Способ управления разогревом энергетической установки



Способ управления разогревом энергетической установки
Способ управления разогревом энергетической установки

 


Владельцы патента RU 2523625:

Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" (RU)

Изобретение относится к области управления энергетическими стационарными и транспортными установками электростанций и станций теплоснабжения с любым видом горючего, в том числе ядерного горючего, и может быть использовано в системах разогрева энергетических установок с принудительной и естественной циркуляцией теплоносителя. Формируют разность сигналов измеренной и заданной скорости изменения температуры теплоносителя, затем интегрируют эту разность сигналов и осуществляют управление регулятором разогрева по сумме сигнала управления по мощности и сигнала результата интегрирования. Дополнительно формируют характеристику отбираемой мощности, затем по этой характеристике задают сигнал, характеризующий отбираемую мощность. При формировании характеристики отбираемой мощности дополнительно учитывают величину и скорость изменения расхода используемой среды второго контура. 2 ил.

 

Изобретение относится к области управления энергетическими стационарными и транспортными установками электростанций и станций теплоснабжения с любым видом горючего, в том числе ядерного горючего, и может быть использовано в системах разогрева энергетических установок с принудительной и естественной циркуляцией теплоносителя.

Известны способы управления разогревом энергетической установки с заданной скоростью изменения температуры теплоносителя путем изменения мощности установки регулятором по сигналу управления, пропорционального разности измеренной и заданной температуры [Африкантов И.И. Судовые атомные паропроизводящие установки. Изд. «Судостроение», 1965. Стр. 239], а также по сигналу разности измеренной и заданной скорости изменения температуры теплоносителя [Африкантов И.И. Судовые атомные паропроизводящие установки. Изд. «Судостроение», 1965. Стр. 246].

Недостатком известных способов является слабая устойчивость при возникновении возмущений в системе регулирования по мощности установки, расходу питательной воды или циркуляции теплоносителя.

Наиболее близким по технической сущности является способ управления разогревом энергетической установки с заданной скоростью изменения температуры теплоносителя путем изменения мощности установки регулятором по сигналу управления, пропорционального разности сигналов измеренной и заданной мощности, при этом заданная мощность равна сумме сигнала, который равен величине расхода питательной воды, и сигнала заданной мощности разогрева, обеспечивающей заданную скорость разогрева, формируют разность сигналов измеренной и заданной скорости изменения температуры теплоносителя, интегрируют ее и осуществляют управление регулятором разогрева по сумме сигнала управления по разности сигналов мощностей с сигналом результата интегрирования [Патент на изобретение №2190266 РФ. Способ управления разогревом энергетической установки] (Прототип).

Недостатком известного способа является ухудшение качества переходного процесса при изменении расхода питательной воды до образования перегретого пара в установке. Ухудшение качества переходного процесса объясняется следующим. Разогрев установки происходит, когда мощность установки превышает отбираемую мощность. Скорость изменения температуры теплоносителя пропорциональна разности между мощностью установки и отбираемой мощностью. В энергетической установке с перегретым паром отбираемая мощность (с учетом тепловых потерь) определяется расходом питательной воды. Но в процессе разогрева установки пар становится перегретым только при температуре свыше 200°C (точнее 201.4°C при давлении 1.6 МПа), до этого пар начиная со 100°C находится на линии насыщения. Теплоотдача жидкости к насыщенному пару выше, чем к ненасыщенному. Соответственно, пока пар находится на линии насыщения, отбираемая мощность будет ниже значения, определяемого расходом питательной воды. Следовательно, при одном и том же расходе питательной воды, в зависимости от фазового состояния теплоносителя второго контура, отбираемая мощность будет различаться. Пока пар не станет перегретым, отбираемая мощность будет ниже заданного уровня, что приведет к увеличению скорости разогрева. В результате чего при изменении расхода питательной воды до перегрева пара выше линии насыщения увеличивается перерегулирование и время перерегулирования по мощности установки, скорости изменения температуры и перемещению рабочего органа регулятора. Это снижает безопасность и ресурс установки.

Задачей изобретения является повышение качества переходного процесса, безопасности и ресурса установки.

Поставленная задача и получаемый технический результат реализуются предложенной совокупностью существенных признаков.

