Высокотемпературный газотурбинный двигатель


 


Владельцы патента RU 2525049:

Открытое акционерное общество "АВИАДВИГАТЕЛЬ" (RU)

Высокотемпературный газотурбинный двигатель включает турбину, в которой внутренняя полость охлаждаемой сопловой лопатки второй ступени на входе через заслонку регулирования расхода охлаждающего воздуха соединена с промежуточной ступенью компрессора. Рабочая лопатка второй ступени турбины выполнена охлаждаемой с внутренней полостью, на входе соединенной с промежуточной ступенью компрессора через дополнительную заслонку регулирования расхода охлаждающего воздуха. Отношение проходной площади Fс.взл. заслонки регулирования расхода охлаждающего воздуха на сопловую лопатку второй ступени на взлетном режиме к проходной площади Fс.кр. заслонки регулирования расхода охлаждающего воздуха на сопловую лопатку второй ступени на крейсерском режиме находится в пределах 1,5…2,5. Отношение проходной площади Fр.взл. заслонки регулирования расхода охлаждающего воздуха на рабочую лопатку второй ступени на взлетном режиме к проходной площади Fp.кр. заслонки регулирования расхода охлаждающего воздуха на рабочую лопатку второй ступени на крейсерском режиме находится в пределах 2…4. Изобретение направлено на повышение надежности и экономичности высокотемпературного газотурбинного двигателя путем уменьшения расхода воздуха на охлаждение рабочей лопатки второй ступени турбины на крейсерском режиме работы газотурбинного двигателя по отношению к взлетному режиму. 1 ил.

 

Изобретение относится к высокотемпературным газотурбинным двигателям авиационного и наземного применения.

Известен высокотемпературный газотурбинный двигатель, внутренняя полость рабочей лопатки второй ступени турбины в котором на входе соединена с промежуточной ступенью компрессора (патент RU №2261350, МПК: Р02С 7/12).

Недостатком известной конструкции является ее пониженная экономичность на крейсерском режиме работы газотурбинного двигателя из-за повышенного расхода воздуха на охлаждение лопаток турбины.

Наиболее близким к заявляемому является высокотемпературный газотурбинный двигатель, внутренняя полость сопловой лопатки второй ступени турбины которого через заслонку регулирования расхода охлаждающего воздуха соединена с промежуточной ступенью компрессора (патент RU №2439348, МПК: F02C 7/12).

Недостатком известной конструкции, принятой за прототип, является ее ухудшенная экономичность из-за отсутствия регулирования расхода охлаждающего воздуха на рабочую лопатку второй ступени турбины.

Технический результат заявленного изобретения заключается в повышении надежности и экономичности высокотемпературного газотурбинного двигателя путем уменьшения расхода воздуха на охлаждение рабочей лопатки второй ступени турбины на крейсерском режиме работы газотурбинного двигателя по отношению к взлетному режиму.

Указанный технический результат достигается тем, что в высокотемпературном газотурбинном двигателе, включающем турбину, в которой внутренняя полость охлаждаемой сопловой лопатки второй ступени на входе через заслонку регулирования расхода охлаждающего воздуха соединена с промежуточной ступенью компрессора, согласно изобретению рабочая лопатка второй ступени турбины выполнена охлаждаемой с внутренней полостью, на входе соединенной с промежуточной ступенью компрессора через дополнительную заслонку регулирования расхода охлаждающего воздуха, при этом Fc.взл./Fc.кр.=1,5…2,5 и Fp.взл./Fp.кр.=2…4, где:

Fс.взл. - проходная площадь заслонки регулирования расхода охлаждающего воздуха на сопловую лопатку второй ступени на взлетном режиме,

Fc.кp. - проходная площадь заслонки регулирования расхода охлаждающего воздуха на сопловую лопатку второй ступени на крейсерском режиме,

Fр.взл. - проходная площадь заслонки регулирования расхода охлаждающего воздуха на рабочую лопатку второй ступени на взлетном режиме,

Fp.кp. - проходная площадь заслонки регулирования расхода охлаждающего воздуха на рабочую лопатку второй ступени на крейсерском режиме.

