Возбуждение магнитных шариков с использованием обратной связи для биосенсора на основе нпво

Авторы патента:


Возбуждение магнитных шариков с использованием обратной связи для биосенсора на основе нпво
Возбуждение магнитных шариков с использованием обратной связи для биосенсора на основе нпво
Возбуждение магнитных шариков с использованием обратной связи для биосенсора на основе нпво

 


Владельцы патента RU 2526198:

КОНИНКЛЕЙКЕ ФИЛИПС ЭЛЕКТРОНИКС Н.В. (NL)

Изобретение предусматривает способ управления возбуждением маркерных частиц в биосенсорном устройстве, в частности биосенсорном устройстве, использующем нарушенное полное внутреннее отражение. При приложении к маркерным частицам заранее заданной силы возбуждения и определении воздействия приложенной силы возбуждения в пространстве или на поверхности связывания сенсорной кассеты биосенсорного устройства применяют управление с обратной связью силой возбуждения. Кроме того, предусматривается биосенсорное устройство, которое приспособлено для выполнения способа по изобретению. 2 н. и 7 з.п. ф-лы, 2 пр., 3 ил.

 

ОБЛАСТЬ ИЗОБРЕТЕНИЯ

Изобретение относится к биосенсорному устройству, такому как биосенсорное устройство, использующее нарушенное полное внутреннее отражение (НПВО).

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

В литературе была описана процедура для обнаружения биологических аналитов, при которой аналит связывается между парамагнитной частицей и антителом, иммобилизованным на диске (LUXTON R. и др.: "USE OF EXTERNAL MAGNETICS FIELDS TO REDUCE REACTION TIMES IN AN IMMUNOASSAY USING MICROMETER-SIZED PARAMAGNETIC PARTICLES AS LABELS (MAGNETOIMMUNOASSAY)", ANALYTICAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, COLUMBUS, US, том 76, № 6, страницы 1715-1719). Плоская воспринимающая обмотка, установленная под упомянутым диском, позволяет проводить обнаружение связанных магнитных частиц. Чтобы ускорить связывание магнитных частиц и удалить несвязанные частицы, к диску поочередно приближают два магнита снизу и сверху соответственно.

В US 2002/022276 A1 раскрыты биочипы с массивом микроэлектромагнитных узлов, которые могут быть выборочно активированы для создания магнитного поля. С помощью этих полей биомолекулы могут перемещаться к участкам связывания. Упоминается, что аналиты могут обнаруживаться и количественно измеряться оптическими, электрохимическими или радиоактивными способами.

В наши дни все больше и больше увеличивается потребность в биосенсорах. Обычно биосенсоры обеспечивают возможность обнаружения данной конкретной молекулы в аналите, в котором количество или концентрация упомянутой целевой молекулы обычно небольшая. Например, может быть измерено количество наркотических средств или кардиологических маркеров в слюне или крови. Наркотики обычно являются небольшими молекулами, которые обладают только одним эпитопом и по этой причине не могут быть обнаружены, например, с помощью сэндвич-анализа. Конкурентный анализ или реакция торможения является предпочтительным способом обнаружения этих молекул. Широко известная схема конкурентного анализа - присоединение (иммобилизация) целевых интересующих молекул на поверхность и связывание антител с меткой обнаружения, которая может быть ферментом, флуорофором или магнитными шариками. Эта система используется для выполнения конкурентного анализа между целевыми молекулами из образца и целевыми молекулами на поверхности, используя меченые антитела. Для полевого исследования анализ должен быть быстрым, чтобы тест мог быть выполнен примерно за 1 мин, и надежным.