Способ управления разогревом энергетической установки с заданной скоростью изменения температуры теплоносителя путем изменения мощности установки регулятором по сигналу управления, пропорционального разности сигналов измеренной мощности и заданной мощности, состоящий в том, что формируют разность сигналов измеренной и заданной скорости изменения температуры теплоносителя, затем интегрируют эту разность сигналов и осуществляют управление регулятором разогрева по сумме сигнала управления по мощности и сигнала результата интегрирования, причем дополнительно формируют характеристику отбираемой мощности, затем по этой характеристике задают сигнал, характеризующий отбираемую мощность, при формировании характеристики отбираемой мощности дополнительно учитывают величину и скорость изменения расхода используемой среды второго контура.

Предложенное решение поясняют иллюстративные материалы, где:

Фиг.1 - схемное решение примера реализации предлагаемого способа;

Фиг.2 - результат математического моделирования переходных процессов разогрева по способу прототипа (кривая 1 - алгоритм с интегратором, где заданная мощность равна сумме сигнала, который равен величине расхода питательной воды, и сигнала заданной мощности разогрева) и предлагаемого способа (кривая 2 - алгоритм с интегратором, где заданная мощность равна сумме сигнала фактически отбираемой мощности и сигнала заданной мощности разогрева).

На фигурах позициями обозначены используемые элементы и воздействующие факторы.

1 - регулятор;

2, 3, 5 и 6 - алгебраические сумматоры;

4 - интегратор;

7 - K1Nи - сигнал измеренной мощности;

8 - K1Nу - сигнал, характеризующий отбираемую мощность;

9 - K1Nур - сигнал заданной мощности разогрева;

10 - Δу - сигнал управления;

11 - K 2 t и о - сигнал измеренной температуры;

12 - K 2 t о с т о - сигнал заданной температуры остановки разогрева;

13 - K 2 Δ t о с т о - сигнал остановки разогрева по температуре ( K 2 Δ t о с т о = K 2 t о с т о K 2 t и о ) ;

14 - K 3 d t и о / d t - сигнал скорости изменения измеренной температуры;

15 - K 3 d t у о / d t - сигнал заданной скорости изменения температуры;

16 - Δс - сигнал на входе интегратора 4 ( равный разности между заданной K 3 d t у о / d t и измеренной K 3 d t и о / d t скоростью разогрева);

17 - Δи - сигнал результата интегрирования ( сигнал коррекции уровня мощности установки по скорости разогрева);

18 - формирователь характеристики задатчика отбираемой мощности;

19 - сигнал расхода питательной воды.

На представленных на фиг.2 трех графиках в осях: мощность - время (а), скорость разогрева - время (б), температура на выходе из активной зоны - время (в):

Кривая 1 - характеризует процессы в прототипе (алгоритм с интегратором, где заданная мощность равна сумме сигнала, который равен величине расхода питательной воды, и сигнала заданной мощности разогрева).

Кривая 2 - характеризует процессы в предлагаемом способе (алгоритм с интегратором, где заданная мощность равна сумме сигнала фактически отбираемой мощности и сигнала заданной мощности разогрева).

Пример реализации предлагаемого способа управлением разогревом энергетической установки показан на фиг.1 с пояснениями в описании, где использованы следующие обозначения:

1 - регулятор, 2, 3, 5 и 6 - алгебраические сумматоры; 4 - интегратор; 7 - K1Nи - сигнал измеренной мощности; 8 - K1Ny - сигнал отбираемой мощности; 9 - K1Nур - сигнал заданной мощности разогрева; 10 - Δу - сигнал управления; 11 - K 2 t и о - сигнал измеренной температуры; 12 - K 2 t о с т о - сигнал заданной температуры остановки разогрева; 13 - K 2 Δ t о с т о - сигнал остановки разогрева по температуре ( K 2 Δ t о с т о = K 2 t о с т о K 2 t и о ) ; 14 - K 3 d t и о / d t - сигнал скорости изменения измеренной температуры; 15 - K 3 d t у о / d t - сигнал заданной скорости изменения температуры; 16 - Δс - сигнал на входе интегратора 4 ( равный разности между заданной и измеренной скоростью разогрева); 17 - Δи - сигнал результата интегрирования ( сигнал коррекции уровня мощности установки по скорости разогрева); 18 - формирователь характеристики задатчика отбираемой мощности; 19 - сигнал расхода питательной воды.

Разогрев по предлагаемому способу производится следующим образом.

