, дилатометрическая система и термопары связаны с контрольно-измерительной аппаратурой, которая, в свою очередь, связана с ПЭВМ.

2. Установка для теплофизических испытаний образца из токопроводящего материала при импульсном нагреве по п.1, отличающаяся тем, что дилатометрическая система состоит из датчика перемещений индуктивного коаксиального.

3. Установка для теплофизических испытаний образца из токопроводящего материала при импульсном нагреве по п.1, отличающаяся тем, что один токоподвод связан с образцом через гибкий проводник, а второй имеет с ним жесткую связь.



 

Похожие патенты:

Изобретение относится к теплофизике и может быть использовано для определения радиационных характеристик поверхностей и покрытий твердых тел. Согласно заявленному способу определения степени черноты измеряют скорость изменения температуры и температуру образцов с покрытиями.

Изобретение относится к механическим и теплофизическим испытаниям и может быть использовано в процессе испытаний токопроводящих материалов. Заявлена установка для механических и теплофизических испытаний образца из токопроводящего материала при импульсном нагреве, содержащая рабочую вакуумную камеру с токоподводами, цанговыми зажимами для крепления образца, регистрирующую аппаратуру, нагружающий элемент, динамометр.

Изобретение относится к области исследования свойств пористых материалов, в частности к методам определения величины смачиваемости и распределения пор по размерам.

Изобретение относится к области исследования и анализа теплофизических свойств материалов и может быть использовано при определении коэффициента теплопроводности сверхтонких жидких теплоизоляционных покрытий - u.

Изобретение относится к области термической обработки стали и сплавов и может быть применено для построения кадастра жидкостей по их охлаждающей способности. .

Изобретение относится к области теплофизических измерений и может быть использовано для определения тепловых свойств твердых тел и газов. .

Изобретение относится к области измерений свойств и тестирования материалов, в частности, к способам определения магнитокалорического эффекта (МКЭ). .

Изобретение относится к области термической обработки стали и сплавов для повышения их механических свойств. .

Изобретение относится к области исследования свойств материалов с помощью калориметрических измерений и может быть использовано в бомбовых калориметрах переменной температуры для определения теплоты сгорания топлива.

Изобретение относится к приборам и методам исследования теплофизических свойств веществ с применением дифференциального калориметра и может найти применение при исследовании веществ и смесей веществ естественного происхождения, применяемых в пищевой и фармацевтической отраслях промышленности. Согласно заявленному способу измерения тепловых эффектов в камеры дифференциального калориметра помещают два идентичных исследуемых образца, а модулирующее воздействие подают на калориметрические камеры дифференциально. Благодаря этому регистрируемые тепловые эффекты, вызванные реверсивной составляющей реакции образцов на модулирующее воздействие, будут суммироваться, что приведет к повышению чувствительности. В калориметре для осуществления предложенного метода применена тепловая схема калориметра с компенсацией теплового потока. Прибор имеет камеры, снабженные датчиками температуры в виде термопар, одним из материалов которых является материал самой камеры и дистанционные индивидуальные нагреватели камер на излучающих светодиодах. Предложенная система выделения реверсивной составляющей теплового эффекта с применением синхронных детекторов выдает сигнал, содержащий полную информацию об амплитуде и фазе выделенной реверсивной составляющей. Технический результат - повышение чувствительности и точности измерений при применении модуляционного метода. 2 н.п ф-лы, 2 ил.

Изобретение относится к области исследования свойств взаимодействия поверхности с флюидами и может быть использовано для определения теплоты адсорбции и смачивания поверхности. Заявлена измерительная ячейка калориметра, состоящая из изолированных друг от друга верхней и нижней частей, сообщающихся между собой посредством подвижного разъемного герметичного соединения. Ячейка снабжена двумя коаксиально расположенными трубками, выполненными с возможностью независимого подключения к внешним устройствам. Внешняя трубка подсоединена к верхней части ячейки, а внутренняя трубка подсоединена к нижней части ячейки через указанное подвижное разъемное герметичное соединение и выполнена подвижной. Технический результат - расширение функциональных возможностей устройства. 1 н. и 7 з.п. ф-лы, 10 ил.