Выполнение в высокотемпературном газотурбинном двигателе второй рабочей лопатки турбины охлаждаемой с внутренней полостью, соединенной на входе с промежуточной ступенью компрессора через дополнительную заслонку регулирования расхода охлаждающего воздуха, позволяет обеспечить высокую надежность второй рабочей лопатки при работе на взлетном режиме и высокую экономичность газотурбинного двигателя на крейсерском режиме за счет уменьшения расхода воздуха, отбираемого от промежуточной ступени компрессора на охлаждение второй рабочей лопатки, что приводит к увеличению расхода газа, работающего на первой рабочей лопатке турбины и к снижению удельного расхода топлива газотурбинного двигателя.

При Fс.взл./Fс.кр.<1,5 - ухудшается экономичность высокотемпературного газотурбинного двигателя.

При Fc.взл./Fc.кp.>2,5 - снижается надежность высокотемпературного газотурбинного двигателя из-за повышенной температуры сопловой лопатки второй ступени турбины на крейсерском режиме работы.

При Fр.взл./Fp.кр.<2 - ухудшается удельный расход топлива высокотемпературного газотурбинного двигателя.

При и Fр.взл./Fр.кр.>4 - излишне повышается температура рабочей лопатки второй ступени турбины, что снижает надежность высокотемпературного газотурбинного двигателя.

На чертеже изображен продольный разрез высокотемпературного газотурбинного двигателя.

Высокотемпературный газотурбинный двигатель 1 состоит из компрессора 2, камеры сгорания 3 и двухступенчатой турбины 4, в которой сопловая лопатка второй ступени 5 выполнена охлаждаемой с внутренней полостью 6, а рабочая лопатка второй ступени 7 также выполнена охлаждаемой с внутренней полостью 8.

Внутренняя полость 6 сопловой лопатки 5 на входе соединена через заслонку 9 регулирования расхода воздуха на охлаждение сопловой лопатки 5 с промежуточной ступенью 10 компрессора 2, а внутренняя полость 8 рабочей лопатки 7 также через заслонку 11 регулирования расхода воздуха на охлаждение рабочей лопатки второй ступени 7 соединена с промежуточной ступенью 10 компрессора 2.

Работает данное устройство следующим образом.

При работе высокотемпературного газотурбинного двигателя 1 на взлетном режиме температура газа пред турбиной 4 максимальна, и поэтому расход охлаждающего воздуха на сопловую лопатку второй ступени 5 и на рабочую лопатку второй ступени 7 из-за промежуточной ступени 10 компрессора 2 максимален, так как заслонки регулирования расхода охлаждающего воздуха 9 и 11 открыты на максимальную проходную площадь Fс.взл. и Fp.взл. соответственно.

При переходе двигателя 1 на крейсерский режим работы температура газа перед турбиной существенно снижается, и расход охлаждающего воздуха, поступающий во внутренние полости 6 и 8 сопловой лопатки второй ступени 5 и рабочей лопатки второй ступени 7, становится избыточен для обеспечения заданной температуры лопаток 5 и 7. Поэтому на крейсерском режиме работы двигателя 1 проходные площади заслонок 9 и 11 уменьшаются до Fс.кр и Fр.кр. соответственно, что способствует снижению удельного расхода топлива двигателя 1. В связи со снижением расхода охлаждающего воздуха через внутреннюю полость 8 рабочей лопатки второй ступени 7 температура лопатки повышается, что приводит к температурной деформации лопатки 7 в радиальном направлении и к уменьшению радиальных зазоров между лопаткой 7 и статором 12 турбины 4, что в свою очередь способствует улучшению экономичности двигателя 1.

Так как расход воздуха на лопатку 7 на крейсерском режиме работы двигателя 1 уменьшается, то также уменьшаются потери мощности турбины 1 от насосной работы на прокачку воздуха через лопатку 7, что также способствует улучшению экономичности двигателя 1.