Как правило, биосенсорное устройство, использующее нарушенное полное внутреннее отражение (НПВО), содержит сенсорное устройство, в которое нужно вставлять сенсорную кассету. Сенсорная кассета содержит сенсорную камеру, при этом по меньшей мере часть поверхности сенсора или пространство в упомянутой сенсорной камере подготовлено для обнаружения целевых молекул. Обычно поверхность сенсора включает в себя различные точки связывания. Сенсорная кассета может быть одноразовой полистирольной кассетой. В сенсорной камере размещают парамагнитные шарики. Чтобы увеличить скорость реакции целевых молекул в жидкости, которую вводят в сенсорную камеру, средство возбуждения, такое как обмотка возбуждения, размещают под кассетой, чтобы создать силу возбуждения для притягивания шариков к поверхности сенсора. Через заранее заданное время, которое должно быть достаточным для того, чтобы шарики связались на точках связывания, нижнюю обмотку выключают и, соответственно, убирают силу возбуждения. Чтобы оттянуть несвязанные шарики от поверхности сенсора, может быть приложено другое магнитное поле, которое создают другой обмоткой, расположенной над кассетой. Впоследствии может быть обнаружено наличие шариков на точках связывания на поверхности сенсора. Обычно к обмоткам подают заранее заданный ток обмотки с тем, чтобы создать заранее заданное магнитное поле. Приложенная обмотками магнитная сила также может использоваться для дополнительного манипулирования анализом.

В сенсорном устройстве на основе НПВО может использоваться съемочная камера, предпочтительно съемочная камера на ПЗС или КМОП, для получения изображения света, отраженного от поверхности сенсора, и для наблюдения за связыванием на точке связывания на поверхности сенсора. Типичное изображение, полученное с помощью биосенсорного устройства на основе НПВО, показано на Фиг. 1. На Фиг. 1 показано изображение поверхности 11 сенсора, причем эта поверхность 11 содержит различные точки связывания A1, A2, которые окружены белой областью B1 и B2. Изображения получают путем практически однородного освещения поверхности 11 сенсора и проецирования отраженного света через оптическую систему в съемочную камеру. Относительное затемнение точки связывания, например точки A1 связывания, по сравнению с окружающей белой областью B1 является мерой количества связываний. На Фиг. 1 показана ситуация, когда относительное затемнение точки A1 больше относительного затемнения точки А2. Фиг. 1 дополнительно показывает установочные метки 10, которые задают положения точек связывания.

И хотя токами обмотки и, соответственно, созданным магнитным полем можно управлять точным и воспроизводимым образом, воздействие приложенного к магнитным шарикам магнитного возбуждения зависит от различных параметров. Например, анализы могут ухудшаться со временем, что может изменить состав матрицы и магнитные свойства шариков. Позиционирование кассеты в считывающем устройстве, а также позиционирование обмоток возбуждения относительно кассеты и точек связывания также может изменяться из-за производственных допусков при изготовлении считывающего устройства и кассеты. Может меняться вязкость жидкости, нанесенной на сенсорную кассету, так как, к примеру, разные образцы слюны, которые могут использоваться, могут иметь разную вязкость. Кроме того, может меняться сила и качество химических связей. Например, особенно при измерении в крови, могут возникать слабые связи, так что слишком слабые токи обмотки будут уменьшать воздействие возбуждения, тогда как слишком большие токи могут нарушить связи или образовать скопления (кластеры), когда несвязанные шарики нужно оттянуть от поверхности сенсора. Вышеупомянутые параметры также могут меняться в зависимости от температуры сенсорного устройства, которая может изменяться, в особенности тогда, когда устройство используется для полевого исследования. Этими параметрами, которые могут сильно влиять на приложенное к магнитным шариками магнитное возбуждение в сенсорной кассете, сложно и дорого управлять.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Поэтому имеется необходимость предоставить способ и устройство для управления и, возможно, оптимизации воздействия возбуждения, в частности магнитного возбуждения, на маркерные частицы в биосенсорном устройстве. Особенно следует уменьшить или устранить воздействие параметров, которые влияют на возбуждение, таких как вышеупомянутые параметры.

В соответствии с настоящим изобретением силой возбуждения маркерных частиц управляют на основе определения воздействия приложенной силы возбуждения в пространстве или на поверхности связывания сенсорной кассеты биосенсорного устройства. Таким образом, может быть реализовано управление с обратной связью. В том случае, если пространство или поверхность связывания анализируют оптически, например, в биосенсорном устройстве на основе НПВО, то контур обратной связи может содержать оптическое получение изображений и магнитное возбуждение. Магнитной силой возбуждения можно управлять путем управления токами обмотки или путем управления позиционированием обмотки относительно сенсорной кассеты. Кроме того, когда используется множество обмоток, также может регулироваться геометрическая форма магнитного поля с тем, чтобы повлиять на магнитное возбуждение и направлять шарики в конкретную область сенсора.