Перед началом процесса разогрева устанавливаются: заданная скорость разогрева, скорость изменения температуры K 3 d t у о / d t (15). Формирователь характеристики задатчика отбираемой мощности (18) преобразует сигнал расхода питательной воды (19) в сигнал отбираемой мощности (8). Сигнал заданной мощности на выходе алгебраического сумматора (6), равный сумме сигналов отбираемой мощности K1Nу (8) и заданной мощности разогрева K1Nур (9), устанавливающей заданную скорость изменения температуры K 3 d t у о / d t (15), подается на вход алгебраического сумматора 5, с выхода которого сигнал управления Δу=K1Nу+K1Nур-K1Nи (10) поступает на вход автоматического регулятора 1. Под воздействием регулятора 1 в энергетической установке увеличивается мощность. Когда сигнал измеренной мощности K1Nи (7) станет равным заданному значению K1Nу+K1Nур, сигнал управления будет равен нулю, Δу=0. Это приведет к разогреву теплоносителя со скоростью изменения температуры, соответствующей установленной в энергетической установке мощности. Если скорость разогрева теплоносителя не будет равна заданной, это будет означать, что поступающий на вход алгебраического сумматора 3 сигнал измеренной скорости изменения температуры K 3 d t и о / d t (14) не будет равен сигналу заданной скорости изменения температуры K 3 d t у о / d t (15). В этом случае разность этих сигналов Δс (16) поступит на вход интегратора 4, с выхода которого сигнал результата интегрирования Δи (17) поступит на вход алгебраического сумматора 5. Если скорость увеличения температуры K 3 d t и о / d t (14) меньше заданной K 3 d t у о / d t (15), то сигнал Δи (17) на выходе интегратора 4 будет иметь такой же знак, как у сигнала заданной мощности разогрева. В результате чего сигнал управления Δу (10), поступающий на вход регулятора 1, станет равен алгебраической сумме сигналов K1Nу (8), K1Nур (9), K1Nи (7) и Δи (17). Под воздействием регулятора мощность установки будет увеличиваться до момента, когда сигнал управления Δу (10) станет равным нулю, а сигнал результата интегрирования Δи=const. Наступит установившийся режим регулирования заданной скорости разогрева. При этом сигнал измеренной мощности, K1Nи (7), будет равен сумме сигналов K1Nу+K1Nур и сигнала результата интегрирования, Δи (17), то есть K1Nи=K1Nу+K1Nур+Δи. В энергетической установке установится значение генерируемой мощности, превышение которой над отбираемой мощностью обеспечивает заданную скорость изменения температуры K 3 d t у о / d t (15).

Если скорость увеличения температуры K 3 d t и о / d t (14) окажется меньше заданной K 3 d t у о / d t (15), тогда по сравнению с первым случаем поступающий на вход интегратора 4 сигнал Δс (16) изменит свой знак. Соответственно изменит свой знак сигнал Δи на выходе интегратора 4 и будет противоположен знаку сигнала заданной мощности разогрева K1Nур (9). Регулятор 1 будет уменьшать мощность установки до наступления равенств: Δу=0, K1Nи=K1Nу+K1Nур-Δи, Δи=const, K 3 d t у о / d t = K 3 d t и о / d t . Интегратор 4 позволяет установить скорость изменения температуры равной заданному значению путем изменения, коррекции мощности установки.

Синхронизация отбора и генерации мощности в установке позволяет уменьшить величину и время перерегулирования по измеренной мощности, скорости изменения температуры и перемещению рабочего органа регулятора, повышает устойчивость процесса регулирования, уменьшает значения термических напряжений в конструкциях энергоустановки в течение всего процесса разогрева. В результате повышается безопасность и ресурс установки.

На фиг.2 на трех графиках в осях: мощность - время (а), скорость разогрева - время (б), температура на выходе из активной зоны - время (в), показан результат математического моделирования переходных процессов разогрева по способу прототипа, кривая 1, и предлагаемого способа, кривая 2, где заданная мощность равна сумме сигнала фактически отбираемой мощности и сигнала заданной мощности разогрева. Величины и время изменения измеренной мощности N, температуры t° и скорости ее изменения dt°/dt в предлагаемом способе меньше, чем в прототипе.

Способ управления разогревом энергетической установки с заданной скоростью изменения температуры теплоносителя путем изменения мощности установки регулятором по сигналу управления, пропорционального разности сигналов измеренной мощности и заданной мощности, состоящий в том, что формируют разность сигналов измеренной и заданной скорости изменения температуры теплоносителя, затем интегрируют эту разность сигналов и осуществляют управление регулятором разогрева по сумме сигнала управления по мощности и сигнала результата интегрирования, отличающийся тем, что дополнительно формируют характеристику отбираемой мощности, затем по этой характеристике задают сигнал, характеризующий отбираемую мощность, при формировании характеристики отбираемой мощности дополнительно учитывают величину и скорость изменения расхода используемой среды второго контура.