Высокотемпературный газотурбинный двигатель, включающий турбину, в которой внутренняя полость охлаждаемой сопловой лопатки второй ступени на входе через заслонку регулирования расхода охлаждающего воздуха соединена с промежуточной ступенью компрессора, отличающийся тем, что рабочая лопатка второй ступени турбины выполнена охлаждаемой с внутренней полостью, на входе соединенной с промежуточной ступенью компрессора через дополнительную заслонку регулирования расхода охлаждающего воздуха, при этом Fс.взл./Fс.кр.=1,5…2,5 и Fp.взл./Fp.кp.=2…4, где:
Fс.взл. - проходная площадь заслонки регулирования расхода охлаждающего воздуха на сопловую лопатку второй ступени на взлетном режиме,
Fc.кp. - проходная площадь заслонки регулирования расхода охлаждающего воздуха на сопловую лопатку второй ступени на крейсерском режиме,
Fр.взл. - проходная площадь заслонки регулирования расхода охлаждающего воздуха на рабочую лопатку второй ступени на взлетном режиме,
Fp.кр. - проходная площадь заслонки регулирования расхода охлаждающего воздуха на рабочую лопатку второй ступени на крейсерском режиме.



 

Похожие патенты:

Высокотемпературная турбина газотурбинного двигателя, в наружном корпусе которой установлены сопловая лопатка и ниже по потоку газа разрезное секторное кольцо, а также рабочая лопатка и уплотнительные гребешки на верхней полке.

Изобретение относится к энергетике. Комплекс специальной автоматики взрывозащиты газотурбинной установки, обеспечивающий безопасность эксплуатации горячего газотурбинного двигателя, позволяющий при инциденте с несанкционированным отключением продувки воздухом отсека газотурбиной установки с минимальными затратами предотвратить контакт взрывоопасной смеси, которая может высвободиться, с поверхностью горячих компонентов корпуса газотурбинного двигателя, у которых максимальная температура может превышать температуру самовоспламенения используемых в технологическом процессе горючих веществ, до их охлаждения до безопасных температур.

Изобретение относится к статорам турбин высокого давления газотурбинных двигателей авиационного и наземного применения. Статор турбины включает установленные на внутреннем корпусе камеры сгорания опору соплового аппарата и передний хвостовик упругого фланца, а также диафрагму.

Газотурбинный двигатель содержит компрессор, камеру сгорания, ротор и статор турбины. Турбина содержит охлаждаемую ступень с сопловым аппаратом с полостями над ним и под ним.

Система снижения шума газотурбинного двигателя содержит глушитель выхлопа, расположенный вблизи выхлопного канала, проход для охлаждающего воздуха и средство создания потока охлаждающего воздуха в проходе.

Турбина газотурбинного двигателя содержит внешний, внутренний и промежуточный корпусы, ступень с сопловым аппаратом и рабочим колесом с кольцевой вставкой над рабочим колесом, системы охлаждения турбины, в том числе корпусов.

Двухконтурный газотурбинный двигатель содержит компрессор, имеющий по меньшей мере одну ступень, камеру сгорания, содержащую жаровую трубу, турбину, содержащую по меньшей мере одну охлаждаемую ступень с сопловым аппаратом с полостями над ним и под ним.

Турбина газотурбинного двигателя содержит внешний, внутренний и промежуточный корпуса, ступень с сопловым аппаратом и рабочим колесом с кольцевой вставкой над рабочим колесом, системы охлаждения турбины, в том числе корпуса.

Турбина двухконтурного газотурбинного двигателя содержит, по меньшей мере, одну охлаждаемую ступень с сопловым аппаратом, ротор и статор турбины. Сопловой аппарат выполнен с полостями над ним и под ним.