Когда анализирование пространства или поверхности связывания выполняют путем наблюдения за пространством или поверхностью связывания с помощью съемочной камеры, такой как камера на ПЗС, этап анализирования может включать в себя обработку изображений в реальном времени, чтобы получить достаточный диапазон и коэффициент усиления системы управления. В качестве альтернативы, определение воздействия приложенной силы возбуждения в пространстве или на поверхности связывания может выполняться путем наблюдения за оптическими пятнами или использования магнитных датчиков, таких как GMR или AMR, чтобы получить параметры, необходимые для управления силой возбуждения. Способ может дополнительно использоваться в сочетании с любым известным способом обнаружения, таким как магнитные или оптические способы, как упоминалось выше, в сочетании с любыми маркерными частицами или целевыми молекулами, которые могут возбуждаться, например, магнитным или электрическим путем, используя эффект Холла, с помощью потока, или давления, или любых других средств возбуждения.

Изобретение дополнительно предусматривает устройство, которое особенно приспособлено для выполнения способа по изобретению.

С помощью способа и устройства по изобретению может быть уменьшено влияние многих параметров анализа, которые в противном случае могут препятствовать правильному измерению, а надежность биосенсора может быть значительно улучшена, особенно при использовании в меняющихся условиях типа полевых тестов на наркотики.

Эти и другие аспекты изобретения станут очевидными и разъясненными при обращении к описанным ниже вариантам осуществления.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 показывает изображение, наблюдаемое в биосенсорном устройстве на основе НПВО;

Фиг. 2 схематически показывает установку для биосенсорного устройства на основе НПВО согласно варианту осуществления настоящего изобретения; и

Фиг. 3 показывает диаграмму сигнала, наблюдаемого в биосенсоре на основе НПВО, в зависимости от магнитного поля возбуждения.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

В соответствии с одним вариантом осуществления настоящего изобретения может использоваться биосенсорное устройство на основе НПВО, которое проиллюстрировано на Фиг. 2. Устройство включает в себя сенсорную кассету 1, которая может быть съемной с биосенсорного устройства. В сенсорной кассете предусмотрена сенсорная камера, включающая в себя подготовленные надлежащим образом магнитные шарики. Биосенсорное устройство дополнительно содержит источник 4 света, такой как лазерный диод или светодиод (СИД), для генерирования светового луча, который освещает поверхность 11 связывания биосенсорной кассеты под углом, который удовлетворяет требованиям полного внутреннего отражения. Свет, отраженный от поверхности 11 сенсора, обнаруживается средством 5 обнаружения, таким как фотодиод или съемочная камера, например, на ПЗС.

Чтобы увеличить скорость реакции магнитных шариков, магнитная обмотка 3 возбуждения размещена под кассетой 1, обращенной к поверхности сенсора, чтобы создать магнитное поле для притягивания шариков к поверхности 11 сенсора. Дополнительная магнитная обмотка 2 может размещаться над кассетой, чтобы оттягивать шарики, которые после заранее заданного времени не образуют связь с областями связывания на поверхности 11 сенсора, от поверхности 11 сенсора. То есть на этом так называемом этапе «промывки» неустановленные и несвязанные шарики могут быть удалены с поверхности 11 сенсора, чтобы избежать любого нарушения измерения, вызванного шариками, которые случайно размещаются вблизи поверхности 11 сенсора.

Силу, необходимую для оттягивания несвязанных шариков от поверхности сенсора на этапе «промывки», очень важно настроить. Особенно сложно найти баланс между «промывкой» достаточного количества шариков с поверхности 11 сенсора, не нарушая при этом слабые связи между поверхностью 11 сенсора и связанными шариками. Воздействие относительно слабого тока «промывки» в обмотке 2 может наблюдаться и обрабатываться в реальном времени путем анализирования изображения, наблюдаемого съемочной камерой 5. Это может выполняться путем соединения выхода съемочной камеры 5 на ПЗС с видеоинтерпретатором 7 и управления обмотками 2, 3 возбуждения с использованием привода 6 возбуждения в ответ на выходные данные видеоинтерпретатора 7. Видеоинтерпретатор 7 и привод 6 возбуждения могут быть реализованы с помощью компьютера.