Изобретение относится к области исследования свойств материалов с помощью калориметрических измерений и может быть использовано в калориметрах переменной температуры. Предложены три варианта калориметра переменной температуры, содержащего заполненный жидкостью калориметрический сосуд с камерой для проведения исследуемого процесса, окруженный калориметрической оболочкой, датчик температуры калориметрического сосуда и вычислительный блок для определения количества выделившейся теплоты по методу теплового эквивалента. Во всех вариантах калориметра на калориметрической оболочке дополнительно установлены датчики температуры, что позволяет осуществлять точное измерение температуры оболочки благодаря суммированию показаний всех термометров на ней. Во втором варианте изобретения калориметрическая оболочка выполнена изотермической, в третьем - адиабатической, и калориметр оснащен терморегулятором оболочки. Технический результат - повышение точности калориметрических измерений. 3 н.п. ф-лы, 1 ил.

Изобретение относится к области исследования свойств многокомпонентных сред и может найти применение в различных отраслях промышленности, например как нефтегазовая и химическая промышленности. Способы определения количественного состава многокомпонентной среды предусматривают размещение образца в ячейке дифференциального сканирующего калориметра и подачу в ячейку жидкости с известным коэффициентом теплового объемного расширения и известной объемной теплоемкостью. Определяют суммарную теплоемкость и суммарный коэффициент теплового объемного расширения образца и жидкости, находящихся в ячейке, и путем решения системы уравнения определяют объемы компонент, составляющих образец. Технический результат - повышение точности, надежности и скорости определения объемов компонент многокомпонентной среды. 3 н. и 21 з.п. ф-лы, 3 ил.

Изобретение относится к области измерительной техники и может быть использовано для определения теплового потока, исходящего от теплонесущей текучей среды. Заявлен способ определения теплового потока (dQ/dt), исходящего от теплонесущей текучей среды (12), которая представляет собой смесь по меньшей мере двух различных текучих сред и которая протекает через пространство (11) потока от первого положения, где она имеет первую температуру (Т1), ко второму положению, где она имеет благодаря этому тепловому потоку (dQ/dt) вторую температуру (Т2), которая ниже, чем упомянутая первая температура (Т1). Плотность и удельную теплоемкость упомянутой теплонесущей текучей среды (12) определяют путем измерения скорости (vs) звука в упомянутой текучей среде, а упомянутые плотность и удельную теплоемкость упомянутой теплонесущей текучей среды (12) используют для определения теплового потока (dQ/dt). Также предложено устройство для реализации указанного способа, включающее средство для измерения дифференциальной температуры, средство для измерения абсолютной температуры, средство для измерения скорости звука в текучей среде, средство для измерения объемного расхода, а также блок оценки для определения теплового потока на основании полученных данных. Технический результат - повышение точности определения теплового потока, исходящего от теплонесущей текучей среды. 2 н. и 18 з.п. ф-лы, 2 ил.

Изобретение относится к технологиям сушки и термовлажностной обработки пористых проницаемых материалов, в частности к способам определения коэффициентов тепло- и массопроводности пористых материалов. Данный способ заключается в определении значений физических констант (объемной плотности, удельной теплоемкости, массоемкости), разности температур или парциальных давлений, определении внутренней эффективной поверхности переноса субстанций (теплоты, влаги) и расчете коэффициентов тепло- и массопроводности по квантово-термодинамическим уравнениям, полученным аналитическим путем. Техническим результатом изобретения является упрощение процесса определения коэффициентов тепло- и массопроводности, а также обеспечение получения точных и однозначных результатов измерения указанных параметров. 4 ил., 1 табл.
Наверх