Способ управления ядерной энергетической установкой

Изобретение относится к области управления энергетическими установками (ЯЭУ), включая стационарные и транспортные ядерные энергетические установки, в том числе с жидкометаллическим теплоносителем ядерного реактора и закритическими параметрами пара. Технический результат - повышение точности измерения расхода питательной воды за счет компенсации погрешности его измерителя. В способе управления ЯЭУ расход питательной воды парогенератора регулируют управлением насоса по сигналу отклонения расхода питательной воды от своей уставки, а также измеряют и регулируют давление пара. При этом производят интегрирование сигнала отклонения давления пара от своей уставки, по которому корректором изменяют масштаб сигнала расхода питательной воды. Введена уставка ограничения отклонения давления пара от своей уставки и уставка ограничения отклонения расхода питательной воды от своей уставки. При превышении уставок отключают сигнал от входа интегратора и останавливают процесс интегрирования. Когда указанных превышений уставок ограничения нет, интегратор работает. 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к области управления энергетическими установками, включая стационарные и транспортные ядерные энергетические установки, в том числе с жидкометаллическим теплоносителем ядерного реактора и закритическими параметрами пара.

Известны способы управления ядерной энергетической установкой изменением расхода питательной воды парогенератора и регулированием давления пара [Плютинский В.И., Погорелов В.И. Автоматическое управление и защита теплоэнергетических установок АЭС. - М.: Энергоатомиздат, 1983. Стр.29, стр.106 рис.6.15, стр.146 рис.8.18, в), стр.179 рис.9.14, б)].

Наиболее близким к предлагаемому способу по технической сущности является способ управления ядерной энергетической установкой, при котором расход питательной воды парогенератора регулируют управлением насоса по сигналу отклонения расхода питательной воды от своей уставки, а также измеряют и регулируют давление пара [Плютинский В.И., Погорелов В.И. Автоматическое управление и защита теплоэнергетических установок АЭС. - М.: Энергоатомиздат, 1983. Стр. 179 рис.9.14, а)].

Этот способ имеет недостаток. Он состоит в сложности получения необходимой точности ультразвукового измерителя расхода, которая зависит от состояния питательной воды, его установившегося значения, наличия в воде пузырьков газа и т.п., а это состояние непрерывно изменяется. Кроме того, прямолинейный и ровный участок трубопровода перед измерителями расхода питательной воды конструктора укорачивают с целью уменьшения сопротивления и потерь энергии, что еще больше увеличивает турбулентность и погрешность измерения расхода питательной воды. В энергетической установке с перегретым паром или с его закритическими параметрами расход питательной воды не только определяет мощность энергетической установки, но и давление пара. Каждый тип турбины имеет наибольший кпд при определенном давлении пара и ее температуре. Снижение точности контроля и регулирования расхода питательной воды сопровождается снижением точности регулирования мощности и давления пара, а это снижает кпд энергетической установки.

Задача изобретения - устраненить недостаток прототипа, повысить точность измерения расхода питательной воды, компенсируя погрешность его измерителя, а тем самым повысить точность поддержания давления пара и, следовательно, повысить кпд энергетической установки в установившемся режиме ее работы.

Для этого предложен способ управления ядерной энергетической установкой, при котором расход питательной воды парогенератора регулируют управлением насоса по сигналу отклонения расхода питательной воды Gпв от своей уставки Gупв, а также измеряют и регулируют давление пара Р, при этом дополнительно вводят интегрирование сигнала отклонения ΔР давления пара Р от своей уставки Ру, корректор и процесс изменения корректором масштаба сигнала расхода питательной воды по результату интегрирования.

Кроме того:

- дополнительно вводят сигнал отключения входа интегратора и процесс остановки интегрирования сигнала отклонения давления пара от своей уставки;

- дополнительно вводят уставку ΔРогр ограничения сигнала ΔР отклонения давления пара от своей уставки, а в случае превышения уставки ΔРогр ограничения сигналом ΔР отклонения давления пара от своей уставки формируют сигнал отключения сигнала от входа интегратора, по которому производят остановку процесса интегрирования сигнала отклонения давления пара от своей уставки;

- дополнительно вводят уставку ΔGогр ограничения сигнала ΔGпв отклонения расхода питательной воды от своей уставки, а в случае превышения уставки ΔGогр ограничения сигналом ΔGпв отклонения расхода питательной воды от своей уставки формируют сигнал отключения сигнала от входа интегратора, по которому производят остановку процесса интегрирования сигнала отклонения давления пара от своей уставки.