Когда ток в обмотке 2 увеличивается, постепенно происходит «промывка» шариков, т.е. оттягивание несвязанных шариков от поверхности 11 сенсора, что опять же может наблюдаться одновременно в реальном времени. Воздействие подаваемого тока может наблюдаться еще точнее путем наблюдения за воздействием как в областях связывания, то есть в точках A1, A2 связывания, так и в областях несвязывания, таких как области B1, B2, как показано на Фиг. 1.

С помощью этого варианта осуществления настоящего изобретения сила возбуждения, необходимая для надежного удаления только несвязанных шариков с поверхности 11 сенсора, может быть реализована при наблюдении в реальном времени за поверхностью 11 сенсора и, исходя из этого наблюдения, управлении силой возбуждения, т.е. магнитной силой, приложенной обмоткой 2 возбуждения.

Вышеописанный процесс по выборочному управлению силой возбуждения, действующей на шарики в сенсорной кассете 1, также может использоваться для определения качества химических связей шариков на точках связывания на поверхности 11 сенсора. Это может выполняться путем увеличения тока «промывки» в обмотке 2 возбуждения до тех пор, пока также и связанные шарики не исчезнут с поверхности 11 сенсора, тем самым эффективно нарушая или растягивая связи. Результат такого измерения может использоваться в качестве критерия надежности анализа.

Фиг. 3 показывает схематическую диаграмму магнитного поля, созданного обмоткой 2 возбуждения, в зависимости от интенсивности, наблюдаемой биосенсорным устройством на основе НПВО. При слабых магнитных полях интенсивность медленно увеличивается с увеличением магнитного поля. Это отражает удаление несвязанных шариков с поверхности 11 сенсора. Начиная с некоторой пороговой величины, указанной как Hпорог, связанные частицы также оттягиваются от поверхности 11 сенсора. Соответственно, отраженная интенсивность, наблюдаемая в биосенсорном устройстве на основе НПВО, увеличивается до тех пор, пока не удалятся практически все шарики с поверхности 11 сенсора. Соответственно, начиная с некоторого магнитного поля, интенсивность остается практически постоянной. Такое измерение может использоваться для определения магнитного поля, необходимого для удаления практически всех несвязанных шариков с поверхности сенсора как можно быстрее. То есть, чтобы надежно удалить только несвязанные шарики, магнитное поле обмотки 2 возбуждения следует поддерживать ниже Hпорог.

Принцип вышеописанного варианта осуществления настоящего изобретения может быть расширен на различные применения. Например, притягивание шариков к поверхности 11 сенсора с использованием обмотки 3 возбуждения для того, чтобы облегчить связывание шариков с точками связывания на поверхности 11 сенсора, может быть оптимизировано путем наблюдения за шариками на поверхности 11 сенсора и управления возбуждением таким образом, что исключаются неспецифичные связи и скопления. Кроме того, при приложении токов обмотки поочередно к обеим обмоткам 2 и 3 возбуждения и одновременно наблюдении за положением шариков в сенсорной камере шарики могут перемещаться по сенсорной камере или поверхности 11 сенсора заранее заданным образом, чтобы направлять и перемешивать жидкость в сенсорной камере.

С помощью устройства и способа по настоящему изобретению может быть достигнута увеличенная надежность анализа за счет уменьшения воздействия различных допусков анализа, что особенно важно для полевого исследования на наркотики. Кроме того, могут быть уменьшены производственные допуски при изготовлении биосенсорных устройств и, в особенности, сенсорных кассет, а значит, и себестоимость продукции. Настоящее изобретение предлагает оптимальный баланс между аппаратной и программной обработками, необходимыми в биосенсорном устройстве, в частности в биосенсорном устройстве на основе НПВО.

Хотя изобретение было проиллюстрировано и подробно описано на чертежах и в предшествующем описании, такая иллюстрация и описание должны считаться пояснительными или примерными, а не ограничивающими; таким образом, изобретение не ограничивается раскрытыми вариантами осуществления. Специалистами в данной области техники могут подразумеваться и осуществляться вариации в раскрытых вариантах осуществления при применении на практике заявленного изобретения, исходя из изучения чертежей, раскрытия изобретения и прилагаемой формулы изобретения. В формуле изобретения слово "содержащий" не исключает других элементов или этапов, а единственное число не исключает множества. Один единственный процессор или другой блок могут выполнять функции нескольких элементов, указанных в формуле изобретения. Сам факт того, что некоторые признаки указаны во взаимно разных зависимых пунктах формулы изобретения, не указывает на то, что сочетание этих признаков не может использоваться с пользой. Любые ссылочные обозначения в формуле изобретения не следует рассматривать как ограничивающие объем.