Система охлаждения турбины с первой секцией и второй секцией содержит первую линию для отведения первого потока из первой секции, имеющий первую температуру, вторую линию для отведения второго потока из первой секции, имеющий вторую температуру ниже первой температуры; и объединенную линию для направления объединенного потока, содержащего первый поток и второй поток во вторую секцию.

Высокотемпературная газовая турбина содержит рабочую лопатку первой ступени, первую сопловую лопатку и установленную на внутреннем корпусе камеры сгорания опору соплового аппарата. Первая сопловая лопатка верхней полкой установлена в наружном корпусе камеры сгорания, а радиальными ребрами нижней полки установлена в канавках внутреннего кольца первого соплового аппарата. Внутреннее кольцо выполнено с U-образным в поперечном сечении упругим элементом с креплением центральной части упругого элемента к опоре соплового аппарата. Передняя по потоку газа часть внутреннего кольца выполнена с каналами подвода охлаждающего воздуха на сопловую лопатку. Задняя по потоку часть внутреннего кольца выполнена с кольцевым осевым ребром лабиринтного уплотнения по нижней полке первой рабочей лопатки. Угол наклона внутренней поверхности кольцевого ребра к оси турбины находится в пределах 20…40°. Отношение высоты радиальной стенки упругого элемента к толщине радиальной стенки упругого элемента находится в пределах 6…10. Изобретение уменьшает напряжение в первой сопловой лопатке и уменьшает температуры нижней полки первой сопловой лопатки, повышая тем самым надежность высокотемпературной газовой турбины. 3 ил.

Двухконтурный газотурбинный двигатель содержит компрессор, камеру сгорания, турбину высокого давления, турбину низкого давления с сопловым аппаратом. Внутренние полости соплового аппарата примыкают к стенкам охлаждаемых сопловых лопаток, соединены с полостью отбора охлаждающего воздуха и отделены от магистрали наддува междисковой полости с помощью транзитных трубок. Транзитные трубки установлены во внутренних полостях сопловых лопаток с зазором относительно их стенок и соединены входом с питающим коллектором, а выходом - с магистралью наддува междисковой полости. Питающий коллектор магистрали наддува междисковой полости сообщен с думисной полостью компрессора высокого давления, отделенной от выхода проточной части компрессора подвижным уплотнением. В качестве полости отбора охлаждающего воздуха для его подачи во внутренние полости, примыкающие к стенкам сопловых лопаток турбины низкого давления, выбрана полость камеры сгорания или полость одной из ступеней компрессора. Подсоединение полости отбора охлаждающего воздуха к внутренним полостям, примыкающим к стенкам сопловых лопаток турбины низкого давления, выполнено через соединяющую магистраль и дополнительный питающий коллектор, а на соединяющей магистрали установлен регулирующий клапан. Изобретение позволяет изменять расход охлаждающего воздуха, идущего на охлаждение сопловых лопаток турбины низкого давления, в зависимости от режима работы двигателя. 3 з. п. ф-лы, 2 ил.

Способ охлаждения газотурбинного двигателя (ГТД), заключающийся в понижении температуры воздуха, используемого для охлаждения ГТД. Понижение температуры воздуха осуществляется в турбохолодильной установке (ТХУ) и включает сжатие воздуха, используемого при охлаждении, в компрессоре с последующим его охлаждением в теплообменнике и турбодетандере. ТХУ установлена во входном канале ГТД, поперечные размеры которого больше поперечных размеров компрессора ТХУ. Степень повышения давления в компрессоре ТХУ больше степени повышения давления в компрессоре ГТД. ТХУ приводится в действие от ГТД. Давление охлажденного воздуха на выходе из ТХУ соответствует давлению воздуха за компрессором ГТД. Для повышения степени охлаждения воздуха часть этого воздуха перепускается на вход в компрессор ТХУ. Способ позволяет повысить температуру газа перед лопатками газовой турбины ГТД до 2600 K. 5 з.п. ф-лы, 4 ил.