Изменение масштаба сигнала расхода питательной воды по результату интегрирования сигнала отклонения давления пара от своей уставки в установившемся режиме работы автоматического регулирования давления пара позволяет повысить точность измерения и регулирования расхода питательной воды, а тем самым точность поддержания давления пара в установившемся режиме работы энергетической установки.

В ядерных энергетических установках с прямоточным парогенератором без сепаратора расход питательной воды отображает мощность, вырабатываемую ядерным реактором. Сигнал расхода питательной воды, откорректированный по интегралу отклонения сигнала давления от своей уставки, более точно отображает расход питательной воды и, следовательно, мощность, вырабатываемую реактором. Повышение точности измерения и регулирования расхода питательной воды насосом повышает точность поддержания заданного давления пара и, соответственно, кпд энергетической установки.

Это справедливо для установившегося режима работы автоматического регулирования параметров энергетической установки. В переходных режимах работы установки нарушается баланс между расходом питательной воды, отбирающей энергию, вырабатываемую ядерным реактором, и мощностью, которую генерирует ядерный реактор. При этом сигнал отклонения давления пара от своей уставки увеличивается, что может нарушить точность корректировки сигнала расхода питательной воды. Чтобы исключить возможность такого нарушения, надо остановить процесс интегрирования отклонения сигнала давления Р от своей уставки РУ и отклонения расхода GПВ питательной воды от своей уставки GУПВ в переходных режимах работы энергоустановки

Определенная разница между давлением пара и его уставкой, а также между расходом питательной воды и его уставкой, которую определяет уставка ограничения в блоке 3, означает наличие переходного процесса.

Остановка интегрирования отклонения давления пара Р от своей уставки РУ и отклонения расхода GПВ питательной воды от своей уставки GУПВ в переходных режимах исключает влияние работы интегратора в переходных режимах на точность измерения расхода питательной воды в установившемся режиме и, следовательно, сохраняет эту точность в переходных режимах работы энергетической установки.

Пример реализации предлагаемого способа рассмотрен для энергетической установки, где в качестве источника тепла применен ядерный реактор. Схема реализации способа представлена на чертеже, где использованы следующие обозначения.

ЯР - ядерный реактор;

ПГ - парогенератор;

Т - турбина;

Р - давление пара;

РУ - уставка давления пара;

ΔР - сигнал отклонения давления пара от своей уставки;

ΔРогр - уставка ограничения сигнала ΔР;

Gпв - расход питательной воды;

Gупв - уставка расхода питательной воды;

ΔGПВ - сигнал отклонения расхода GПВ питательной воды от своей уставки GУПВ, сигнал автоматического управления насосом питательной воды;

ΔGогр - уставка ограничения сигнала ΔGПВ;

1 - формирователь сигнала автоматического регулирования давления пара;

2 - интегратор;

3 - формирователь сигнала остановки работы интегратора по отклонению ΔР от ΔРогр и ΔGПВ от ΔGогр;

4 - корректор расхода питательной воды;

5 - формирователь сигнала ΔGПВ автоматического управления насосом питательной воды (алгебраический сумматор сигналов);

6 - блок управления насосом питательной воды.

Расход питательной воды Gпв регулируется насосом путем его управления по разнице сигналов измеренного расхода Gпв и его уставки Gупв, поступающей из формирователя 5 на блок управления 6 насосом питательной воды. В установившемся режиме работы энергетической установки измеренный сигнал расхода питательной воды корректируется по сигналу интегрирования интегратором 2 разности измеренного давления пара Р и его уставки Ру.

По сигналу ΔР отклонения давления пара Р от своей уставки РУ через блок 1 регулируют давление пара.