1. Способ управления возбуждением маркерных частиц в биосенсорном устройстве, имеющем сенсорную камеру или кассету (1), включающую в себя пространство или поверхность связывания (11) для связывания маркерных частиц, причем способ содержит этапы, на которых
(a) прикладывают заранее заданную силу магнитного возбуждения для возбуждения маркерных частиц;
(b) определяют воздействие приложенной силы магнитного возбуждения в пространстве или на поверхности связывания (11); и
(c) осуществляют управление с обратной связью силой магнитного возбуждения маркерных частиц на основе того воздействия приложенной силы магнитного возбуждения в пространстве или на поверхности связывания (11), которое определено на упомянутом этапе (b).

2. Способ по п.1, в котором силой магнитного возбуждения управляют путем управления током в обмотках возбуждения (2, 3), создающих силу магнитного возбуждения.

3. Способ по п.1, в котором силой магнитного возбуждения управляют путем управления положением обмоток возбуждения (2, 3), создающих силу магнитного возбуждения, по отношению к сенсорной камере или кассете (1).

4. Способ по п.1, в котором воздействие приложенной силы магнитного возбуждения определяют путем наблюдения за пространством или поверхностью связывания (11).

5. Способ по п.4, в котором за пространством или поверхностью связывания (11) наблюдают путем обнаружения света, рассеянного из пространства или поверхности связывания (11).

6. Способ по п.1, в котором биосенсорное устройство является магнитным биосенсорным устройством на основе НПВО.

7. Биосенсорное устройство, содержащее:
(a) сенсорную камеру или кассету (1), содержащую пространство или поверхность связывания (11) для связывания маркерных частиц;
(b) средство возбуждения, прикладывающее заранее заданную силу магнитного возбуждения для возбуждения маркерных частиц;
(c) средство анализирования для определения воздействия приложенной силы магнитного возбуждения в пространстве или на поверхности связывания (11); и
(d) средство управления (6) для управления с обратной связью силой магнитного возбуждения маркерных частиц на основе того воздействия приложенной силы магнитного возбуждения в пространстве или на поверхности связывания (11), которое определено упомянутым средством анализирования (c).

8. Биосенсорное устройство по п.7, в котором упомянутое средство возбуждения содержит электромагнитные обмотки возбуждения (2, 3).

9. Биосенсорное устройство по п.7, в котором упомянутое средство анализирования содержит фотодетектор (5) для обнаружения света, отраженного упомянутым пространством или поверхностью связывания (11), и видеоинтерпретатор (7) для обработки сигналов, сформированных упомянутым фотодетектором (5).



 

Похожие патенты:

Группа изобретений относится к системе и способу введения медикаментов пациенту. Система содержит подвижный контейнер (5, 14) для медикамента; устройство (3) для изготовления первого идентифицирующего элемента с первыми данными, относящимися к пациенту, медикаменту и/или лечению, для прикрепления его к контейнеру (5, 14) для медикамента; считывающее устройство (6) для считывания первых данных с первого идентифицирующего элемента (5a); подающее устройство для подачи медикамента пациенту из контейнера (5, 14), вставленного в подающее устройство (11).

Настоящее изобретение относится к портативным системам анализа и способам для проведения экспериментов по определению характеристики давление-объем-температура для флюидов.

Изобретение относится к устройству и способу высокопроизводительного центрифугирования испытательных образцов. Способ центрифугирования включает несколько стадий.

Изобретение относится к блоку тестовой ленты на гибкой несущей ленте, перематываемой вперед с помощью лентопротяжного механизма, на которую нанесено множество аналитических тестовых полей для нанесения биологических жидкостей, в частности для определения глюкозы, причем каждое тестовое поле связано с одним участком ленты.