 

Похожие патенты:

Изобретение относится к области управления ядерными реакторами. .

Изобретение относится к области управления ядерными реакторами. .

Изобретение относится к области управления ядерными реакторами и может быть использовано в системах управления и защиты ядерных реакторов. .

Изобретение относится к способам регулирования параметров ядерного реактора и может быть использовано при регулировании ядерных энергетических установок с водо-водяными реакторами под давлением с газовыми системами компенсации.

Изобретение относится к области атомной энергетики, а именно к электронному оборудованию систем группового и индивидуального управления органами регулирования системы управления и защиты ядерного реактора.

Изобретение относится к системам релейного регулирования параметров ядерного реактора и может быть использовано при регулировании ядерных энергетических установок с водо-водяными реакторами под давлением с газовыми системами компенсации.

Изобретение относится к электронному оборудованию автоматизированных систем управления технологическими процессами и управляющих систем безопасности атомных электростанций (АЭС) и предназначено для обеспечения функций безопасности по управлению АЭС с водо-водяными энергетическими реакторами (ВВЭР).

Изобретение относится к области систем управления и защиты ядерных энергетических реакторов. .

Изобретение относится к области автоматического регулирования мощности ядерного реактора. .

Изобретение относится к области систем управления и защиты ядерных энергетических реакторов. .

Изобретение относится к области управления ядерным реактором с принудительной циркуляцией теплоносителя стационарных и транспортных установок. Способ управления ядерным реактором осуществляется путем поддержания заданной температуры теплоносителя на выходе реактора изменением мощности установки регулирующими органами изменения реактивности, посредством измерения параметров теплоносителя первого контура. Вводят уставку средней температуры теплоносителя первого контура, формируют сигнал отклонения от этой уставки вычисленной средней температуры теплоносителя и по полученному сигналу регулируют циркуляцию теплоносителя реактора, причем дополнительно вводят процесс включения и отключения регулятора средней температуры теплоносителя. При этом отключают регулятор средней температуры в момент включения в работу регулятора поддержания заданной температуры теплоносителя на выходе реактора, а включают - в момент окончания действия регулятора поддержания температуры теплоносителя на выходе реактора. Технический результат - устранение возможных ошибок расчета зависимости температуры пара от температуры теплоносителя, скорости циркуляции теплоносителя реактора и оптимизация эксплуатационных качеств пара, кпд. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области управления энергетическими установками, включая ядерные энергетические стационарные и транспортные установки, в том числе с жидкометаллическим теплоносителем и закритическими параметрами пара. Энергетической установкой управляют поддержанием температуры пара путем регулирования температуры теплоносителя первого контура на входе парогенератора по сигналу отклонения ее измеренного значения от своей уставки. При этом регулируют давление пара корректировкой заданного расхода питательной воды по сигналу отклонения измеренного давления пара от своей уставки с корректировкой уставки температуры теплоносителя первого контура на входе парогенератора по сигналу отклонения измеренной температуры пара от своей уставки. Корректировку уставки температуры теплоносителя первого контура на входе парогенератора включают при достижении измеренной температуры пара уставки включения корректора. Технический результат - исключение автоколебания системы за счет взаимной блокировки между корректировкой уставки температуры на входе парогенератора и корректировкой заданного расхода питательной воды. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области управления энергетическими установками, включая стационарные и транспортные ядерные энергетические установки, в том числе с жидко-металлическим теплоносителем ядерного реактора и закритическими параметрами пара. Давление пара регулируют управлением положения клапана питательной воды парогенератора по сигналу отклонения давления пара от своей уставки. При этом управляют скоростью насоса питательной воды по отклонению сигнала расхода питательной воды от своей уставки и корректируют сигнал расхода питательной воды по сигналу отклонения давления пара от своей уставки. Управляют клапаном питательной воды поочередно по сигналу отклонения давления пара от своей уставки или по отклонению положения клапана от своей уставки. Очередность управления устанавливают приоритетом регулирования давления пара перед регулированием положения клапана. Уставку положения клапана питательной воды изменяют в зависимости от заданного режима работы установки. Технический результат - повышение быстродействия регулятора пара, снижение его погрешности. 7 з.п. ф-лы, 1 ил.