Время интегратора 2 определяют в процессе математического моделирования автоматического регулирования расхода питательной воды и давления пара. Время интегратора 2 принимают таким, чтобы процесс корректировки сигнала расхода питательной воды не влиял на динамические характеристики регулятора насоса по отклонению расхода питательной воды от своей уставки.

Окончательная величина времени интегратора устанавливается по результатам натурных испытаний. Корректировка сигнала расхода питательной воды по интегралу отклонения давления пара от своей уставки повышает точность измерения и регулирования расхода питательной воды.

Формирователь 3 сигнала остановки работы интегратора 2 сравнивает свою уставку ΔРогр с сигналом ΔР отклонения давления от своей уставки, поступающим на вход формирователя 3. Когда сигнал ΔР превысит уставку ΔРогр формирователя 3, то он выдаст на интегратор 2 сигнал, который отключит процесс интегрирования. Сигнал на выходе интегратора 2 останется таким, каким он был до прихода сигнала с формирователя 3. При исчезновении сигнала с формирователя 3 интегратор 2 снова включается в свою работу.

Аналогично формирователь 3 имеет свою уставку ΔGогр отклонения расхода GПВ питательной воды от своей уставки GУПВ. Когда сигнал ΔGПВ на выходе блока 5 превысит уставку ΔGогр, формирователь 3 остановит работу интегратора 2.

В установившемся режиме работы энергоустановки его система автоматического регулирования устанавливает баланс между вырабатываемой и отбираемой мощностью энергоустановки при заданной Ру оптимальном давлении пара для турбины.

Кроме того, в установившемся режиме работы энергоустановки схема коррекции расхода питательной воды парогенератора действует как астатический регулятор давления пара, повышая точность его регулирования и кпд энергоустановки.

Зона нечувствительности интегратора 2 по сигналу ΔР определяет точность поддержания давления пара в установившемся режиме работы энергоустановки.

Это означает также, что погрешность измерителя расхода питательной воды после корректировки его сигнала по давлению пара практически не влияет на точность поддержания расхода питательной воды и давления пара, поскольку откорректированный сигнал расхода питательной воды соответствует в своем масштабе фактической мощности энергетической установки. Что также подтверждает полезность предложенного технического решения.

Зона нечувствительности сигнала на входе интегратора должна обеспечивать необходимую точность поддержания давления пара в установившихся режимах и устойчивость системы регулирования расхода питательной воды в переходных и установившихся режимах работы энергоустановки.

Реализация предлагаемого технического решения повышает точность регулирования расхода питательной воды парогенератора и давления пара, повышает кпд энергоустановки по сравнению с прототипом.

Для транспортной ледокольной ядерной энергетической установки дополнительным положительным эффектом служит уменьшение травления пара на энергетических уровнях мощности, увеличение ресурса и времени между перегрузками реактора, повышение экономичности энергоустановки.

1. Способ управления ядерной энергетической установкой, при котором расход питательной воды парогенератора регулируют управлением насоса по сигналу отклонения расхода питательной воды Gпв от своей уставки Gупв, а также измеряют и регулируют давление пара P, отличающийся тем, что дополнительно вводят интегрирование сигнала отклонения ΔP давления пара P от своей уставки Pу, корректор и процесс изменения корректором масштаба сигнала расхода питательной воды по результату интегрирования.

2. Способ по п.1, отличающийся тем, что дополнительно вводят сигнал отключения входа интегратора и процесс остановки интегрирования сигнала отклонения давления пара от своей уставки.

3. Способ по п.1 и 2, отличающийся тем, что дополнительно вводят уставку ΔРогр ограничения сигнала ΔP отклонения давления пара от своей уставки, а в случае превышения уставки ΔРогр ограничения сигналом ΔР отклонения давления пара от своей уставки формируют сигнал отключения сигнала от входа интегратора, по которому производят остановку процесса интегрирования сигнала отклонения давления пара от своей уставки.