Изобретение относится к области мониторинга, в частности к мониторингу химически опасных объектов, и предназначено для оперативного определения координат источника возможной чрезвычайной ситуации в любой из зон влияния химически опасного объекта, подтверждения достоверности возможного события и определения параметров поражающих факторов химического и физического воздействия с целью улучшения качества принятия решения о чрезвычайной ситуации.

Изобретение относится к выявлению инфекционных болезней, и в частности к системе для выявления инфекционных болезней, к способу работы системы, и к компьютерному программному продукту.

Изобретение относится к технике анализа состава газовых смесей, в том числе содержащих обладающие запахом компоненты, и может быть использовано для определения качественного состава и количественного содержания газов в таких смесях, в том числе и при контроле окружающей среды на наличие предельно допустимых концентраций (ПДК), соответствующих допустимому уровню запаха, обладающих запахом газовых компонентов.

Изобретение относится к области мониторинга химически опасных объектов при аварийном выбросе в атмосферу токсичного вещества. .

Изобретение относится к области обеспечения надежности и безопасности объектов повышенной опасности. .
Изобретение относится к медицине и используется для лечения эндогенной интоксикации, вызываемой высокой концентрацией билирубина в плазме крови при различных патологиях.

Группа изобретений относится к медицине, а именно к лабораторной диагностике, и может быть использована для управления перемещением магнитных или намагничиваемых объектов в картридже биосенсора.

Группа изобретений относится к области лабораторной диагностики и может быть использована для определения наличия аналита и его количества в биологических жидкостях.

Изобретение относится к способам определения эффективности лиганда ионного канала. Ex vivo способ определения эффективности лиганда ионного канала in vivo в зависимости от присутствия плазмы, включает стадии: a) приведение клетки, экспрессирующей ионный канал, в контакт с i) плазмой животного и ii) лигандом ионного канала и b) определение эффекта лиганда ионного канала на клетку, или a) приведение клетки, экспрессирующей ионный канал, в контакт с i) плазмой животного и ii) соединением, которое определяют как лиганд ионного канала, и b) определение эффекта соединения на клетку, или a) приведение клетки, экспрессирующей ионный канал, в контакт с плазмой животного, которому был введен лиганд ионного канала, и b) определение эффекта лиганда ионного канала на клетку.

Изобретение относится к области биохимии и предназначено для определения IgG-протеиназной активности. В лунках полистиролового планшета сорбируют полимерные матрицы небелковой природы - ДНК, хитин, затем в лунки добавляют специфические к этой матрице IgG и раствор, содержащий протеолитические ферменты.

Изобретение относится к области иммунохроматографического анализа и может быть использовано в биотехнологии и медицинской диагностике для полуколичественного визуального определения биологически активных веществ.

Группа изобретений относится к медицине, в частности к фармакологии и фармацевтике, и касается устройства для обнаружения FABP в образце крови от пациента. Устройство включает камеру для образца крови и разбавителя, фильтр, для отделения плазмы, нагнетательное устройство для продавливания через фильтр, по меньшей мере, части образца крови и отделения плазмы, сборный отсек для плазмы с как минимум одним идентифицирующим антителом к эпитопу FABP.

Группа изобретений относится к области медицины и может быть использована для мультиплексного анализа. Анализирующее устройство содержит реакционное пространство, два набора индивидуально закодированных микроносителей (2), причем каждый микроноситель является функционализирующим, а каждый микроноситель одного из по меньшей мере двух наборов имеет одинаковую функционализацию, в котором реакционное пространство является микроканалом. При этом микроносители (2) имеют форму относительно сечения микроканала (1), которая позволяет иметь по всей длине микроканала (1) два каких-либо микроносителя (2), расположенных бок о бок без соприкосновения друг с другом и без соприкосновения с периметром микроканала (1). При этом устройство содержит средство (4) для ограничения перемещения микроносителей (2) в продольном направлении микроканала (1), наряду с тем, что жидкости все еще могут протекать, а код микроносителей является указывающим на его функционализацию. Группа изобретений относится также к способу приведения мультиплексного анализа и микросхеме для мультиплексных анализов. Группа изобретений обеспечивает ускорение массопереноса, уменьшение количества образцов, упрощает подготовку и выполнение анализа и облегчает снятие показаний биологических реакций. 3 н. и 14 з.п. ф-лы,18 ил., 1 пр.
Наверх