Структура ударного воздействия в системе ударного охлаждения имеет отверстия для ударного воздействия, выполненные с обеспечением пропускания потока охладителя и направления полученных струй охладителя на целевую поверхность, расположенную напротив указанной структуры, через образованную между ними полость. Указанная структура имеет рифленую конфигурацию и расположена на расстоянии от целевой поверхности. Целевая поверхность содержит внешнюю поверхность жаровой трубы. Структура содержит патрубок для потока в камере сгорания газотурбинного двигателя или целевая поверхность содержит внешнюю поверхность переходного отсека. Указанная структура содержит патрубок для ударного воздействия в камере сгорания газотурбинного двигателя. Изобретение направлено на улучшение охлаждения. 8 з.п. ф-лы, 11 ил.

Турбореактивный двигатель содержит впускной канал потока воздуха охлаждения диска турбины высокого давления, открывающийся в полость. Полость является по существу изолированной с входной стороны от полости, в которой циркулирует поток воздуха, отбираемый с выхода компрессора высокого давления, первым лабиринтным уплотнением и с выходной стороны от полости, сообщающейся с первичным каналом турбореактивного двигателя, вторым лабиринтным уплотнением. Турбореактивный двигатель содержит каналы, сообщающиеся с впускным каналом и открывающиеся через неподвижную часть первого лабиринтного уплотнения между двумя ребрами этого уплотнения для обеспечения пропускания между этими ребрами потока воздуха, поступающего из впускного канала. Изобретение направлено на повышение экономичности охлаждения, уменьшение номинальной величины расхода воздушного потока охлаждения входного колеса компрессора высокого давления в турбореактивном двигателе. 5 з.п. ф-лы, 4 ил.

Устройство впрыска топлива для кольцевой камеры сгорания турбомашины содержит основную систему, постоянно питающую инжектор, открывающийся в первую трубку Вентури, и многоточечную систему, прерывисто питающую инжекторные отверстия. Инжекторные отверстия выполнены во фронтальной поверхности кольцевого обода, установленного в кольцевой камере, образованной на входе второй трубки Вентури, коаксиальной первой трубке Вентури и окружающей последнюю. Устройство впрыска топлива содержит средства тепловой изоляции фронтальной поверхности кольцевого обода, содержащего кольцевую полость, образованную вокруг инжекторных отверстий между фронтальной поверхностью кольцевого обода и фронтальной стенкой кольцевой камеры и предназначенную для заполнения при работе воздухом или коксованным топливом. Изобретение направлено на упрощение устройства впрыска топлива с повышением экономичности и эффективности его. 2 н. и 9 з.п. ф-лы, 9 ил.

Устройство инжектирования топлива для кольцевой камеры сгорания турбомашины содержит контур управления, постоянно питающий инжектор, выходящий открывающийся в первую трубку Вентури, и многоточечный контур. Многоточечный контур периодически питает инжекционные отверстия, выполненные на фронтальной поверхности передней кольцевой камеры второй трубки Вентури, коаксиальной первой трубке Вентури и окружающей ее. Кольцевой венец смонтирован в кольцевой камере для образования в ней контура подачи топлива к инжекционным отверстиям и охлаждающего контура посредством прохождения топлива, поступающего на инжектор контура управления. Охлаждающий контур проходит по фронтальной поверхности камеры в непосредственной близи от инжекционных отверстий. Изобретение направлено на уменьшение коксования топлива, циркулирующего на уровне фронтальной плоскости кольцевой камеры. 3 н. и 9 з.п. ф-лы, 4 ил.