4. Способ по п.1 и 2, отличающийся тем, что дополнительно вводят уставку ΔGогр ограничения сигнала ΔGпв отклонения расхода питательной воды от своей уставки, а в случае превышения уставки ΔGогр ограничения сигналом ΔGпв отклонения расхода питательной воды от своей уставки формируют сигнал отключения сигнала от входа интегратора, по которому производят остановку процесса интегрирования сигнала отклонения давления пара от своей уставки.



 

Похожие патенты:

Изобретение относится к области управления энергетическими установками, включая стационарные и транспортные ядерные энергетические установки, в том числе с жидко-металлическим теплоносителем ядерного реактора и закритическими параметрами пара.

Изобретение относится к области управления энергетическими установками, включая ядерные энергетические стационарные и транспортные установки, в том числе с жидкометаллическим теплоносителем и закритическими параметрами пара.

Изобретение относится к области управления ядерным реактором с принудительной циркуляцией теплоносителя стационарных и транспортных установок. Способ управления ядерным реактором осуществляется путем поддержания заданной температуры теплоносителя на выходе реактора изменением мощности установки регулирующими органами изменения реактивности, посредством измерения параметров теплоносителя первого контура.

Изобретение относится к области управления энергетическими стационарными и транспортными установками электростанций и станций теплоснабжения с любым видом горючего, в том числе ядерного горючего, и может быть использовано в системах разогрева энергетических установок с принудительной и естественной циркуляцией теплоносителя.

Изобретение относится к области управления ядерными реакторами. .

Изобретение относится к области управления ядерными реакторами. .

Изобретение относится к области управления ядерными реакторами и может быть использовано в системах управления и защиты ядерных реакторов. .

Изобретение относится к способам регулирования параметров ядерного реактора и может быть использовано при регулировании ядерных энергетических установок с водо-водяными реакторами под давлением с газовыми системами компенсации.

Изобретение относится к области атомной энергетики, а именно к электронному оборудованию систем группового и индивидуального управления органами регулирования системы управления и защиты ядерного реактора.

Изобретение относится к системам релейного регулирования параметров ядерного реактора и может быть использовано при регулировании ядерных энергетических установок с водо-водяными реакторами под давлением с газовыми системами компенсации.

Изобретение относится к атомной энергетике и может быть использовано в системах управления и защиты (СУЗ) водо-водяных энергетических реакторов (ЯР). Согласно изобретению комплекс электрооборудования (КЭ) СУЗ выполнен в виде блоков функциональных подсистем (ФП), включая ФП исполнительной части аварийной и предупредительной защиты (АЗ-ПЗ); электропитания (ЭП); программно-технического комплекса системы группового и индивидуального управления (ПТК СГИУ); программно-технического комплекса информационно-диагностической сети (ПТК ИДС) и ФП автоматического регулятора мощности реактора (АРМ), модули которых оснащены соответствующим функциональным электрооборудованием. ФП АЗ-ПЗ оснащена двумя независимыми комплектами электрооборудования (КЭ), выполненными с возможностью формирования исполнительных команд защит (ИКЗ) с передачей этих команд в оборудование ПТК СГИУ и АРМ. ФП функционально связаны и образуют совместно с другими системами СУЗ ЯР. Каждый комплект блока АЗ-ПЗ содержит модули для приема обобщенных сигналов АЗ и ПЗ; для формирования исполнительных команд АЗ; модули с прерывателями электропитания и модули для формирования исполнительных команд ПЗ. Технический результат - повышение надежности и безопасности эксплуатации ядерного реактора за счет непрерывного контроля всех его систем с возможностью многовариантного перехода на оптимальные режимы работы. 7 з.п. ф-лы, 1 табл., 4 ил.

Изобретение относится к автоматике и вычислительной технике и может быть использовано в системах контроля и управления безопасностью атомных станций (АЭС). Технический результат заключается в повышении надежности системы безопасности. Система включает станции ввода-вывода, станции приоритетного управления и контроллер автоматизации безопасности КА СБ каждого канала безопасности. При этом два независимых друг от друга комплекта программно-аппаратных средств образуют подканал А и подканал Б для выполнения функции канала безопасности и содержат контроллер КА СБ своего подканала, а каждая из шин ввода-вывода каждого подканала имеет структуру типа "дерево", верхним корневым узлом которого является соответственно процессорный модуль автоматизации контроллера КА СБ, нижними узлами являются модули связи с процессом МСП станций СВВ1-n и модули приоритетного управления МПУ станций СПУ1-m, а промежуточными узлами являются коммуникационные модули. 3 з.п. ф-лы, 8 ил.