Изобретение относится к области управления энергетическими установками (ЯЭУ), включая стационарные и транспортные ядерные энергетические установки, в том числе с жидкометаллическим теплоносителем ядерного реактора и закритическими параметрами пара. Технический результат - повышение точности измерения расхода питательной воды за счет компенсации погрешности его измерителя. В способе управления ЯЭУ расход питательной воды парогенератора регулируют управлением насоса по сигналу отклонения расхода питательной воды от своей уставки, а также измеряют и регулируют давление пара. При этом производят интегрирование сигнала отклонения давления пара от своей уставки, по которому корректором изменяют масштаб сигнала расхода питательной воды. Введена уставка ограничения отклонения давления пара от своей уставки и уставка ограничения отклонения расхода питательной воды от своей уставки. При превышении уставок отключают сигнал от входа интегратора и останавливают процесс интегрирования. Когда указанных превышений уставок ограничения нет, интегратор работает. 3 з.п. ф-лы, 1 ил.

Изобретение относится к атомной энергетике и может быть использовано в системах управления и защиты (СУЗ) водо-водяных энергетических реакторов (ЯР). Согласно изобретению комплекс электрооборудования (КЭ) СУЗ выполнен в виде блоков функциональных подсистем (ФП), включая ФП исполнительной части аварийной и предупредительной защиты (АЗ-ПЗ); электропитания (ЭП); программно-технического комплекса системы группового и индивидуального управления (ПТК СГИУ); программно-технического комплекса информационно-диагностической сети (ПТК ИДС) и ФП автоматического регулятора мощности реактора (АРМ), модули которых оснащены соответствующим функциональным электрооборудованием. ФП АЗ-ПЗ оснащена двумя независимыми комплектами электрооборудования (КЭ), выполненными с возможностью формирования исполнительных команд защит (ИКЗ) с передачей этих команд в оборудование ПТК СГИУ и АРМ. ФП функционально связаны и образуют совместно с другими системами СУЗ ЯР. Каждый комплект блока АЗ-ПЗ содержит модули для приема обобщенных сигналов АЗ и ПЗ; для формирования исполнительных команд АЗ; модули с прерывателями электропитания и модули для формирования исполнительных команд ПЗ. Технический результат - повышение надежности и безопасности эксплуатации ядерного реактора за счет непрерывного контроля всех его систем с возможностью многовариантного перехода на оптимальные режимы работы. 7 з.п. ф-лы, 1 табл., 4 ил.

Изобретение относится к автоматике и вычислительной технике и может быть использовано в системах контроля и управления безопасностью атомных станций (АЭС). Технический результат заключается в повышении надежности системы безопасности. Система включает станции ввода-вывода, станции приоритетного управления и контроллер автоматизации безопасности КА СБ каждого канала безопасности. При этом два независимых друг от друга комплекта программно-аппаратных средств образуют подканал А и подканал Б для выполнения функции канала безопасности и содержат контроллер КА СБ своего подканала, а каждая из шин ввода-вывода каждого подканала имеет структуру типа "дерево", верхним корневым узлом которого является соответственно процессорный модуль автоматизации контроллера КА СБ, нижними узлами являются модули связи с процессом МСП станций СВВ1-n и модули приоритетного управления МПУ станций СПУ1-m, а промежуточными узлами являются коммуникационные модули. 3 з.п. ф-лы, 8 ил.

Изобретение относится к области ядерной техники и может быть использовано в системах управления ядерными реакторами. В способ регулирования параметров ядерного реактора путем перемещения регулятором органов изменения реактивности по сигналу отклонения измеренного параметра от заданного значения дополнительно вводят операцию формирования характеристики регулятора по сигналу вычисленной положительной и отрицательной реактивности ядерного реактора и операцию коррекции коэффициента усиления регулятора в зависимости от значения и знака реактивности. При этом когда по сигналу отклонения измеренного параметра от заданного значения вводят сигнал вычисленной реактивности, коэффициент усиления регулятора уменьшают пропорционально увеличению положительной и отрицательной реактивности соответственно по заданному алгоритму коррекции. Технический результат - увеличение диапазона регулируемой глубины и скорости изменения мощности в процессе регулирования одного из параметров ядерного реактора при сохранении установленной безопасности. 3 з.п. ф-лы, 2 ил.
Наверх