Охлаждаемая турбина авиационного газотурбинного двигателя содержит рабочее колесо с установленными на нем рабочими лопатками с двумя контурами охлаждения, последовательно соединенные с воздушными каналами в рабочем колесе, с независимыми кольцевыми диффузорными каналами, сопловые лопатки и теплообменник. Кольцевые диффузорные каналы образованы на поверхности рабочего колеса, соединены с сопловыми аппаратами закрутки и транзитными воздуховодами на их входе. Каждая из сопловых лопаток выполнена в виде конструктивного элемента, ограниченного верхней и нижней полками, и пространства между ними, ограниченного вогнутой и выпуклой стенками пера сопловой лопатки, в виде расположенных вдоль ее оси раздаточного коллектора входной кромки и раздаточной полости. Раздаточный коллектор входной кромки соединен на входе с воздушной полостью камеры сгорания, а на выходе через перфорационные отверстия во входной кромке сопловой лопатки - с проточной частью турбины. Теплообменник соединен на входе с воздушной полостью камеры сгорания, а на выходе последовательно сообщен с воздушным коллектором и раздаточной полостью. Охлаждающая турбина снабжена раздаточным коллектором для охлаждающего воздуха, охлаждающим дефлектором и двумя транзитными дефлекторами, установленными в раздаточной полости вдоль ее оси с зазором относительно друг друга и с зазором между вогнутой и выпуклой стенками пера сопловой лопатки с образованием вдоль стенок охлаждающих каналов. Охлаждающий дефлектор выполнен с перфорационными отверстиями на двух его противоположных стенках, установлен в раздаточной полости на стенке раздаточного коллектора входной кромки и направлен стенками с перфорационными отверстиями в направлении вогнутой и выпуклой стенок пера сопловой лопатки. В верхней и нижней полках сопловой лопатки выполнены воздуховоды, соединенные на выходе с проточной частью турбины. Раздаточный коллектор для охлаждающего воздуха соединен с источником воздуха, с входом воздуховода верхней полки и с входом охлаждающего дефлектора. Вход воздуховода в нижней полке соединен с выходом охлаждающего дефлектора. Воздушный коллектор соединен с входом транзитных дефлекторов, а раздаточная полость соединена с проточной частью турбины. Изобретение позволяет повысить эффективность охлаждения турбины, а также повысить ее экономичность. 6 з.п. ф-лы, 5 ил. .

Способ эксплуатации газовой турбины включает в себя сжатие рабочей текучей среды с помощью компрессора, перегрев сжатой рабочей текучей среды путем ее подачи в по меньшей мере одну камеру сгорания, последующее расширение перегретой сжатой рабочей текучей среды в по меньшей мере одной расширительной турбине с обеспечением выработки энергии. Осуществляют далее подачу сжатой рабочей текучей среды из компрессора в первую полость для охлаждения расширительной турбины из первого отбора сжатой рабочей текучей среды, подачу сжатой рабочей текучей среды из компрессора во вторую полость для охлаждения расширительной турбины из второго отбора сжатой рабочей текучей среды, причем указанная вторая полость расположена перед указанной первой полостью. Второй отбор сжатой рабочей текучей среды выполняют ниже по потоку относительно первого отбора. Во время работы в режиме частичной нагрузки для поддержания температуры первой полости в допустимых пределах с учетом сопротивления материалов осуществляют проточное соединение первого и второго отборов и избирательную подачу части сжатой рабочей текучей среды второго отбора в первый отбор. Изобретение направлено на повышение эффективности охлаждения. 3 н. и 4 з.п. ф-лы, 4 ил.

Изобретение относится к энергетике. Устройство сегмента горячих газов для камеры сгорания газовой турбины, содержащее один сегмент горячих газов, установленный с возможностью съема на несущем элементе и подвергающийся со своей наружной стороны воздействию горячих газов и охлаждаемый инжекционным образом со своей внутренней стороны, при этом инжекционная пластина с множеством распределенных инжекционных отверстий расположена на расстоянии с внутренней стороны указанной инжекционной пластины, причем средство подачи охлаждающего воздуха предусмотрено для загрузки указанной инжекционной пластины находящимся под давлением охлаждающим воздухом для генерирования через указанные инжекционные отверстия струй охлаждающего воздуха. Изобретение позволяет улучшить эффективность охлаждения, увеличить продолжительность срока службы, а также улучшить процесс сборки и разборки сегмента горячих газов. 8 з.п. ф-лы, 5 ил.
Наверх