Изобретение относится к области ядерной техники и может быть использовано в системах управления ядерными реакторами. В способ регулирования параметров ядерного реактора путем перемещения регулятором органов изменения реактивности по сигналу отклонения измеренного параметра от заданного значения дополнительно вводят операцию формирования характеристики регулятора по сигналу вычисленной положительной и отрицательной реактивности ядерного реактора и операцию коррекции коэффициента усиления регулятора в зависимости от значения и знака реактивности. При этом когда по сигналу отклонения измеренного параметра от заданного значения вводят сигнал вычисленной реактивности, коэффициент усиления регулятора уменьшают пропорционально увеличению положительной и отрицательной реактивности соответственно по заданному алгоритму коррекции. Технический результат - увеличение диапазона регулируемой глубины и скорости изменения мощности в процессе регулирования одного из параметров ядерного реактора при сохранении установленной безопасности. 3 з.п. ф-лы, 2 ил.

Изобретение относится к системам автоматизированного контроля и управления атомными станциями (АЭС) при построении управляющих систем безопасности (УСБ) АЭС. Техническим результатом является повышение надежности системы безопасности и защита от отказов, расширение диагностических возможностей УСБ, а также сокращение времени восстановления и повышение готовности УСБ. Система содержит множество идентичных каналов безопасности, каждый канал включает станции ввода-вывода сигналов технологического процесса СВВ1-n, станции приоритетного управления исполнительными механизмами СПУ1-m, соединенные с блочным резервным пунктом, а также контроллер автоматизации средств безопасности КА СБ. Станция СВВ содержит модули связи с технологическим процессом МСП1-k и коммуникационный модуль-преобразователь интерфейсов коммуникаций ПИК шины ШВВ СБ. Станция СПУ содержит модули приоритетного управления исполнительными механизмами МПУ1-е и коммуникационные модули: модуль коммуникации голосования МКГ и модуль голосования МГ шины ШВВ СБ. Каждый канал безопасности дополнительно содержит контроллеры автоматизации нормальной эксплуатации KA1-s, которые соединены со станциями CBB1-n, станциями СПУ1-m по резервированным шинам ENL нормальной эксплуатации, построенным на базе коммутируемого интерфейса Ethernet, радиальной структуры соединения сетевых коммутаторов и специального коммуникационного протокола уровня данных, и с системой нормальной эксплуатации по резервированной шине EN нормальной эксплуатации. 4 з.п. ф-лы, 8 ил.

Изобретение относится к автоматике и вычислительной технике и может быть использовано в системах автоматизированного контроля и управления АЭС для построения управляющих систем безопасности (УСБ) АЭС. УСБ содержит множество идентичных каналов безопасности, каждый канал включает станции ввода вывода сигналов технологического процесса, станции приоритетного управления исполнительными механизмами, контроллер автоматизации средств безопасности, шину ввода вывода средств безопасности и соединен с другими каналами безопасности с помощью перекрестных дуплексных оптоволоконных связей. Процессорный модуль автоматизации средств безопасности каждого канала безопасности соединен с ПМА СБ других каналов безопасности с помощью перекрестных связей, выполненных на основе межпроцессорных интерфейсов МПИ типа "точка-точка", построенных на базе интерфейса Ethernet и коммуникационного протокола уровня данных. Технический результат - повышение надежности многоканальной УСБ, устранение выдачи ложных команд управления и защиты на исполнительные устройства, повышение эффективности мажоритарного резервирования, расширение функций дистанционного управления и диагностирования с блочного и резервного пунктов управления и верхнего уровня системы нормальной эксплуатации, сокращение времени восстановления системы и повышение готовности. 2 з.п. ф-лы, 7 ил.
Наверх